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Abstract—Farnesyltransferase inhibitors identified from an ECLiPS� library were optimized using solution-phase synthesis. X-ray
crystallography of inhibited complexes was used to identify substructures that coordinate to the active site zinc. The X-ray structures
were ultimately used to guide the design of second-generation analogs with FTase IC50s of less than 1.0 nM.
� 2005 Elsevier Ltd. All rights reserved.
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Figure 1. SCH 66336, Sarasar, FTase IC50 = 1–2 nM.2b
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Figure 2. Resynthesized compounds from the ECLiPS library, FT-1.
Farnesyltransferase (FTase) is a compelling therapeutic
target in the field of oncology as it is specifically linked
to the aberrant behavior of tumor cells.1 The tricyclic
drug, SCH 66336 (Sarasar, Fig. 1), was the first FTase
inhibitor (FTI) to enter the clinic, resulting in favorable
outcomes in a number of solid tumor types and hemato-
logical malignancies.2 The significant synergy with tax-
anes in inhibiting tumor growth makes this chemical
class of FTIs particularly intriguing.3

A collection of FTIs that are structurally related to SCH
66336, identified from FT-1, a 11,718-member ECLiPS�

(Encoded Combinatorial Library on Polymeric Sup-
port) library, has been described recently.4 The most
potent hits from FT-1 contained a 3-bromo-8-chloro-
benzocyclohepta-pyridine ring attached to a piperazine
core with 3-pyridylmethylamide or alkyl amides at posi-
tion 2 and phenylpropanamide or 4-pyridylacetamide at
position 1. Examples of such compounds are represent-
ed by 1 and 2 (Fig. 2, Scheme 1). The substituents at
position 2 make these compounds unique since this is
a site that had never previously been explored. To
further define the SAR at these positions, several smaller
collections of analogs were made. These synthetic efforts
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also constituted an attempt to identify substituents that
could make a comparable contribution to the potency as
that afforded by the bromine at position C-10 of tricyclic
FTIs such as SCH 66336 (Fig. 1).5,6
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Table 1. Elaboration of the N-1 position of core 7 (R1 = 3-

pyridylmethyl)

Compound R2 FTase IC50

(nM) ±SD

COS IC50

(nM) ±SD

8 Me(CH2)2CH2– 5.7 ± 2.1 64 ± 6

9 Me(CH2)3CH2– 8.0 ± 1.2 75 ± 2

10 Me2CHCH2– 7.3 ± 0.7 50 ± 0

11 Me3CCH2– 12 ± 0.4 120 ± 23

12 Cycloheptyl– 12 ± 3.0 85 ± 9

13 Cyclohexylethyl– 20 ± 7 38 ± 12

14 Cyclopentyl– 17 ± 6.0 65 ± 21

15 HO2C(CH2)2CH2– 7.0 ± 0.6 >200

16 MeC(O)(CH2)3CH2– 8.0 ± 0.3 49 ± 15

17 MeC(O)(CH2)2CH2– 8.4 ± 0.9 54 ± 2

18 MeC(O)CH2CH2– 11 ± 3.0 47 ± 2

19 MeOCH2CH2– 20 ± 5.3 100 ± 0

20 MeCH2OCH2– 21 ± 8.5 160 ± 12

21 MeOC(O)(CH2)3CH2– 7.9 ± 0.4 62 ± 2

22 Me2NC(O)CH2CH2– 13 ± 1.4 11 ± 2

23 Me3CO– 22 ± 3.5 >200

24 CH3(CH2)3NH– 9.1 ± 1.4 45

25 CH3(CH2)2NH– 19 ± 1 59 ± 17

26 Me2CHCH2NH– 8.0 ± 1.3 52 ± 37

27 Me2CHNH– 47 ± 5 140 ± 1

28 Me3CNH– 15 ± 2 54 ± 4

29 Cycloheptyl-NH– 9.1 ± 0.5 52 ± 26

30 Cyclohexyl-NH– 5.5 ± 0.7 8.6 ± 0.2

31 Cyclohexylmethyl-NH– 10 ± 1.3 53 ± 8

32 Cyclopentyl-NH– 14 ± 8 28 ± 1.5

33 Cyclopropyl-NH– 51 ± 4.2 260 ± 46
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Scheme 1. General synthetic procedure for synthesis of the FT-1

analogs.
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The first collection, synthesized as shown in Scheme 1,
contained 3-pyridylmethylamide at the 2-position of
the piperazine core since this was a frequently seen fea-
ture of the most potent compounds retrieved from the
FT-1 screen.4 Starting from N-1-Fmoc N-4-Boc pipera-
zine-2-carboxylic acid 3, coupling of 3-pyridylmethyl-
amine using DCC or PyBrop gave amide 4. Removal
of the Fmoc group and coupling with various acids
using PyBrop resulted in compound 5. After deprotec-
tion of the Boc group with TFA, the neutralized amine
was reacted with previously reported7 chloride 6 to af-
ford compound 7. The compounds were tested in the
same scintillation proximity assay (SPA) used to screen
FT-1.4 Since the FTase concentration is 2.8 nM, the
lower limit of sensitivity for IC50 determinations is
approximately 5 nM. To further supplement our ability
to rank-order the compounds, all compounds were also
evaluated in a COS cell Ha-Ras processing assay.8

Both acyclic (8–11) and cyclic amides (12–14) are well
tolerated (Table 1) with IC50s of less than 20 nM. The
cyclic amides show a smaller separation between enzyme
and cell activity suggesting better whole-cell penetration.

Elaboration of the acyclic amides at R2 revealed a toler-
ance for many functional groups on the distal end of this
position, such as carboxylic acid (15), ketones (16–18),
ethers (19, 20), ester (21), amide (22), and carbamate
(23). The tertiary amide, 22, is remarkable in that the en-
zyme IC50 (13 ± 1.4 nM) and the COS IC50 (11 ± 1.5)
are nearly identical. This suggests that the amide chem-
otype has a lower threshold for cell penetration. The
carboxylic acid, 15, and the carbamate, 23, show a much
higher threshold for cell penetration. Nonetheless, the
potency of 23 in the enzyme assay (IC50 = 22 ± 3.5)
prompted us to explore other related functionalities,
such as urea.

Acyclic (24–28) and cyclic (29–33) ureas were prepared
using a procedure similar to Scheme 1, except that isocy-
anates were used in place of carboxylic acids at R2. The
most potent compound is the cyclohexylurea 30, with an
enzyme IC50 of 5.5 ± 0.7 nM and a COS IC50 of
8.6 ± 0.2 nM. Not only is 30 the most potent of the ure-
as but it also shows the smallest separation between the
enzyme and COS assay IC50s.

A trihalogenated analog of compound 8, containing an
additional bromine at position 10 of the tricycle, demon-
strates comparable enzyme activity (FTase IC50 = 5.6 ±
2.4 nM) but improved COS activity (COS IC50 = 5.3 ±
0.0 nM). X-ray crystallography of FTase inhibited with
this compound showed that the 3-pyridylmethyl side
chain interacts with the active site zinc (Fig. 3). The dis-
tance between the pyridine nitrogen and the zinc atom
is 2.29 Å. This finding makes this series of compounds
particularly noteworthy since the tricyclic FTI, SCH
66336, does not contain substituents that are capable
of zinc coordination.10 The X-ray structure thus sug-
gested that other zinc ligands would be suitable replace-
ments for this substituent. Fixing R2 as butyl, a survey
of R1 modifications such as pyridines (34, 35), pyrazine
(36), isoxazole (37), and ethyl- or methyl-imidazoyl
(38–40) indicated that while all but the pyridine N-ox-
ide, 34, were tolerated, the imidazoylethyl, as exempli-
fied by 38, was most preferred yielding an enzyme
IC50 of 12 ± 3.6 nM and a COS IC50 of 60 ± 15 nM
(Table 2).

Given the potent enzyme and cell-based activity of the
cyclohexylurea, 30 (Table 1), we sought to combine this
pharmacophore with those of the imidazoyls in Table 2.
As shown in Table 3, imidazoylpropyl (41, 42) or
imidazoylethyl (43, 44) containing compounds, along
with the 2-oxo-pyrrolidinylpropyl compound, 46, are
comparable in both enzyme and COS activity to that
of the 3-pyridylmethyl compound, 30. Compound 41



Table 3. Analogs of 38 (Core 7 where R2 = cyclohexyl-NH–)

Compound R1 FTase IC50

(nM) ±SD

COS IC50

(nM) ±SD

41
NN 4.5 ± 2.3 4.2 ± 0.2

42

N

N
H

13 ± 1.7 9.7 ± 1.4

43
N

N
H

7.0 ± 0.4 18 ± 8.7

44

N

N
7.3 ± 2.9 13 ± 17

45
N

N
26 ± 7.7 91 ± 17

46 N

O
14 ± 1.5 20 ± 0.3

47
N

61 ± 20 550

48

N N

S
490 ± 130 >10,000

49

N
O

760 ± 250 Not tested

Figure 3. X-Ray structure of the FTase complex with a 10-Br analog (FTase IC50 = 5.6 ± 2.4 nM, COS IC50 = 5.3 ± 0.0 nM) of 8.9 The zinc atom at

the active site is represented by the red ball.

Table 2. Pyridine replacements at the C-2 position of core 7

(R2 = butyl)

Compound R1 FTase IC50

(nM) ±SD

COS IC50

(nM) ±SD

8
N

5.7 ± 2.1 64 ± 6

34
N

O
1800 ± 570 >200

35
N

18 ± 2 100 ± 30

36
N

N
190 ± 14 570 ± 180

37 N
O

560 ± 20 >4500

38

N NH
12 ± 4 60 ± 15

39

N

H
N 80 ± 4 >200

40

N

H
N

45 ± 19 210 ± 7
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(a mixture of four isomers) is the most potent in this col-
lection with IC50s in both the enzyme and COS assay of
less than 5.0 nM. The potency in the enzyme assay is
predicted to be greater as it appears to be beyond the
limit of sensitivity for the FTase SPA assay.

Since it is known that the (R) isomer is the preferred
configuration at the C-2 position of the piperazine
core11, compound 41 was prepared using (R)-pipera-
zine-2-carboxylic acid to give a diastereomeric mixture
and subsequently separated by HPLC to give 41a and
41b (Table 4). The absolute configuration at C-11 of
the tricyclic piece was not determined but the findings
of Strickland et al.5 suggest that the stereochemistry at
this position does not have a significant impact on



Figure 4. X-ray crystal structure of 41b bound to FTase. The zinc atom at the active site is represented by the red ball.

Table 4. Biological evaluation of the purified isomers of 41

Compounda FTase IC50 (nM)b GGTase I IC50 (nM)c COS IC50 (nM) ±SD Soft Agar IC50 (nM) ±SD Rat liver microsome stabilityd

41a V1 = 2.0

V2 = 0.10 ± 0.04

22,000 1.2 ± 0.3 5.2 ± 1.0 >95%

41b V1 = 1.5 >10,000 0.56 ± 0.06 5.0 ± 0.6 >95%

a Compound 41 was prepared as a diastereomeric mixture and was subsequently resolved by HPLC. Compound 41a is the first-eluting isomer and

41b is the second-eluting isomer.
b The V1 FTase IC50 was quantified as described in Rokosz et al.4 The V2 FTase IC50 was quantified as described in Ref. 12.
c GGTase I activity was measured as described by Bishop et al.8 All other assays were conducted as described in the References and notes section.
d The microsome stability is defined as the percent of compound remaining following treatment with microsomes as described.14
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enzyme activity. The less polar isomer, 41a, was arbi-
trarily designated as isomer 1, while the more polar iso-
mer, 41b, was designated as isomer 2. As expected, the
purified isomers show identical activities in both the en-
zyme and COS assays (IC50s 6 2.0 nM). To obtain a
more accurate enzyme IC50 compound 41a was re-tested
in a modified version of the SPA assay, with improved
sensitivity (V2).

12 This assay yielded an IC50 for 41a of
0.10 ± 0.04 nM. This potency is consistent with that
reported by Taveras et al.10 A soft agar assay was used
to determine if the compounds can reverse the adherent-
independent phenotype of the transformed cell line,
NIH-3T3.13 Both isomers produced soft agar IC50s of
5.0 nM. They are also greater than 10,000-fold selective
for FTase over geranylgeranyltransferase I (GGTase I).
In order to assess metabolic stability, the isomers were
incubated with rat liver microsomes for 1 h at 37 �C.14
Both compounds remained largely (>95%) intact under
these conditions. A mouse pharmacokinetic study was
used to show that 41b has an AUC (area under the
curve) of 1.66 lg/ml h and a Cmax of 2.55 lM (10 mpk
in 20% HPbCD, po). However, the overall bioavailabil-
ity, when compared to the plasma levels of intravenous
dosing, was just 10.6%. Metabolism is likely due to pep-
tidic cleavage at the amide bond. This reaction can be
tempered via conversion of the secondary nitrogen at
the amide bond to a tertiary nitrogen.10,15

X-ray crystal analysis of FTase inhibited with 41b
(Fig. 4) shows that the imidazole moiety interacts, as
expected, with the catalytic zinc in the active site. The
distance between the imidazole and the zinc atom is
2.08 Å. Taken together, these data suggest that the
enhancement in potency afforded through interaction
with the active site zinc is comparable to, if not greater
than, that contributed through the addition of a bro-
mine at the C-10 position of the tricycle. Further struc-
tural details of the FTase-41b complex will be reported
in due course.
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