

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry 14 (2006) 5592-5604

Bioorganic & Medicinal Chemistry

Synthesis and antibacterial activity of novel C_{12} ethyl ketolides

Matthew T. Burger,* Christy Hiebert, Mehran Seid, Daniel T. Chu, Lynn Barker, Mike Langhorne, Ribhi Shawar, Jolene Kidney, Manoj C. Desai and Jacob J. Plattner

Chiron Corporation, Biopharma Research, 4560 Horton Street, Emeryille, CA 94608-2916, USA

Received 27 March 2006; revised 12 April 2006; accepted 13 April 2006 Available online 11 May 2006

Abstract—A novel series of C_{12} ethyl erythromycin derivatives have been discovered which exhibit in vitro and in vivo potency against key respiratory pathogens, including those resistant to erythromycin. The C_{12} modification involves replacing the natural C_{12} methyl group in the erythromycin core with an ethyl group via chemical synthesis. From the C_{12} ethyl macrolide core, a series of C_{12} ethyl ketolides were prepared and tested for antibacterial activity against a panel of relevant clinical isolates. Several compounds were found to be potent against macrolide-sensitive and -resistant bacteria, whether resistance was due to ribosome methylation (*erm*) or efflux (*mef*). In particular, the C_{12} ethyl ketolides **4k**,**4s**,**4q**,**4m**, and **4t** showed a similar antimicrobial spectrum and comparable activity to the commercial ketolide telithromycin. The in vivo efficacy of several C_{12} ethyl ketolides was demonstrated in a mouse infection model with *Streptococcus pneumoniae* as pathogen.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The macrolide antibiotic erythromycin A has been used successfully clinically for over 40 years to treat upper and lower respiratory tract infections. In recent decades, to address shortcomings of erythromycin A,1 secondgeneration macrolides (clarithromycin,² azithromycin,³ and roxithromycin⁴) have been developed and used clinically. Resistance to the second generation macrolides has emerged, with resistance most commonly being conferred by ribosomal mutation (erm) or by efflux (mef) mechanisms.⁵ To overcome this resistance a third generation of macrolide antibiotics known as ketolides [telithromycin⁶ and cethromycin $(ABT-773)^7$] has recently been developed. In these molecules the C₃ cladinose sugar of erythromycin A is removed and replaced with a C_3 ketone group. Additionally, a heterocycle is tethered to the macrolide core, introducing an additional binding contact at the target ribosome (Fig. 1).

In our laboratories we have been conducting research toward producing novel macrolide cores that exhibit potent in vitro and in vivo antibacterial properties against

macrolide-resistant pathogens by chemical manipulation of erythromycin A. The novel cores we have targeted differ from erythromycin in the substitution of the natural C_{12} methyl group (C_{21}) by nonpolar groups other than methyl. Nonpolar substitutions were targeted to maintain the known overall hydrophobic nature of the bottom face of the macrocycle.^{8,9} Since the erythromycin core serves as the synthetic starting point for the second and third generation macrolide antibiotics currently in clinical use (clarithromycin, azithromycin, roxithromycin, and the new ketolide telithromycin) as well as many currently in preclinical research, such novel C_{12} modified macrolide cores, could provide access to many of the semi-synthetic derivatives that erythromycin has been converted into, as well as new derivatives all together. Recently, we reported on novel C_{12} vinyl ketolides which possess potent in vitro and in vivo antibacterial properties against macrolide-resistant organisms.¹⁰ We report herein on the preparation of a novel C_{12} ethyl macrolide core, the conversion of this core into the ketolide class of macrolides, and on the in vitro and in vivo antibacterial properties of the resulting C12 ethyl ketolides.¹¹

2. Chemistry

Synthetic modifications of erythromycin have been pursued by numerous investigators attempting to prepare

Keywords: Ketolide; Macrolide; Ketolide antibiotic; Macrolide antibiotic; Antiinfective; Antibiotic.

⁶ Corresponding author. Tel.: +1 510 923 3537; fax: +1 510 923 3360; e-mail: matthew_burger@chiron.com

Figure 1. Clinically utilized macrolides.

chemical derivatives with improved profiles and biological activity. The addition of a single methyl group onto the C₆ hydroxyl of erythromycin A greatly improved the acid stability and pharmacokinetic properties resulting in the development of clarithromycin, which has found widespread use clinically. Modifications involving the C₁₁ and C₁₂ hydroxyl groups have been extensively explored,¹² which in conjunction with modifications of the C₃ cladinose moiety, eventually yielded the recently approved C₁₁, C₁₂ cyclic carbamate, C₃ oxo ketolide telithromycin. Similar modifications in conjunction with a C₆ O-alkyl modification led to the discovery of the ketolide ABT-773. Additional modifications that have been reported include 4" carbamate macrolides,¹³ ketolides containing nonnatural C₁₃ substituents obtained

via alteration of the biosynthetic pathway of erythromycin A^{14} and C_6 - C_{11} bridged ketolides.¹⁵

The C_{12} vinyl ketolides we have recently reported on were obtained from chemical manipulation of the erythromycin A macrolide; a key synthetic intermediate en route to these C_{12} vinyl ketolides is the C_{12} – C_{21} exocyclic alkenyl macrolide **1**, (Fig. 2). The double bond in **1** has proven to be a versatile intermediate for incorporating many novel groups at the C_{12} position of the macrolide. In addition to dihydroxylation which ultimately led to the C_{12} vinyl macrolide core, the alkenyl macrolide **1** can be ozonized yielding a C_{12} ketone¹⁶ as well as stereoselectively epoxidized yielding a C_{12} – C_{21} epoxide. In all three chemical transformations, chemis-

Figure 2. Chemical manipulations of erythromycin derived C₁₂,C₂₁ alkene 1.

try performed at the C_{12} - C_{21} bond yields products containing a handle upon which further chemistry can be performed to introduce unnatural C_{12} substituents into the erythromycin core.

The synthetic route for accessing C_{12} ethyl modified macrolides and ketolides via the epoxidation product of macrolide 1 is outlined in Scheme 1. The synthetic details are as follows. Starting from clarithromycin, the protected C_{12} – C_{21} alkenyl macrolide 1 was prepared in four steps as previously described.¹⁰ Treatment of macrolide 1 with meta-chloroperoxybenzoic acid results in epoxidation of the C_{12} - C_{21} alkene as well as oxidation of the tertiary amine. We were unable to avoid the undesired nitrogen oxidation. Initially, we found that the N-oxide could be conveniently reduced under mild conditions by treating with isopropanol and catalytic tetrapropylperruthenate in dichloromethane in the presence molecular sieves.¹⁷ Eventually, we found on scaleup that the N-oxide could be efficiently reduced by treating with sodium thiosulfate in a tetrahydrofuran-water solution to yield the desired C12-C21 epoxide. The epoxidation is stereoselective and occurs from the beta face of the macrocycle, vide infra. Introduction of the C_{21}

methyl group was achieved by opening the epoxide with dimethylcuprate. Upon treating the resulting C_{12} ethyl macrolide with pyridinium *para*-toluene sulfonate at 68 °C the cyclic acetonide was deprotected, and the C₉ hydroxyl of the resulting triol was oxidized selectively by Dess-Martin periodinane¹⁸ at -10 °C yielding macrolide diol **2a**.

The structural assignment for the newly created C_{12} stereocenter was initially supported by comparing the NMR spectral data of macrolide **2a** with the bisbenzoylated clarithromycin **2b**, ¹⁰ which differ only by having a methyl or ethyl at the C_{12} position. Further support for this structural assignment came from preparing the epimeric C_{12} ethyl C_9 , C_{11} acetonide macrolide core whose X-ray structure was solved.¹⁹

The C_{12} ethyl macrolide **2a** was converted to a series of C_{12} ethyl ketolides as follows. Mesylation of the C_{11} hydroxyl of macrolide **2a** was achieved by treating with mesyl chloride in pyridine. Analysis by ¹³C NMR suggests that the C_{11} mesylated **2a** exists predominantly as a $C_{12}OH$ C₉ cyclic hemiketal; a C₉ ketone resonance above 200 ppm is lacking, but a hemiketal resonance

4:: Het=tethered heterocycle

Scheme 1. Synthesis of C_{12} ethyl ketolides. Synthesis of C_{12} ethyl ketolides. Reagents and conditions: (i)–(iv)ref10. (v) a–MCPBA, CH₂Cl₂ b– NaHSO₃, THF/H₂O, 83%; (vi) Me₂CuLi, Et₂O, -78 to 0 °C, 80%; (vii) PPTS, 68 °C, MeCN–H₂O (2:1) 55%; (viii) Dess–Martin periodinane, CH₂Cl₂, -10 °C, 67%; (ix) MsCl, pyridine, 69%; (x) a–DBU, acetone, 4 h, rt; b–66 °C, 12 h, 98%; (xi) HCl, H₂O, MeOH, 40 °C, 82%; (xii) Dess– Martin periodinane, CH₂Cl₂, 94%; (xiii) CDI, THF, NaH, 0 °C; (xiv) a–amine, MeCN, H₂O, 60 °C, 14 h; b–MeOH, 65 °C, 12 h, 20–45%.

distinct from the anomeric sugars is evident at 108.5 ppm. The C_{11} mesylated macrolide was then converted to the corresponding enone by treatment with DBU in acetone first at room temperature and then at reflux. This transformation we believe proceeds first by the C₁₂ hydroxyl displacement of the C₁₁ mesylate yielding an intermediate C_{11} - C_{12} epoxide that upon heating in the presence of DBU allows for C_{10} deprotonation and elimination/opening of the epoxide to yield the desired enone. A single enone isomer was produced in this reaction as judged by ¹H NMR. Acidic hydrolysis removes the cladinose group, which was oxidized when subjected to Dess-Martin periodinane yielding the C12 ethyl macrolide enone 3. Deprotonation of the C_{12} hydroxyl of enone 3 with sodium hydride in the presence of carbonyldiimidazole yielded the corresponding C_{12} imidazoyl carbamate which upon reaction with an excess of side chain amine,²⁰ and deprotection of the desosamine benzoate by heating in methanol yielded the C_{12} ethyl ketolides 4. Typical unoptimized yields of final ketolide 4 from enone 3 were of the order of 20-45%. The C₁₂ ethyl ketolides (4a-t) prepared and reported are illustrated in Figure 3.

The structural assignments of the final ketolides were supported by NMR comparison to telithromycin. For compound **4k**, which has the same alkyl tethered group off the cyclic carbamate as telithromycin, the peaks for the macrocycle core excluding resonances for the C_{12} methyl or ethyl group are practically identical.²¹ Additionally, all ketolides exhibited the C_{11} H singlet at ca. 3.7 ppm characteristic of C_{11} – C_{12} carbamates with natural C_{10} configuration.^{12a}

3. Results and discussion

3.1. In vitro evaluation

The C₁₂ ethyl ketolides prepared were assayed in a primary panel against a number of strains of *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Enterococcus faecalis*, *Streptococcus pyogenes*, *S. pneumoniae* and *Haemophilus influenzae*. Included among the strains of *S. pneumoniae* were erythromycin-resistant strains containing *mef* and *erm* genes. Telithromycin and clarithromycin were used as comparators in all assays. The in vitro antibacterial activity is reported as the minimum inhibitory concentration (MIC) in micrograms per milliliter as determined by the broth microdilution method.²² The MIC data in Tables 1 and 2 indicate that C₁₂ ethyl ketolides in general

Figure 3. Structures of C₁₂ ethyl ketolides.

Table 1. In vitro properties [MIC (µg/mL)] of C12 ethyl ketolides

Strains	4a	4b	4c	4d	4e	4f	4g	4h	4i	4j	teli	clari
S. aureus_29213	0.2	0.4	0.4	0.2	0.1	0.78	1.56	1.56	0.2	0.78	0.1-0.2	0.4-0.78
S. aureus_33591	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
S. epidermidis_14990	0.4	0.4	0.2	0.2	0.1	0.4	1.56	0.78	0.2	0.78	0.1 - 0.2	0.2 - 0.4
S. epidermidis f50654	0.2	0.4	0.2	0.2	0.1	0.78	0.78	1.56	0.2	0.78	0.1 - 0.2	0.2 - 0.4
E. faecalis _29212	0.1	0.2	0.1	0.1	≼0.05	0.1	0.2	0.1	0.1	0.2	≤0.05–0.1	0.78 - 1.56
E. faecalis_bc11148–2	1.56	6.25	0.78	0.78	25	12.5	3.13	1.56	50	3.13	0.4	>50
S. pyogenes_8668	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	0.1	0.1	0.1	≼0.05	≼0.05	$\leqslant 0.05$	≼0.05
S. pneumo_49619	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05
S. pneumo_297–749	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	$\leqslant 0.05$	≼0.05
S. pneumo_280–962	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05
S. pneumo_Erm 6849	0.78	0.2	0.4	0.4	>50	3.13	3.13	0.78	0.4	3.13	0.1 - 0.4	>50
S. pneumo_Mef 5654	0.4	0.78	1.56	0.78	0.4	0.4	0.78	0.78	0.4	0.78	0.4 - 0.78	6.25-12.5
S. pneumo_Mef S 3427	0.1	0.2	0.2	0.1	≼0.05	≼0.05	0.2	0.2	≼0.05	0.1	0.1 - 0.2	3.13-6.25
H. influenzae_49247	3.13	3.13	6.25	6.25	3.13	3.13	6.25	3.13	3.13	3.13	3.13-6.25	6.25-12.5
H. influenzae_2762			1.56	0.78	0.2		1.56	1.56		1.56	0.4-1.56	0.78-3.13

Table 2. In vitro properties [MIC ($\mu g/mL$)] of C₁₂ ethyl ketolides

Strains	4k	41	4m	4n	40	4p	4q	4r	4s	4t
S. aureus_29213	0.4	0.4	0.4	0.1	0.2	0.4	0.2	0.4	0.2	0.78
S. aureus_33591	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
S. epidermidis_14990	0.2	0.2	0.2	0.1	0.4	0.2	0.2	0.4	0.2	0.4
S. epidermidis f50654	0.2	0.4	0.2	0.1	0.2	0.2	0.2	0.4	0.1	0.4
E. faecalis _29212	0.1	0.2	0.1	≼0.05	0.1	0.2	0.1	0.1	0.1	0.1
E. faecalis_bc11148–2	0.4	3.13	0.78	1.56	3.13	1.56	0.78	3.13	0.78	0.4
S. pyogenes_8668	≼0.05	≼0.05	$\leqslant 0.05$	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	$\leqslant 0.05$	≼0.05
S. pneumo_49619	≼0.05	≼0.05	$\leqslant 0.05$	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	$\leqslant 0.05$	≼0.05
S. pneumo_297–749	≼0.05	≼0.05	$\leqslant 0.05$	≼0.05	≼0.05	≼0.05	≼0.05	≼0.05	$\leqslant 0.05$	≼0.05
S. pneumo_280–962	≼0.05	≼0.05	≼0.05	≤0.05	≼0.05	≤0.05	≤0.05	≼0.05	≼0.05	≼0.05
S. pneumo_Erm 6849	0.4	1.56	0.4	6.25	0.78	0.2	0.78	>50	0.2	≼0.05
S. pneumo_Mef 5654	0.4	0.78	0.4	0.78	0.78	0.4	0.4	0.78	0.4	0.78
S. pneumo_Mef S 3427	0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.2	$\leqslant 0.05$	0.1
H. influenzae_49247	6.25	6.25	3.13	6.25	6.25	3.13	3.13	3.13	3.13	6.25
H. influenzae_2762	0.4	1.56	0.78	0.78	1.56	_	_	0.78	_	1.56

possess potent antibacterial activity against a range of pathogens. The spectrum is similar to that of telithromycin, and like telithromycin, the C_{12} ethyl ketolides are potent against the *mef* and *erm* gene containing *S. pneumoniae* strains that clarithromycin is not active against. The overall activity spectrum of the C_{12} ethyl ketolides can be attenuated by the nature of the heterocycle tethered to the C_{11} , C_{12} carbamate. All of the heterocyclic moieties on the C_{12} ethyl ketolides reported here are tethered to the C_{11} attached nitrogen via a four-atom spacer. The heterocyclic moieties can be divided into 6,6 and 5,6 heteroaromatic fused bicycles or 5,6 or 6,6 unfused biaryl systems.

A general trend that appears for the C_{12} ethyl ketolides with tethered heteroaromatic fused bicycles is potency similar to telithromycin versus *S. aureus*, *S. pyogenes*, susceptible *S. pneumoniae,mef* gene containing *S. pneumoniae* strains and *H. influenzae*, and weaker potency relative to telithromycin against *S. epidermidis*, *E. faecalis*, and the *erm* gene containing *S. pneumoniae* strain. C_{12} ethyl ketolides with tethered quinolines in particular have weakened activity regardless of the nature of the four-atom tether. With an *N*-methyl group inserted in the four-atom tether, quinolyl tethered C_{12} ethyl ketolides **4g,4h**, and **4j**

are five- to tenfold less potent than telithromycin against S. aureus, S. epidermidis, E. faecalis, and the erm gene containing S. pneumoniae strain. When the 4-quinolyl group is tethered via a butyl group as in C₁₂ ethyl ketolide 4i the activity against S. aureus, S. epidermidis, and the erm gene containing S. pneumoniae strain is comparable to that of telithroycin but the activity against E. faecalis is 100-fold less that of than telithromycin. A slight but less pronounced improvement in potency is evident switching to the butyl tethered 2-quinolyl in C₁₂ ethyl ketolide 4f relative to 4g. For azabenzimidazole tethered C_{12} ethyl ketolides 4a,4c, and 4d the activity is comparable to that of telithromycin for all strains, being only twoto fourfold less potent against S. aureus, S. epidermidis, and the erm gene containing S. pneumoniae strain. The incorporation of the gem dimethyl groups into azabenzimidazole tethered 4d seems to improve the activity against E. faecalis relative to azabenzimidazole tethered 4b. The azaindole tethered C_{12} ethyl ketolide 4e is equipotent to telithromycin in all strains tested, except for E. faecalis and the erm gene containing S. pneumoniae strain where it is at least 50-fold less potent.

A general trend that appears for the C_{12} ethyl ketolides with tethered 5,6 or 6,6 unfused biaryl systems from Table 2 is potency similar to telithromycin versus all pathogens in the primary panel. The C_{12} ethyl ketolide 4k, with the same tethered imidazoyl pyridyl bicycle as telithromycin, is essentially equipotent with telithromycin. Substitution on the pyridyl group of this bicycle with methyl 41, fluoro 4m, methoxy 40 and chloro 4n is tolerated, albeit with a four- to eightfold decrease in potency against *E. faecalis*. The C_{12} ethyl ketolide 4r containing a tethered 4-(4'-pyridyl) imidazolyl group is tenfold less potent against E. faecalis and 100-fold less potent against the erm gene containing S. pneumoniae strain than both the 4-(3'-pyridyl) imidazolyl containing 4k and telithromycin. Replacing the pyridyl group of the tethered biaryl moiety with phenyl, pyrimidyl, and pyrazinyl groups is tolerated as C_{12} ethyl ketolides **4s**, **4p**, and **4q** are equipotent with telithromycin, with the exclusion of slightly elevated (2-fold) S. aureus and E. faecalis MIC values. Compound 4t, in which a 6,6 bipyridyl system is connected to the macrolide core via a four-atom aminomethyl containing tether, exhibits a balanced antibacterial profile also comparable to that of telithromycin.

3.2. In vivo evaluation

The in vivo properties of several C_{12} ethyl ketolides were assessed in a mouse infection model with *S. pneumoniae* as the pathogen. Compounds were administered via the oral route and telithromycin was used as the control. The ED₅₀ values determined for compounds **4d**,**4l**,**4m**, and **4t** are listed in Table 3.

Telithromycin was always the most potent compound in these experiments. Compounds **4t**,**4l**, and **4m** were two to threefold less potent, while **4d** was fivefold less potent than telithromycin.

4. Conclusion

The replacement of the C_{12} methyl group of erythromycin with a C_{12} ethyl group and the conversion of the resulting macrolide core into the ketolide class of antibacterials have been described. The C_{12} ethyl group was installed by a methylcuprate opening of a C_{12} - C_{21} macrolide epoxide. The C_{12} ethyl ketolides prepared possess potent antibacterial properties in vitro against key respiratory pathogens including those resistant to erythromycin, with several of the compounds reported exhibiting properties in the range of telithromycin. In a mouse infection model with *S. pneumonia* as the pathogen in vivo efficacy with several of the C_{12} ethyl keto-

Table 3. In vivo efficacies of C_{12} ethyl ketolides and telithromycin in mice

Compound	ED ₅₀ (mg/kg)				
Telithromycin	3.7				
4t	7.0				
41	9.6				
4m	8.0				
4d	18.9				

lides has been demonstrated within the range of telithromycin.

5. Experimental

5.1. Antibiotics

All new synthetic compounds tested were dissolved in 95% ethanol and further diluted with sterile deionized water as were telithromycin (internal synthesis), erythromycin (Sigma, St. Louis, MO), and clarithromycin (internal synthesis). Drug stocks were stored at -80 °C, protected from light.

5.2. Bacterial strains

Bacterial strains were cultivated from -80 °C frozen stocks by two consecutive overnight passages at 35 °C on 5% blood agar (Remel, Lenexa, KS). Chocolate agar (Remel) was used for *H. influenzae* strains *H. influenzae*, *S. pneumoniae* and *S. pyogenes* were incubated in 5–10% CO₂.

Type/quality control strains were received from the American Type Culture Collection (ATCC; Rockville, MD). Clinical isolates collected in 2001 of *S. pneumo-niae*, *H. influenzae*, and *S. aureus* were received from Focus Technologies, Inc., VA, and The Jones Group, JMI Laboratories, IA. Other isolates were supplied by Childrens' Hospital Medical Center, Seattle, WA; Harborview Medical Center, Seattle, WA; University Health Systems, San Antonio, TX; and Henry Ford Hospital, Detroit, MI.

5.3. Susceptibility testing

The in vitro antibacterial activity is reported as the minimum inhibitory concentration (MIC) in micrograms per milliliters as determined by the broth microdilution method in accordance with the Clinical Laboratory Standards Institute (CLSI, formerly NCCLS) guidelines.²² In brief, organism suspensions were adjusted to a 0.5 McFarland standard to yield a final inoculum between 3×10^5 and 5×10^5 CFU/mL. The inoculum was made in sterile, cation adjusted Mueller-Hinton Broth (CAMHB) for all but S. pneumoniae (CAMHB with 3% lysed horse blood) and H. influenzae (haemophilus test medium). All inoculated microdilution trays were incubated in ambient air at 35 °C for 18-24 h except for S. pneumoniae and H. influenzae (both at 5-10% CO₂). Following appropriate incubation, the MIC was defined as the lowest concentration of the drug that prevented visible growth. Performance of the antibiotics on the test trays was monitored by the use of ATCC quality control strains with a defined MIC spectrum, in accordance with CLSI guidelines.²³

5.4. In Vivo therapeutic efficacy

Test compounds were prepared using sterile saline as the diluent. The pH was adjusted using 1 N acetic acid to a range of pH 5.0–5.6. A single 100 times LD_{50} dose of

S. pneumoniae PGO #4716 was injected by the intraperitoneal route (500 μ L) to CF-1 mice. Groups of five female CF-1 mice were treated via oral gavage over a five-dose range (1, 5, 10, 25, and 50 mg/kg) with test compounds at 1 and 5 h post-infection and observed for the following five days. All untreated mice succumbed to the infection and died within 24 h. Efficacy, reported as ED₅₀, is defined as the efficacious dose which protects 50% of the infected mice from mortality.

5.5. General

All reagents used were of commercial quality and all reactions were carried out using commercially available anhydrous solvents from Aldrich, Acros or VWR. 1H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded on either a Varian Unity 300 or Varian Mercury 300 spectrometer, using CDCl₃or CD₃OD solutions. Chemical shifts (δ) are reported in parts per million (ppm) referenced at 7.26 ppm (CDCl₃) or 3.30 (CD₃OD) for ¹H NMR and 77.0 ppm (CDCl₃) for ¹³C NMR. Coupling constants (J) are given in hertz, with the abbreviations s, d, dd, t, q, and m referring to singlet, doublet, doublet of doublets, triplet, quartet, and multiplet. Elemental analyses were performed at Desert Analytics (Tuscon, AZ). Mass spectral data were recorded on either a Hewlett Packard 1100 MSD {50 V, 30 °C, electrospray ionization conditions (ESI+)} or Micromass ZQ LC/MS {50 V, 30 °C, electrospray ionization conditions (ESI+)} systems. High-resolution mass spectra were obtained on a Q-STAR quadrupole-TOF-MS (Applied Biosystems Inc.) in ESI+ mode. HPLC retention times are reported using a Column Engineering Reliasil BDX C18, 5 μ M, 4.6 × 100 mm column, where elution takes place with a 40 min gradient at 4 mL/min of 2-98% solvent A, where solvent A is MeCN with 0.1% TFA and solvent B is H₂O with 0.1%TFA.

5.6. Compound 2a

Stage v. To 2',4'' OBz, C₉, C₁₁-dimethylketal, C_{12,21} alkene macrolide 1^{10} (20.0 g, 20.4 mmol) in dichloromethane (204 mL) at 0 °C was added 3-chloroperoxybenzoic acid (17.6 g, 45.5 mmol). After stirring for 30 min at 0 °C, the ice bath was removed and the solution was stirred at rt for 21 h. Cyclohexene (10 mL, 100 mmol) was added and the solution was stirred for an additional 15 h. The dichloromethane was removed by rotary evaporation (not to dryness). The solution was diluted with ethyl acetate (400 mL) and washed with NaHCO_{3(satd)} $(7 \times 125 \text{ mL})$ and $\text{NaCl}_{(\text{satd})}$ $(1 \times 125 \text{ mL})$, dried over MgSO₄, filtered, concentrated, and dried in vacuo yielding the product epoxide, N-oxide as a white solid, 20.5 g (99% yield). This material was dissolved in 2:1 THF/ H₂O (100 mL) and to this solution was added 2 M NaH-SO_{3(aq)} (100 mL). The solution was vigorously stirred for 30 min, diluted with ethyl acetate (400 L), and was washed with NaHCO_{3(satd)} ($4 \times 125 \text{ mL}$), and NaCl_(satd) (125 ml), dried over MgSO₄, concentrated, and dried in vacuo yielding the product epoxide (16.75 g, 83%)as a white solid. MS (ESI): 996.8 (MH⁺). ¹H NMR (CDCl₃) & 8.00-8.04 (m, 4H), 7.20-7.62 (m, 6H), 5.20-5.30 (m, 1H), 4.97 (d, J = 8.1, 1H), 4.93 (d, J = 9.9,

1H), 4.80–4.85 (m, 2H), 4.48–4.56 (m, 1H), 4.13 (d, J = 3.3, 1H), 4.08 (d, J = 1.8, 1H), 3.90–4.00 (m, 1H), 3.77 (d, J = 6.3, 1H), 3.56 (s, 3H), 3.29 (s, 3H), 3.14-3.20 (m, 1H), 2.95–3.03 (m, 2H), 2.67 (d, J = 5.4, 1H), 2.53-2.57 (m, 1H), 2.49 (d, J = 15.0, 1H), 2.33 (s, 6H), 2.03-2.10 (m, 3H), 1.41-1.77 (m, 7H), 1.30 (s, 3H), 1.27 (s, 3H), 1.22 (d, J = 6.3, 3H), 1.21 (s, 3H), 1.17 (d, J = 6.3, 3H), 1.15 (d, J = 6.9, 3H), 1.00 (d, J = 6.6, 3H), 0.97 (s, 3H), 0.96 (d, J = 6.3, 3H), 0.84 (t, J = 7.5, 3H), 0.73 (d, J = 7.5, 3H). ¹³C NMR (CDCl₃) δ 175.5, 166.2, 165.3, 133.3, 132.5, 130.9, 129.9, 129.6, 128.3, 128.1, 100.8, 100.3, 95.2, 79.9, 79.2, 79.1, 78.2, 76.9, 73.1, 72.3, 67.6, 66.8, 63.8, 63.4, 57.9, 49.8, 49.6, 46.0, 44.1, 43.5, 40.9, 35.1, 33.4, 31.7, 31.4, 26.9, 23.6, 21.3, 21.1, 20.4, 18.5, 16.5, 13.5, 11.1, 10.0. HPLC: $t_{\rm R} = 25.18 \text{ min. HRMS (ESI⁺)} m/z [M+H]⁺ calcd for$ C₅₅H₈₁NO₁₅: 996.5678. Found: 996.5676.

Stage vi. An oven-dried 500 mL two-necked flask equipped with a 14/20 side arm connection to the manifold was cooled under Ar. An internal thermometer was inserted and CuBr dimethyl sulfide complex (28.4 g, 138.6 mmol) was added. The system was evacuated under high vacuum and purged with Ar three times. Diethyl ether (200 mL) was added and the heterogeneous solution was cooled in a -78 °C bath. Methyl lithium (180.0 mL, 277.1 mmol) was added via syringe with the internal temperature ≤ -60 °C. The solution was held in the -78 °C bath for 10 min after the addition and then the bath was removed. Upon warming to -20 °C, a homogeneous solution resulted. The solution was then held at -20 °C. An oven-dried 1000 mL threenecked flask equipped with a 14/20 side arm connection to the manifold and an overhead mechanical stirrer was cooled under Ar. C₁₂, C₂₁ epoxide (27.6 g, 27.7 mmol) was added and the system was evacuated under high vacuum and purged with Ar three times. Diethyl ether was added (400 mL), the solution was cooled to at 0 °C, and the epoxide was stirred (the solution is a heterogeneous slurry). The cuprate solution was then cannulated into the slurry of epoxide with the internal temperature of the epoxide solution staying ≤ 0 °C. The resultant light yellow heterogeneous solution was held at 0-5 °C for 12 h with mechanical stirring. NH₄Cl_(satd) (200 mL) was added to stop the reaction, with the internal temperature ≤ 10 °C. The reaction mixture was diluted with ethyl acetate (2 L) and washed with NH₄Cl_(satd) (3×1 L), NaCl_(satd) (1 L), dried over MgSO₄, filtered, concentrated, and dried in vauo yielding the crude C_{12} ethyl, hydroxy macrolide (26.87 g, ca. 80% pure by LC) as a white solid. An analytical sample was obtained by purification through SiO₂ chromatography (20-25% acetone/hexanes with 0.1% triethylamine). MS (ESI): 1012.9 (MH⁺). ¹H NMR (CDCl₃) δ 8.00-8.04 (m, 4H), 7.52-7.63 (m, 2H), 7.40-7.49 (m, 4H), 5.32 (dd, J = 10.2, 3.0, 1H), 5.15 (br s, 1H), 5.05 (d, J = 7.5, 1H), 4.93 (d, J = 10.2, 1H), 4.8 (br s, 1H), 4.48-4.56 (m, 1H), 4.16 (s, 1H), 4.02-4.12 (m, 1H), 3.85 (d, 5.7, 1H), 3.78 (br s, 1H), 3.59 (s, 3H), 3.36 (t, J = 3.9, 1H, 3.33 (s, 3H), 2.98–3.08 (m, 1H), 2.48–2.55 (m, 2H), 2.34 (s, 6H), 2.12–2.22 (m, 1H), 1.44–1.96 (m, 10H), 1.38 (s, 3H), 1.32 (s, 3H), 1.21 (s, 3H), 1.20 (s, 3H), 1.16 (d, J = 7.2, 3H), 1.14 (d, J = 6.3, 3H), 1.07

(d, J = 6.6, 3H), 0.92–1.03 (m, 9H), 0.83 (t, J = 7.5, 3H), 0.75 (d, J = 7.5, 3H). ¹³C NMR (CDCl₃) δ 176.3, 166.3, 165.2, 133.3, 132.4, 130.9, 129.9, 129.6, 129.5, 128.3, 128.1, 100.6, 99.9, 95.2, 80.3, 79.6, 79.1, 78.9, 77.3, 76.2, 73.2, 72.4, 67.5, 63.8, 63.4, 49.4, 44.6, 43.8, 40.9, 35.1, 32.4, 32.3, 31.8, 30.8, 28.0, 26.0, 24.1, 23.7, 21.4, 21.1, 20.1, 18.6, 17.4, 16.9, 14.1, 11.5, 10.2. HPLC: $t_{\rm R} = 27.47$ min. HRMS (ESI⁺) m/z [M+H]⁺ calcd for C₅₆H₈₅NO₁₅: 1012.5991. Found: 1012.6016.

Stage vii. To crude C₉, C₁₁ ketal, C₁₂ ethyl, C₁₂ hydroxy macrolide (6.65 g, 6.57 mmol) in 2:1 acetonitrile/water (130 mL) was added pyridinium para-toluene sulfonate (8.25 g, 32.9 mmol). The solution was heated in a 70 °C oil bath for 48 h. Upon cooling, the reaction was diluted with ethyl acetate (1.5 L) and washed with NaHCO_{3(satd)} (2×300 mL), NaCl_(satd) (300 mL), dried over MgSO₄, filtered, and concentrated. Purification by flash chromatography (15% acetone/hexanes with 0.1% triethylamine) yielded the C₁₂ ethyl, C₉, C₁₁, C₁₂ triol macrolide (3.52 g, 55% yield) as a white solid. MS (ESI): 972.8 (MH⁺). ¹H NMR (CDCl₃) δ 7.98–8.04 (m, 4H), 7.42-7.64 (m, 6H), 5.76 (d, J = 9.6, 1H), 5.18(dd, J = 11.4, 1.8, 1H), 5.15 (m, 1H), 5.09 (d, J = 4.8, 1H), 4.95 (d, J = 7.5, 1H), 4.94 (d, J = 9.6, 1H), 4.42– 4.54 (m, 1H), 4.48 (s, 1H), 3.91 (br s, 1H), 3.79 (d, J = 6.0, 1H), 3.72 (d, J = 9.9, 1H), 3.52 (s, 3H), 3.33 (s, 3H), 3.27-3.33 (m, 1H), 3.06 (s, 1H), 2.79-2.90 (m, 1H), 2.48 (d, J = 15.0, 1H), 2.42 (s, 6H), 2.06–2.16 (m, 1H), 1.72-1.98 (m, 6H), 1.40-1.60 (m, 7H), 1.35 (s, 3H), 1.19-1.22 (m, 9H), 1.10 (d, J = 6.9, 3H), 0.94 (d, J = 7.2, 3H), 0.93 (d, J = 5.7, 3H), 0.75–0.82 (m, 6H), 0.66 (d, J = 7.2, 3H). ¹³C NMR (CDCl₃) δ 174.9, 166.2, 165.3, 133.5, 132.8, 130.4, 129.6, 128.5, 128.3, 99.7, 96.0, 82.6, 80.2, 78.8, 78.3, 78.0, 76.2, 72.9, 72.0, 70.6, 67.3, 63.6, 50.6, 49.5, 45.1, 38.1, 35.2, 34.5, 34.3, 32.3, 31.9, 25.3, 22.3, 21.3, 21.2, 20.1, 18.6, 17.2, 16.3, 11.0, 9.8, 8.8. HPLC: $t_{\rm R} = 22.84 \text{ min. HRMS (ESI^+)}$ m/z [M+H]⁺ calcd for $C_{53}H_{81}NO_{15}$: 972.5678. Found: 972.5687.

Stage viii. To C₁₂ ethyl, C₉, C₁₁, C₁₂ triol macrolide (3.52 g, 3.62 mmol) in dichloromethane (72 mL) at $-5 \,^{\circ}\text{C}$ was added Dess-Martin periodinane (1.84 g, 4.35 mmol). The solution was stirred for 5 min and then was placed in a -10 °C refrigerator. After standing for 22 h, more Dess-Martin periodinane (80 mg, 0.19 mmol) was added and the solution stood in the -10 °C refrigerator for an additional 8 h. The solution was diluted with ethyl acetate (1 L) and washed with 1:1 10% Na₂S₂O₃/NaHCO_{3(satd)} ($2 \times 200 \text{ mL}$). The combined aqueous layers were back extracted with ethyl acetate $(4 \times 200 \text{ mL})$ and the combined organic layers were then washed with NaCl_(satd) (200 mL), dried over MgSO₄, filtered, and concentrated. Purification by flash chromatography (15% acetone/hexanes with 0.1% triethylamine) yielded the C12 ethyl, C9 keto, C11, C12 diol macrolide 2a (2.37 g, 67% yield) as a white solid. MS (ESI): 970.8 (MH⁺). ¹H NMR (CDCl₃) δ 8.00–8.04 (m, 4H), 7.54–7.64 (m, 2H), 7.41–7.49 (m, 4H), 5.03– 5.10 (m, 2H), 4.91–4.98 (m, 3H), 4.42–4.52 (m, 1H), 3.84–3.92 (m, 1H), 3.82 (s, 1H), 3.76 (d, J = 6.9, 1H), 3.68 (d, J = 1.2, 1H), 3.63 (d, J = 6.3, 1H), 3.53 (s, 3H), 3.10 (s, 1H), 3.02 (s, 3H), 2.88–3.01 (m, 2H), 2.76–2.81 (m, 1H), 2.54–2.62 (m, 1H), 2.47 (d, J = 15.0, 1H), 2.32 (s, 6H), 1.40–1.98 (m, 10H), 1.38 (s, 3H), 1.22 (s, 3H), 1.19–1.21 (m, 6H), 1.13 (d, J = 6.9, 3H), 1.11 (d, J = 6.9, 3H), 0.93 (d, J = 6.3, 3H), 0.88 (t, J = 7.8, 3H), 0.81 (t, J = 7.5, 3H), 0.70 (d, J = 7.8, 3H). ¹³C NMR (CDCl₃) δ 219.5, 175.4, 165.9, 165.3, 133.2, 132.4, 130.8, 129.8, 129.5, 129.4, 128.2, 128.0, 100.2, 95.7, 80.5, 78.9, 78.3, 77.9, 77.7, 75.7, 73.5, 72.9, 72.5, 68.0, 67.5, 63.7, 63.5, 50.6, 49.7, 45.1, 44.9, 41.0, 38.6, 38.3, 37.7, 35.4, 31.8, 25.0, 21.9, 21.4, 20.0, 18.6, 18.1, 16.1, 12.5, 11.0, 9.5, 9.1. HPLC: $t_{\rm R} = 23.56$ min. HRMS (ESI⁺) m/z [M+H]⁺ calcd for

C₅₃H₇₉NO₁₅: 970.5522. Found: 970.5521.

5.7. Compound 3

Stage ix. To C_{12} ethyl, C_9 keto, C_{11} , C_{12} diol macrolide (3.75 g, 3.87 mmol) in pyridine (18 mL) at 0 °C was added methanesulfonyl chloride (1.5 mL, 19.3 mmol) via syringe over 5 min. The solution was stirred for 18 h as the solution warmed to rt. Upon concentrating and drying in vacuo, the material was taken up in ethyl acetate (750 mL) and washed with NaHCO_{3(satd)} $(2 \times 250 \text{ mL})$. The combined aqueous layers were back extracted with ethyl acetate (500 mL) and the combined organic layers were then washed with NaCl_(satd) (100 mL), dried over MgSO₄, filtered, and concentrated. Purification by flash chromatography (20-25% acetone/ hexanes with 0.1% triethylamine) yielded the C₁₂ ethyl, C_9 keto, C_{11} OMs, C_{12} hydroxy macrolide (2.81 g, 69% yield) as a white solid. MS (ESI): 1048.8 (MH⁺). ¹H NMR (CDCl₃) δ 8.02–8.14 (m, 4H), 7.54–7.64 (m, 2H), 7.42-7.51 (m, 4H), 5.20 (dd, J = 10.5, 2.7, 1H), 5.03(dd, J = 10.8, 7.8, 1H), 4.90-4.96 (m, 2H), 4.71 (d, 3.16)J = 7.5, 1H), 4.60 (d, J = 1.8, 1H), 4.54–4.60 (m, 1H), 3.98 (d, J = 9.9, 1H), 3.74 (d, J = 6.3, 1H), 3.46-3.54(m, 1H), 3.39 (s, 3H), 3.22–3.28 (m, 1H), 3.22 (s, 3H), 2.82-2.92 (m, 1H), 2.58-2.65 (m, 1H), 2.46 (d, J = 14.7, 1H, 2.30–2.38 (m, 1H), 2.30 (s, 3H), 2.27 (s, 6H), 1.88-2.25 (m, 3H), 1.35-1.75 (m, 8H), 1.20-1.26 (m, 12H), 1.08–1.11 (m, 6H), 1.01 (d, J = 6.0, 3H), 0.92–0.98 (m, 6H), 0.77 (t, J = 7.2, 3H). ¹³C NMR $(CDCl_3)$ δ 175.3, 166.1, 164.7, 133.1, 132.6, 130.3, 129.8, 129.6, 129.5, 128.2, 128.1, 108.5 (C9 hemiketal), 101.3, 97.5, 90.6, 86.4, 79.3, 79.2, 79.1, 77.6, 74.5, 73.0, 72.4, 68.5, 63.4, 63.2, 50.2, 49.8, 46.8, 46.2, 40.7, 39.6, 38.3, 37.8, 35.6, 31.9, 31.4, 28.8, 22.6, 21.5, 21.3, 21.2, 18.4, 17.9, 16.2, 15.5, 10.8, 10.7, 7.3. HPLC: $t_{\rm R} = 22.54 \text{ min. HRMS (ESI}^+) m/z [M+H]^+$ calcd for C₅₄H₈₁NO₁₇S: 1048.5297. Found: 1048.5260.

Stage x. To C₁₂ ethyl, C₉, C₁₁ OMs, C₁₂ OH macrolide (3.73 g, 3.56 mmol) in acetone (49 mL) was added DBU (650 μ L, 4.34 mmol). The solution was stirred for 5 h at rt and then for 40 h at 60 °C. The solution was diluted with ethyl acetate (1.5 L), washed with H₂O (2 × 400 mL), NaHCO_{3(satd)}(400 mL), NaCl_(satd) (300 mL), dried over MgSO₄, filtered, concentrated, and dried in vacuo yielding the C₁₂ ethyl, C₉, C₁₀, C₁₁ enone, C₁₂ OH macrolide (3.32 g, 98% yield) as an off white solid. MS (ESI): 952.8 (MH⁺). ¹H NMR (CDCl₃) δ 8.00–8.04 (m, 4H), 7.52–7.63 (m, 2H), 7.40–7.49 (m, 4H),

6.34 (s, 1H), 5.05–5.11 (m, 2H), 4.91–4.95 (m, 2H), 4.86 (d, J = 7.2, 1H), 4.46–4.54 (m, 1H), 3.74–78 (m, 2H), 3.62 (d, 6.6, 1H), 3.51 (s, 3H), 2.96–3.14 (m, 3H), 3.03 (s, 3H), 2.66–2.74 (m, 1H), 2.45 (d, J = 15.0, 1H), 2.31 (s, 6H), 2.10–2.20 (m, 1H), 1.96 (s, 3H), 1.40–1.94 (m, 10), 1.17–1.21 (m, 12H), 0.96 (d, J = 6.3, 3H), 0.88 (t, J = 7.2, 3H), 0.83 (t, J = 7.2, 3H), 0.74 (d, 7.5, 3H). ¹³C NMR (CDCl₃) δ 207.4, 175.6, 166.2, 165.3, 139.3, 139.2 133.4, 132.6, 130.9, 129.9, 129.7, 129.6, 128.4, 128.2, 100.7, 95.6, 80.5, 79.4, 78.9, 78.8, 77.5, 76.1, 73.0, 72.4, 67.8, 63.8, 63.5, 50.3, 49.7, 44.9, 40.9, 40.1, 39.9, 35.4, 31.7, 28.5, 22.7, 21.3, 20.2, 19.7, 18.3, 15.2, 14.1, 10.8, 9.9, 7.8. HPLC: $t_{\rm R} = 23.38$ min. HRMS (ESI⁺) m/z [M+H]⁺ calcd for C₅₃H₇₇NO₁₄: 952.5416. Found: 952.5437.

Stage xi. To C₁₂ ethyl, C₉, C₁₀, C₁₁ enone, C₁₂ OH macrolide (5.84 g, 6.13 mmol) in acetonitrile (80 mL) was added 3 M HCl_(aq) (40 mL). After standing for 22 h, the solution was diluted with ethyl acetate (1.4 L) and washed with NaHCO_{3(satd)} (2×400 mL), with NaCl_(satd) (300 mL), dried over MgSO₄, filtered, and concentrated. Purification by flash chromatography (30% acetone/hexanes with 0.1% triethylamine) yielded the C₁₂ ethyl, C₉, $C_{10},\ C_{11}$ enone, $C_3,\ C_{12}$ diol macrolide (3.48 g, 82% yield) as a white solid. MS (ESI): 690.4 (MH⁺). ¹H NMR (CDCl₃) δ 8.07-8.10 (m, 2H), 7.50-7.52 (m, 1H), 7.40-7.46 (m, 2H), 6.13 (s, 1H), 4.94-5.00 (m, 2H), 4.87 (d, J = 8.1, 1H), 3.87 (d, 3.0, 1H), 3.54–3.64 (m, 2H), 3.10 (s, 3H), 3.00-3.09 (m, 1H), 2.76-2.86 (m, 1H), 2.32–2.37 (m, 1H), 2.24 (s, 6H), 2.01 (s, 3H), 1.38-1.90 (m, 11H), 1.31 (s, 3H), 1.29 (d, J = 6.0, 3H), 1.21 (d, J = 6.6, 3H), 0.77–0.89 (m, 9H), 0.66 (d, J = 6.9, 3H). ¹³C NMR (CDCl₃) δ 207.5, 175.2, 165.5, 139.6, 138.3, 132.5, 130.6, 129.8, 128.1, 103.0, 89.0, 80.4, 79.6, 76.5, 76.4, 72.4, 69.3, 64.3, 48.9, 44.1, 40.8, 38.3, 38.1, 37.7, 30.8, 27.9, 21.7, 21.3, 20.0, 17.6, 14.4, 13.7, 10.7, 8.5, 8.2. HPLC: $t_{\rm R} = 15.67$ min. HRMS (ESI⁺) m/z [M+H]⁺ calcd for $\hat{C}_{38}H_{59}NO_{10}$: 690.4211. Found: 690.4217.

Stage xii. To C₁₂ ethyl, C₉, C₁₀, C₁₁ enone, C₃, C₁₂ diol macrolide (3.48 g, 5.0 mmol) in dichloromethane (100 mL) was added Dess-Martin Periodinane (3.39 g, 1.6 mmol). After stirring for 2 h, the solution was diluted with ethyl acetate (1.4 L) and washed with 1:1 10% $Na_2S_2O_3/NaHCO_{3(satd)}$ (2×500 mL), with $NaCl_{(satd)}$ (300 mL), dried over MgSO₄, filtered, and concentrated. Purification by flash chromatography (30% acetone/hexanes with 0.1% triethylamine) yielded the C₁₂ ethyl, C₉, C_{10} , C_{11} enone, C_3 oxo, C_{12} OH macrolide **3** (3.25 g, 94% yield) as a white solid. MS (ESI): 688.5 (MH⁺). ¹H NMR (CDCl₃) δ 8.00–8.04 (m, 2H), 7.53–7.58 (m, 1H), 7.41–7.46 (m, 2H), 6.44 (s, 1H), 5.00–5.06 (m, 2H), 4.54 (d, J = 7.5, 1H), 4.14 (d, J = 9.0, 1H), 3.56– 3.62 (m, 2H), 2.78-3.13 (m, 3H), 2.75 (s, 3H), 2.25 (s, 6H), 1.96 (s, 3H), 1.64-1.84 (m, 7H), 1.35-1.55 (m, 2H), 1.25–1.29 (m, 9H), 1.17 (d, J = 8.1, 3H), 0.97 (d, J = 7.2, 3H, 0.95 (t, J = 7.2, 3H), 0.85 (t, J = 7.5, 3H). ¹³C NMR (CDCl₃) δ 209.9, 206.7, 169.6, 165.1, 140.8, 138.5, 132.7, 130.4, 129.7, 128.2, 101.8, 82.0, 79.9, 78.3, 76.4, 72.0, 69.2, 63.6, 51.3, 49.9, 47.4, 40.7, 31.7, 31.1, 28.5, 22.7, 20.9, 20.1, 19.3, 15.3, 14.6, 14.3, 13.5,

10.8, 7.7. HPLC: $t_{\rm R} = 18.06$ min. HRMS (ESI⁺) m/z [M+H]⁺ calcd for C₃₈H₅₇NO₁₀: 688.4055. Found: 688.4033.

5.8. Compounds 4a-t

Stage xiv. To a solution of C_{12} ethyl, C_9 , C_{10} , C_{11} enone, C_3 oxo, C_{12} OH macrolide **3** (12.48 g, 18.2 mmol) and carbonyldiimidazole (7.37 g, 45.5 mmol) in tetrahydro-furan (180 mL) at 0 °C was added sodium hydride, 60% dispersion in mineral oil (1.09 g, 27.3 mmol). After stirring for 7 h, while still at 0 °C, NaHCO_{3 (satd)} (5 mL) was added cautiously to quench the excess hydride. The mixture was then diluted with ethyl acetate (600 mL), was washed with NaHCO_{3(satd)} (4× 200 mL), with NaCl_(satd) (200 mL), dried over MgSO₄, filtered, concentrated, and dried in vacuo yielding crude C_{12} ethyl C_9 , C_{10} , C_{11} enone, C_3 oxo, C_{12} OCO imidazoyl macrolide (14.6 g). The crude material was used in the next step without further purification. MS (ESI): 782.5 (MH⁺) and 688.5 (hydrolyzed MH⁺).

Stage xv. Procedure A for final C_{12} ethyl ketolide: C_{12} ethyl imidazole carbamate macrolide (1 equiv) was added to amino tethered heterocycle (2.0 equiv); a 10%water/acetonitrile solution was added such that the concentration was 0.25 M. The solution was heated in a 65 °C oil bath for 12 h. Upon cooling the reaction mixture was diluted with ethyl acetate and washed with NaHCO₃ (satd) (3×), NaCl_(satd) (1×), dried over MgSO₄, filtered, and concentrated. To the crude material was added methanol (5 mL/mmol) and the solution was heated at 65 °C for 16 h. Upon concentrating, the material was purified by RP-HPLC and/or SiO₂ chromatography (0–5% MeOH/DCM with 0.1% triethylamine) yielding C₁₂ ethyl ketolide.

5.8.1. Compound 4a. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-imidazo[4,5-*b*]pyridin-3-yl-butylamine yielded **4a** (20% yield) as a white solid. MS (ESI): 800.7 (MH⁺). HPLC: $t_{\rm R} = 12.34$ min. ¹H NMR (CDCl₃) δ 8.37 (dd, J = 4.8, 1.2, 1H), 8.10 (s, 1H), 8.04 (dd, J = 8.4, 1.5, 1H) 7.21 (dd, J = 8.4, 4.5, 1H), 4.93 (dd, J = 6.9, 1H), 3.52–3.72 (m, 3H), 3.66 (s, 1H), 3.25 (dd, J = 10.2, 7.2, 1H), 3.15–3.22 (m, 1H), 2.38 (s, 6H), 1.54–2.04 (m, 14H), 1.35 (d, J = 6.6, 3H), 1.33 (s, 3H), 1.21–1.28 (m, 9H), 1.15 (d, J = 7.2, 3H), 1.01 (d, J = 6.9, 3H), 0.84 (t, J = 7.5, 3H). Anal. Calcd for C₄₂H₆₅N₅O₁₀: C, 63.06; H, 8.19; N, 8.75. Found: C, 62.84; H, 7.86; N, 8.52.

5.8.2. Compound 4b. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-imidazo[4,5-*b*]pyridin-1-yl-butylamine yielded **4b** (31% yield) as a white solid. MS (ESI): 800.6 (MH⁺). HPLC: $t_{\rm R} = 11.49$ min. ¹H NMR (CDCl₃) δ 8.54 (d, J = 4.8, 1H), 8.16 (s, 1H), 7.79 (dd, J = 8.1, 0.9, 1H) 7.21 (dd, J = 8.4, 4.5, 1H), 4.90 (d, J = 9.0, 1H), 4.31 (d, J = 7.2, 1H), 4.20–4.26 (m, 2H), 3.85 (q, J = 6.9, 1H), 3.54–3.76 (m, 3H), 3.67 (s, 1H), 3.30 (dd, J = 10.2, 7.5, 1H),

5601

3.15–3.22 (m, 1H), 3.00–3.12 (m, 1H), 2.66–2.78 (m, 1H), 2.60 (s, 3H), 2.44 (s, 6H), 1.54–2.10 (m, 14H), 1.36 (d, J = 6.6, 3H), 1.34 (s, 3H), 1.21–1.30 (m, 9H), 1.14 (d, J = 6.6, 3H), 1.00 (d, J = 6.6, 3H), 0.81 (t, J = 7.5, 3H). Anal. Calcd for C₄₂H₆₅N₅O₁₀: C, 63.06; H, 8.19; N, 8.75. Found: C, 63.40; H, 7.78; N, 8.64.

5.8.3. Compound 4c. Following procedure A using the C_{12} ethyl imidazolyl carbamate macrolide and 2-imidazo[4,5-*b*]pyridin-1-yl-4-methyl-pentylamine yielded 4c (22% yield) as a white solid. MS (ESI): 828.7 (MH⁺). HPLC: $t_{\rm R} = 12.32 \text{ min.}$ ¹H NMR (CDCl₃) δ 8.55 (d, J = 3.9, 1H), 8.31 (s, 1H), 8.01 (d, J = 8.1, 1H) 7.23 (dd, J = 8.4, 4.8, 1H), 4.86 (d, J = 8.4, 1H), 4.44 (d, J = 7.2, 1H), 4.23 (d, J = 7.8, 1H), 3.82 (q, J = 6.6, 1H), 3.60 (s, 1H), 3.45–3.65 (m, 2H), 2.96–3.16 (m, 2H), 2.89 (s, 6H), 2.46–2.54 (m, 1H), 2.43 (s, 3H), 1.80-2.20 (m, 10H), 1.76 (s, 3H), 1.74 (s, 3H), 1.40-1.72 (m, 8H), 1.20–1.36 (m, 15H), 1.09 (d, J = 6.6, 3H), 0.95 (d, J = 6.9, 3H), 0.84 (t, J = 7.2, 3H). Anal. Calcd for C₄₄H₆₉N₅O₁₀·3.1H₂O: C, 59.78; H, 8.58; N, 7.93. Found: C, 59.73; H, 8.59; N, 8.28.

5.8.4. Compound 4d. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-imiyielded dazo[4,5-b]pyridin-1-yl-4-methyl-pentylamine 4d (33% yield) as a white solid. MS (ESI): 828.8 (MH⁺). HPLC: $t_{\rm R} = 13.68$ min. ¹H NMR (CDCl₃) δ 8.33 (dd, J = 4.5, 1.2, 1H), 8.09 (s, 1H), 8.02 (dd, J = 7.8, 1.5, 1H) 7.19 (dd, J = 7.8, 4.5, 1H), 4.87 (dd, J = 10.5, 1.8, 1H, 4.30 (d, J = 7.8, 1H), 4.22 (d, J =8.1, 1H), 3.79 (q, J = 6.9, 1H), 3.61 (s, 1H), 3.52–3.60 (m, 1H), 3.44 (t, J = 7.5, 2H), 3.24 (dd, J = 10.2, 7.5, 1H), 2.98-3.14 (m, 2H), 2.50-2.65 (m, 1H), 2.45 (s, 3H), 2.37 (s, 6H), 2.15–2.35 (m, 2H), 1.85–2.05 (m, 4H), 1.80 (s, 6H), 1.45–1.78 (m, 8H), 1.33 (d, J = 6.9, 3H), 1.25-1.30 (m, 9H), 1.21 (t, J = 7.5, 3H), 1.12 (d, J = 6.9, 3H), 0.96 (d, J = 6.9, 3H), 0.83 (t, J = 6.9, 3H) 3H). Anal. Calcd for C₄₄H₆₉N₅O₁₀·1.1H₂O: C, 62.35; H, 8.47; N, 8.27. Found: C, 62.35; H, 8.13; N, 8.13.

5.8.5. Compound 4e. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-pyrrolo[3,2-*b*]pyridinylbutylamine yielded **4e** (52% yield) as a white solid. MS (ESI): 799.7 (MH⁺). HPLC: $t_{\rm R} = 12.72$ min. ¹H NMR (CDCl₃) δ 8.42 (dd, J = 4.8, 1.1, 1H), 7.67 (d, J = 7.8, 1H), 7.35 (d, J = 3.3, 1H) 7.08 (dd, J = 8.1, 4.5, 1H), 6.66 (d, J = 3.3, 1H), 4.93 (dd, J = 10.5, 1.8, 1H), 4.27 (t, J = 7.2, 1H), 4.15 (t, 7.2, 1H), 3.85 (q, J = 7.2, 1H), 3.52–3.68 (m, 3H), 3.66 (s, 1H), 3.16–3.22 (m, 2H), 3.03–3.13 (m, 1H), 2.59 (s, 3H), 2.42–2.52 (m, 1H), 2.29 (s, 6H), 1.45–1.25 (m, 12H), 1.38 (d, J = 6.6, 3H), 1.34 (s, 3H), 1.29 (d, J = 7.5, 3H), 1.20–1.26 (m, 9H), 1.15 (d, J = 6.9, 3H), 1.00 (d, J = 6.9, 3H), 0.82 (t, J = 7.2, 3H). Anal. Calcd for C₄₃H₆₆N₄O₁₀: C, 64.64; H, 8.33; N, 7.01. Found: C, 64.24; H, 8.05; N, 6.87.

5.8.6. Compound 4f. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-(quino-lin-2-yl)butan-1-amine yielded **4f** (39% yield) as a white solid. MS (ESI): 810.6 (MH⁺). HPLC: $t_{\rm R}$ = 13.20 min.

¹H NMR (CDCl₃) δ 8.04 (d, J = 8.1, 1H), 8.03 (d, 8.4, 1H), 7.76 (dd, J = 8.1, 1.5, 1H), 7.64–7.69 (m, 1H), 7.46–7.49 (m, 1H), 7.31 (d, J = 8.7, 1H), 4.98 (dd, J = 8.4, 1.8, 1H), 4.28 (d, J = 6.9, 1H), 4.24 (d, J = 4.8, 1H), 3.83 (q, J = 6.9, 1H), 3.71 (s, 1H), 3.60–3.65 (m, 1H), 3.48–3.58 (m, 1H), 2.96–3.22 (m, 3H), 2.61 (s, 3H), 2.39–2.49 (m, 1H), 2.26 (s, 6H), 1.54–2.08 (m, 16H), 1.35 (d, J = 6.9, 3H), 1.33 (s, 3H), 1.21–1.28 (m, 9H), 1.15 (d, J = 76.9, 3H), 1.02 (d, J = 6.9, 3H), 0.85 (t, J = 7.5, 3H). Anal. Calcd for C₄₅H₆₇N₃O₁₀·1.2 H₂O: C, 65.02; H, 8.41; N, 5.06. Found: C, 65.01; H, 8.13; N, 4.99.

5.8.7. Compound 4g. Following procedure A using the C12 ethyl imidazolyl carbamate macrolide and N1-methyl-N1-(quinolin-2-ylmethyl)ethane-1,2-diamine yielded 4g (13% yield) as a white solid. MS (ESI): 825.7(MH⁺). HPLC: $t_{\rm R} = 14.94$ min. ¹H NMR (CDCl₃) δ 8.24 (d, J = 6.0, 1H), 8.13 (d, J = 8.1, 1H), 7.80–7.86 (m, 2H), 7.72–7.77 (m, 1H), 7.56–7.61 (m, 1H), 4.90 (d, J = 9.9, 1H), 4.39–4.54 (m, 2H), 4.37 (d, J = 7.2, 1H), 4.24 (d, J = 8.1, 1H), 3.86–4.12 (m, 2H), 3.80 (q, J = 6.9, 1H), 3.69 (s, 1H), 3.58–3.66 (m, 1H), 3.12–3.54 (m, 4H), 2.98–3.06 (m, 1H), 2.73 (s, 9H), 2.63 (s, 3H), 2.50-2.58 (m, 1H), 1.40-2.12 (m, 10H), 1.23-1.33 (m, 15H), 1.15 (d, J = 6.9, 3H), 1.00 (d, J = 6.6, 3H), 0.79 (t, J = 7.2, 3H). Anal. Calcd for $C_{45}H_{68}N_4O_{10}\cdot 2.2H_2O$: C, 62.49; H, 8.44; N, 6.48. Found: C, 62.48; H, 8.02; N, 6.41.

5.8.8. Compound 4h. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and N1-methyl-N1-(quinolin-3-ylmethyl)ethane-1,2-diamine yielded **4h** (35% yield) as a white solid. MS (ESI): 825.7 MH⁺. HPLC: $t_{\rm R} = 12.22 \text{ min.}^{-1} \text{H} \text{ NMR} \text{ (CDCl}_3) \delta 8.84 \text{ (d,}$ J = 2.1, 1H), 8.12 (s, 1H), 8.08 (d, J = 8.1, 1H), 7.81 (d, J = 6.9, 1H), 7.63–7.69 (m, 1H), 7.48–7.54 (m, 1H), 5.08 (dd, J = 10.8, 2.4, 1H), 4.30 (d, J = 6.9, 1H), 4.24 (d, J = 8.4, 1H), 3.86-3.94 (m, 3H), 3.82 (q, J = 6.6, 1H), 3.68 (d, J = 13.2, 1H), 3.67 (s, 1H), 3.52–3.62 (m, 1H), 3.19-3.30 (m, 2H), 3.02-3.13 (m, 1H), 2.82-2.91 (m, 1H), 2.57–2.67 (m, 2H), 2.64 (s, 3H), 2.41 (s, 6H), 2.24 (s, 3H), 1.54–2.06 (m, 10H), 1.23–1.33 (m, 15H), 1.17 (d, J = 6.9, 3H), 1.05 (d, J = 6.9, 3H), 0.71 (t, J = 7.2, 3H). Anal. Calcd for $C_{45}H_{68}N_4O_{10}\cdot 1.5H_2O$: C, 63.48; H, 8.40; N, 6.59. Found: C, 63.46; H, 8.00; N, 6.65.

5.8.9. Compound 4i. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-(quino-lin-4-yl)butan-1-amine yielded **4i** (47% yield) as a white solid. MS (ESI): 810.6 (MH⁺). HPLC: $t_{\rm R} = 13.57$ min. ¹H NMR (CDCl₃) δ 8.80 (d, J = 4.5, 1H), 8.11 (d, J = 8.4, 1H), 8.06 (d, J = 8.4, 1H) 7.67–7.72 (m, 1H), 7.55–7.58 (m, 1H), 7.27 (d, J = 4.2, 1H), 4.98 (dd, J = 10.5, 2.1, 1H), 4.29 (t, J = 7.5, 2H), 3.86 (q, J = 6.9, 1H), 3.73 (s, 1H), 3.62–3.70 (m, 1H), 3.52–3.62 (m, 1H), 3.06–3.24 (m, 3H), 2.64 (s, 3H), 2.42–2.53 (m, 1H), 2.29 (s, 6H), 1.54–2.12 (m, 14H), 1.40 (d, J = 6.9, 3H), 1.36 (s, 3H), 1.21–1.32 (m, 9H), 1.18 (d, J = 6.9, 3H), 1.04 (d, J = 6.9, 3H), 0.84 (t, J = 7.2, 3H). Anal. Calcd for C₄₅H₆₇N₃O₁₀·1.0H₂O: C, 65.25; H, 8.40; N, 5.07. Found: C, 65.21; H, 8.23; N, 5.18.

5.8.10. Compound 4j. Following procedure A using the C_{12} ethyl imidazolyl carbamate macrolide and N1-methyl-N1-(quinolin-4-ylmethyl)ethane-1,2-diamine yielded 4i (20% yield) as a white solid. MS (ESI): 825.7 (MH⁺). HPLC: $t_{\rm R} = 12.00$ min. ¹H NMR (CDCl₃) δ 8.84 (d, J = 4.8, 1H), 8.18 (d, J = 8.1, 1H), 8.09 (d, J = 8.7, 1H), 7.65–7.70 (m, 1H), 7.50–7.57 (m, 2H), 7.56–7.61 (m, 1H), 4.99 (dd, J = 10.8, 2.4, 1H), 4.31 (d, J = 8.1, 1H), 4.23 (d, J = 8.4, 1H), 4.06 (d, J = 5.4, 1H), 3.76-3.88 (m, 2H), 3.67 (s, 1H), 3.54-3.62 (m, 1H), 3.33 (dd, J = 10.2, 7.2, 1H), 3.20 (q, J = 6.9, 1H), 2.70-3.24 (m, 4H), 2.59 (s, 3H), 2.49 (s, 6H), 2.27 (s, 3H), 1.52-2.08 (m, 10H), 1.22-1.33 (m, 15H), 1.16 (d, J = 7.2, 3H), 1.04 (d, J = 6.9, 3H), 0.67 (t, J = 7.2, 3H) 3H). Anal. Calcd for C₄₅H₆₈N₄O₁₀: C, 65.51; H, 8.31; N, 6.79. Found: C, 65.94; H, 8.21; N, 6.66.

5.8.11. Compound 4k. Following procedure A using the C_{12} ethyl imidazolyl carbamate macrolide and 4-(4-(pyridin-3-yl)-1H-imidazol-1-yl)butan-1-amine yielded 4k (44% yield) as a white solid. MS (ESI): 826.7 (MH⁺). HPLC: $t_{\rm R} = 11.34$ min. ¹H NMR (CDCl₃) δ 8.96 (d, J = 1.5, 1H), 8.45 (dd, J = 4.8, 1.8, 1H), 8.08 (dt, J = 7.8, 1.8, 1H), 7.54 (d, J = 1.5, 1H) 7.33 (d, J = 1.5, 1H)J = 1.5, 1H, 7.26–7.30 (m, 1H), 4.94 (dd, J = 10.5, 2.1, 1H), 4.28 (d, J = 8.4, 1H), 4.24 (d, J = 9.0, 1H), 4.01 (t, J = 7.2, 2H), 3.85 (q, J = 6.6, 1H), 3.67 (s, 1H), 3.50-3.72 (m, 3H), 3.16-3.24 (m, 2H), 3.02-3.12 (m, 1H), 2.63 (s, 3H), 2.46-2.58 (m, 1H), 2.31 (s, 6H), 1.55-2.10 (m, 14H), 1.36 (d, J = 6.9, 3H), 1.34 (s, 3H), 1.22-1.30 (m, 9H), 1.16 (d, J = 6.9, 3H), 1.01 (d, J = 6.6, 3H, 0.83 (t, J = 7.2, 3H). ¹³C NMR (CDCl₃) δ 216.1, 203.1, 169.5, 157.0, 147.3, 146.2, 138.8, 137.6, 131.8, 130.1, 123.3, 115.4, 103.8, 82.9, 79.5, 78.2, 70.3, 69.5, 65.8, 60.3, 51.3, 49.8, 47.7, 46.9, 44.9, 42.8, 40.2, 39.3, 38.6, 28.7, 28.6, 24.4, 23.3, 23.0, 21.2, 21.1, 19.8, 18.2, 15.8, 14.4, 14.3, 10.9, 9.7. Anal. Calcd for C44H67N5O10: C, 63.98; H, 8.18; N, 8.48. Found: C, 64.34; H, 8.60; N, 8.10.

5.8.12. Compound 4I. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-[4-(6methyl-pyridin-3-yl)-imidazol-1-yl]-butylamine yielded 4l (44% yield) as a white solid. MS (ESI): 840.7 (MH⁺). HPLC: $t_{\rm R} = 11.80$ min. ¹H NMR (CDCl₃) δ 8.83 (d, J = 2.1, 1H), 7.96 (dd, J = 7.8, 2.4, 1H), 7.52 (d, J = 1.5, 1H) 7.27 (d, J = 1.2, 1H), 7.15 (d, J = 8.1, 1H), 4.93 (dd, J = 10.5, 2.4, 1H), 4.28 (d, J = 7.2, 1H), 4.25 (d, J = 8.7, 1H), 4.0 (t, J = 7.2, 2H), 3.85 (q, J = 6.9, 1H), 3.50–3.72 (m, 3H), 3.68 (s, 1H), 3.16–3.26 (m, 2H), 3.02-3.12 (m, 1H), 2.63 (s, 3H), 2.52-2.62 (m, 1H) 2.55 (s, 3H), 2.34 (s, 6H), 1.56–2.12 (m, 14H), 1.34-1.37 (m, 6H), 1.20-1.31 (m, 9H), 1.16 (d, J = 6.9, 3H), 1.01 (d, J = 6.9, 3H), 0.83 (t, J = 7.5, 3H). Anal. Calcd for C₄₅H₆₉N₅O₁₀·1.7H₂O: C, 62.04; H, 8.39; N, 8.04. Found: C, 62.04; H, 8.16; N, 7.98.

5.8.13. Compound 4m. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-[4-(6-fluoro-pyridin-3-yl)-imidazol-1-yl]-butylamine yielded **4m** (27% yield) as a white solid. MS (ESI): 844.7 (MH⁺). HPLC: $t_{\rm R} = 12.60$ min. ¹H NMR (CDCl₃) δ 8.55 (d, J = 2.1, 1H), 8.18 (td, J = 8.4, 2.4, 1H), 7.52

(d, J = 1.2, 1H), 7.29 (d, J = 1.2, 1H), 6.93 (dd, J = 8.7, 2.7, 1H), 4.93 (dd, J = 11.1, 2.4, 1H), 4.32 (d, J = 7.2, 1H), 4.24 (d, J = 8.9, 1H), 4.0 (t, J = 7.2, 2H), 3.85 (q, J = 6.9, 1H), 3.53–3.78 (m, 3H), 3.67 (s, 1H), 3.23 (dd, J = 9.9, 7.2, 1H), 3.19–3.23 (m, 1H), 3.04–3.12 (m, 1H), 2.74–2.84 (m, 1H), 2.61 (s, 3H), 2.51 (s, 6H), 1.48–2.10 (m, 14H), 1.35 (d, J = 6.6, 3H), 1.23–1.34 (m, 12H), 1.17 (d, J = 6.9, 3H), 1.02 (d, J = 6.9, 3H), 0.83 (t, J = 7.5, 3H). Anal. Calcd for C₄₄H₆₆FN₅O₁₀·0.4H₂O: C, 61.56; H, 8.03; F, 2.27; N, 8.35. Found: C, 61.58; H, 7.71; F, 2.66; N, 7.95.

5.8.14. Compound 4n. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-[4-(6chloro-pyridin-3-yl)-imidazol-1-yl]-butylamine yielded 4n (15% yield) as a white solid. MS (ESI): 860.7 (MH⁺). HPLC: $t_{\rm R} = 13.18$ min. ¹H NMR (CDCl₃) δ 8.73 (d, J = 2.4, 1H), 8.05 (dd, J = 8.1, 2.4, 1H), 7.53 (d, J = 1.2, 1H) 7.33 (s, 1H), 7.31 (d, J = 7.2, 1H), 4.93 (dd, J = 10.5, 2.4, 1H), 4.29 (d, J = 6.9, 1H), 4.24 (d, J = 6.9,J = 8.7, 1H), 4.0 (t, J = 7.5, 2H), 3.85 (q, J = 6.9, 1H), 3.50-3.74 (m, 3H), 3.67 (s, 1H), 3.16-3.28 (m, 2H), 3.02-3.12 (m, 1H), 2.61 (s, 3H), 2.52-2.58 (m, 1H), 2.36 (s, 6H), 1.55-2.08 (m, 14H), 1.35 (d, J = 6.9, 3H), 1.33 (s, 3H), 1.22–1.29 (m, 9H), 1.16 (d, J = 6.6, 3H), 1.01 (d, J = 6.9, 3H), 0.83 (t, J = 7.5, 3H). Anal. Calcd for C44H66ClN5O10.0.7H2O: C, 60.12; H, 7.44; Cl, 3.89; N, 7.80. Found: C, 60.13; H, 7.54; Cl, 3.79; N, 7.83.

5.8.15. Compound 40. Following procedure A using the C_{12} ethyl imidazolyl carbamate macrolide and 4-[4-(6methoxy-pyridin-3-yl)-imidazol-1-yl]-butylamine yielded 40 (33% yield) as a white solid. MS (ESI): 856.7 (MH⁺). HPLC: $t_{\rm R} = 13.21$ min. ¹H NMR (CDCl₃) δ 8.51 (dd, J = 2.4, 0.9, 1H), 7.97 (dd, J = 8.7, 2.4, 1H), 7.50 (d, J = 1.2, 1H) 7.17 (d, J = 1.5, 1H), 6.75 (dd, J = 8.7, 0.6, 1H), 4.93 (dd, J = 10.5, 2.1, 1H), 4.27 (d, J = 7.5, 1H, 4.25 (d, J = 8.4, 1H), 3.98 (t, J = 7.5, 1H) 2H), 3.95 (s, 3H), 3.85 (q, J = 6.6, 1H), 3.48–3.76 (m, 3H), 3.68 (s, 1H), 3.15-3.24 (m, 2H), 3.02-3.12 (m, 1H), 2.63 (s, 3H), 2.40–2.48 (m, 1H), 2.26 (s, 6H), 1.54-2.08 (m, 14H), 1.36 (d, J = 6.9, 3H), 1.35 (s, 3H), 1.20-1.30 (m, 9H), 1.16 (d, J = 7.2, 3H), 1.01 (d, J = 6.9, 3H), 0.83 (t, J = 7.5, 3H). Anal. Calcd for $C_{45}H_{69}N_5O_{11}$ ·2.4 H_2O : C, 60.07; H, 8.28; N, 7.79. Found: C, 60.08; H, 8.19; N, 7.67.

5.8.16. Compound 4p. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and 4-(4-Pyrimid-5-yl-imidazol-1-yl)-butylamine yielded **4p** (27% yield) as a white solid. MS (ESI): 827.7 (MH⁺). HPLC: $t_{\rm R} = 11.45$ min. ¹H NMR (CDCl₃) δ 9.10 (s, 2H), 9.06 (s, 1H), 7.56 (d, J = 1.2, 1H) 7.40 (d, J = 1.5, 1H), 4.92 (dd, J = 10.5, 2.1, 1H), 4.27 (d, J = 7.5, 1H), 4.23 (d, J = 9.3, 1H), 4.02 (t, J = 7.5, 2H), 3.84 (q, J = 6.9, 1H), 3.67 (s, 1H), 3.50–3.74 (m, 3H), 3.16–3.24 (m, 2H), 3.02–3.12 (m, 1H), 2.60 (s, 3H), 2.42–2.56 (m, 1H), 2.30 (s, 6H), 1.55–2.10 (m, 14H), 1.34–1.36 (m, 6H), 1.21–1.29 (m, 9H), 1.16 (d, J = 6.9, 3H), 1.01 (d, J = 6.9, 3H), 0.82 (t, J = 7.2, 3H). Anal. Calcd for C₄₃H₆₆N₆O₁₀·1.8H₂O: C, 60.02; H, 8.17; N, 9.77. Found: C, 60.08; H, 8.44; N, 9.47.

5.8.17. Compound 4q. Following procedure A using the C12 ethyl imidazolyl carbamate macrolide and 4-(4pyrazin-2-yl-imidazol-1-yl)-butylamine vielded **4**a (29% yield) as a white solid. MS (ESI): 827.7 (MH⁺). HPLC: $t_{\rm R} = 11.88 \text{ min.}$ ¹H NMR (CDCl₃) δ 9.19 (d, J = 1.8, 1H, 8.44 (dd, J = 2.4, 1.2, 1H), 8.37 (d, J = 2.7, 1H) 7.65 (d, J = 1.2, 1H), 7.56 (d, J = 1.5, 1H) 1H), 4.93 (dd, J = 10.8, 1.8, 1H), 4.28 (d, J = 7.5, 1H), 4.25 (d, J = 9.3, 1H), 4.03 (t, J = 7.5, 2H), 3.84 (q, J = 6.9, 1H), 3.68 (s, 1H), 3.50–3.74 (m, 3H), 3.16–3.24 (m, 2H), 3.02–3.12 (m, 1H), 2.63 (s, 3H), 2.42–2.56 (m, 1H), 2.30 (s, 6H), 1.55-2.10 (m, 14H), 1.34-1.36 (m, 6H), 1.22-1.30 (m, 9H), 1.16 (d, J = 6.9, 3H), 1.01 (d, J = 6.9, 3H), 0.84 (t, J = 7.2, 3H). Anal. Calcd for $C_{43}H_{66}N_6O_{10}$ ·4.6 H_2O : C, 56.73; H, 8.34; N, 9.24. Found: C, 56.76; H, 8.46; N, 9.06.

5.8.18. Compound 4r. Following procedure A using the C_{12} ethyl imidazolyl carbamate macrolide and 4-(4-(pyridin-4-yl)-1H-imidazol-1-yl)butan-1-amine yielded 4r (31% yield) as a white solid. MS (ESI): 826.7 (MH⁺). HPLC: $t_{\rm R} = 11.51$ min. ¹H NMR (CDCl₃) δ 8.56 (d, J = 4.8, 2H), 7.69 (d, J = 4.8, 1H), 7.55 (d, J = 1.2, 1H), 7.49 (d, J = 1.2, 1H), 4.94 (dd, J = 10.5, 1H) 2.1, 1H), 4.35 (d, J = 7.2, 1H), 4.24 (d, J = 8.7, 1H), 4.02 (t, J = 7.2, 2H), 3.86 (q, J = 7.2, 1H), 3.67 (s, 1H), 3.56-3.74 (m, 3H), 3.40-3.46 (m, 1H), 3.16-3.24 (m, 1H), 3.0-3.10 (m, 1H), 2.64 (s, 3H), 2.59 (s, 6H), 1.58-2.10 (m, 14H), 1.36 (d, J = 6.9, 3H), 1.30 (s, 3H), 1.24-1.30 (m, 9H), 1.17 (d, J = 6.9, 3H), 1.02 (d, J = 6.6, 3H), 0.83 (t, J = 7.2, 3H). Anal. Calcd for C₄₄H₆₇N₅O₁₀·3.5H₂O: C, 59.40; H, 8.39; N, 7.88. Found: C, 59.41; H, 7.98; N, 7.63.

5.8.19. Compound 4s. Following procedure A using the C_{12} ethyl imidazolyl carbamate macrolide and 4-(4phenyl-1*H*-imidazol-1-yl)butan-1-amine vielded **4**s (42% yield) as a white solid. MS (ESI): 825.7 (MH⁺). HPLČ: $t_{\rm R} = 13.94$ min. ¹H NMR (CDCl₃) δ 8.96 (d, J = 1.5, 1H), 8.45 (dd, J = 4.8, 1.8, 1H), 8.08 (dt, J = 7.8, 1.8, 1H), 7.54 (d, J = 1.5, 1H) 7.33 (d, J = 1.5, 1H) 1H), 7.26-7.30 (m, 1H), 4.94 (dd, J = 10.5, 2.1, 1H), 4.28 (d, J = 8.4, 1H), 4.24 (d, J = 9.0, 1H), 4.01 (t, J = 7.2, 2H), 3.85 (q, J = 6.6, 1H), 3.67 (s, 1H), 3.50– 3.72 (m, 3H), 3.16–3.24 (m, 2H), 3.02–3.12 (m, 1H), 2.63 (s, 3H), 2.46–2.58 (m, 1H), 2.31 (s, 6H), 1.55–2.10 (m, 14H), 1.36 (d, J = 6.9, 3H), 1.34 (s, 3H), 1.22–1.30 (m, 9H), 1.16 (d, J = 6.9, 3H), 1.01 (d, J = 6.6, 3H), 0.83 (t, J = 7.2, 3H). Anal. Calcd for C₄₅H₆₈N₄O₁₀·1.2-H₂O: C, 63.85; H, 8.38; N, 6.62. Found: C, 63.86; H, 7.97; N, 6.39.

5.8.20. Compound 4t. Following procedure A using the C₁₂ ethyl imidazolyl carbamate macrolide and *N*1-[3,3']bipyridinyl-5-ylmethyl-*N*1-methyl-ethane-1,2-diamine yielded **4t** (43% yield) as a white solid. MS (ESI): 852.7 (MH⁺). HPLC: $t_{\rm R} = 10.10$ min. ¹H NMR (CDCl₃) δ 8.87 (d, J = 2.7, 1H), 8.71 (d, J = 2.4, 1H), 8.63 (dd, J = 4.8, 1.5, 1H), 8.51 (d, J = 1.5, 1H), 7.93–7.98 (m, 2H), 7.40 (dd, J = 8.1, 4.8, 1H), 5.04 (dd, J = 10.5, 2.4, 1H), 4.28 (d, J = 7.5, 1H), 4.24 (d, J = 8.4, 1H), 3.78–3.94 (m, 4H), 3.65 (s, 1H), 3.48–3.58 (m, 2H), 3.18–3.24 (m, 2H), 3.02–3.10 (m, 1H), 2.78–2.90 (m, 1H),

2.65 (s, 3H), 2.50–2.58 (m, 2H), 2.32 (s, 6H), 2.23 (s, 3H), 1.40–2.05 (m, 10H), 1.21–1.34 (m, 15H), 1.17 (d, J = 6.6, 3H), 1.03 (d, J = 6.6, 3H), 0.64 (t, J = 7.2, 3H). Anal. Calcd for C₄₆H₆₉N₅O₁₀: C, 64.84; H, 8.16; N, 8.22. Found: C, 64.42; H, 7.79; N, 8.15.

Acknowledgments

We thank Dr. Xiadong Lin and Alice Rico for preparation of the epimeric C_{12} ethyl, C_{12} hydroxy, C_9 , C_{11} acetonide ketolide core and Dr. Fook S. Tham of University of Riverside, CA, for solving its X-ray structure. We also thank Weiping Jia and Dr. Gavin Dollinger of Chiron for analytical chemistry support.

Supplementary data

Synthesis and X-ray structure of the epimeric C_{12} ethyl, C_{12} hydroxy, C_9 , C_{11} acetonide macrolide, and ¹H NMR spectra of final ketolide **4k** and telithromycin. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2006.04.032.

References and notes

- (a) Macrolides: Chemistry, Pharmacology and Clinical Uses; Bryskier, A. J., Butzler, J.-P., Neu, H. C., Tulkens, P. M., Eds.; Arnette Blackwell: Paris, 1993; (b) New Macrolides, Azalides, and Streptogramins in Clinical Practice; Neu, H. C., Young, L. S., Zinner, S. H., Acar, J. F., Eds.; Marcel Dekker: New York, 1995; (c) Kurath, P.; Jones, P. H.; Egan, R. S.; Perun, T. J. Experentia 1971, 27, 362; (d) Krowicki, K.; Zamojski, A. J. Antibiot. 1974, 26, 569–574.
- Morimoto, S.; Takahashi, Y.; Watanabe, Y.; Omura, S. J. Antibiot. 1984, 37, 343–345.
- (a) Bright, G.; Nage, A.; Bordner, J.; Desai, K.; Dibrino, J.; Nowakowska, J.; Vincent, L.; Watrous, R.; Sciavolino, F.; English, A.; Retsema, J.; Anderson, M.; Brennan, L.; Borovoy, R.; Cimchowsji, C.; Faiella, J.; Girard, A.; Girard, D.; Herbert, C.; Manousos, M.; Mason, R. J. Antibiot. 1988, 41, 1029–1047; (b) Retsema, J. A.; Girard, A. E.; Schekly, W.; Manousos, M.; Anderson, M. R.; Bright, G. M.; Borovoy, R. J.; Brennan, L. A.; Mason, R. Antimicrob. Agents Chemother. 1987, 31, 1939–1947.
- (a) Chantot, J.-F.; Bryskier, A.; Gasc, J.-C. J. Antibiot. 1986, 39, 660–668; (b) Gasc, J. C.; Gouin d'Ambrières, S.; Lutz, A.; Chantot, J. F. J. Antibiot. 1991, 44, 313–330.
- (a) Leclercq, Q.; Courvalin, P. Antimicrob. Agents Chemother. 1991, 35, 1267–1272; (b) Leclercq, Q.; Courvalin, P. Antimicrob. Agents Chemother. 1991, 35, 1273–1276; (c) Sutcliffe, J.; Tait-Kamradt, A.; Wondrack, L. Antimicrob. Agents Chemother. 1996, 40, 1817–1824.
- (a) Agouridas, C.; Denis, A.; Auger, J. M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J. F.; Dussarat, A.; Fromentin, C.; D'Ambrières, S. G.; Lachaud, S.; Laurin, P.; Le Martret, O.; Loyau, V.; Tessot, N. J. Med. Chem. 1998, 41, 4080-4100; (b) Denis, A.; Agouridas, C.; Auger, J.-M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J.-F.; Dussarat, A.; Fromentin, C.; D'Ambrieres, S. G.; Lachaud, S.; Laurin, P.; Martret, O. L.; Loyau, V.; Tessot, N.; Pejac, J.-M.; Perron, S. Bioorg. Med. Chem. Lett. 1999, 9, 3075-3080.

- Ma, Z.; Clark, R. F.; Brazzale, A.; Wang, S.; Rupp, M. J.; Li, L.; Griesgraber, G.; Zhang, S.; Yong, H.; Phan, L. T.; Nemoto, P. A.; Chu, D. T.; Plattner, J. J.; Zhang, X.; Zhong, P.; Cao, Z.; Nilius, A. M.; Shortridge, V. D.; Flamm, R.; Mitten, M.; Meulbroek, J.; Ewing, P.; Alder, J.; Or, Y. S. J. Med. Chem. 2001, 44, 4137–4156.
- (a) Harris, D. R.; McGeachin, S. G.; Mills, H. H. *Tetrahedron Lett.* **1965**, 679–685; (b) Awan, A.; Brennan, R. J.; Regan, A. C.; Barber, J. J. Chem. Soc., Chem. Commun. **1995**, 1653–1654; (c) Bertho, G.; Ladam, P.; Gharbi-Benarous, J.; Delaforge, M.; Girault, J.-P. Int. J. Biol. Macromol. **1998**, 22, 103–127; (d) Bertho, G.; Gharbi-Benarous, J.; Delaforge, M.; Girault, J.-P. Bioorg. Med. Chem. **1998**, 6, 209–221; (e) Awan, A.; Brennan, R. J.; Regan, A. C.; Barber, J. J. Chem. Soc., Perkin Trans. 2 **2000**, 1645–1652.
- Studies have suggested that the hydrophobic nature of the macrolide bottom face is maintained in the ketolides (a) Bertho, G.; Gharbi-Benarous, J.; Delaforge, M.; Lang, C.; Parent, A.; Girault, J.-P. *J. Med. Chem.* **1998**, *41*, 3373–3386; (b) Evrard-Todeschi, N.; Gharbi-Benarous, J.; Gaillet, C.; Verdier, L.; Bertho, G.; Lang, C.; Parent, A.; Girault, J.-P. *Bioorg. Med. Chem.* **2000**, *8*, 1579–1597.
- Burger, M. T.; Lin, X.; Chu, D. T.; Hiebert, C.; Rico, A.; Seid, M.; Carroll, G.; Barker, L.; Huh, K.; Langhorne, M.; Shawar, R.; Kidney, J.; Young, K.; Anderson, S.; Desai, M. C.; Plattner, J. J. J. Med. Chem. 2006, 49, 1730– 1743.
- Lin, X.; Burger, M.; Chu, D.; Rico, A.; Hiebert, C.; Seid, M.; Carroll, G.; Barker, L.; Shawar, R. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, Ill. 2003; Abst F-1201.
- (a) Baker, W. R.; Clark, J. D.; Stephens, R. L.; Kim, K. H. J. Org. Chem. 1988, 53, 2340–2345; (b) Fernandes, P. B.; Baker, W. R.; Freiberg, L. A.; Hardy, D. J.; McDonald, E. J. Antimicrob. Agents Chemother. 1989, 33, 78–81; (c) Elliott, R. L.; Pireh, D.; Griesgraber, G.; Nilius, A. M.; Ewing, P. J.; Bui, M. H.; Raney, P. M.; Flamm, R. K.; Kim, K.; Henry, R. F.; Chu, D. T. W.; Plattner, J. J.; Or, Y. S. J. Med. Chem. 1998, 41, 1651–1659; (d) Griesgraber, G.; Kramer, M. J.; Elliott, R. L.; Nilius, A. M.; Ewing, P. J.; Raney, P. M.; Bui, M.-H.; Flamm, R. K.; Chu, D. T. W.; Plattner, J. J.; Or, Y. S. J. Med. Chem. 1998, 41, 1660– 1670; (e) Hunziker, D.; Wyss, P. C.; Angehrn, P.; Mueller, A.; Marty, H. P.; Halm, R.; Kellenberger, L.; Bitsch, V.; Biringer, G.; Arnold, W.; Stämpfli, A.; Schmitt-Hoffmann, A.; Cousot, D. Bioorg. Med. Chem. 2004, 12, 3503–3519.
- Su, W. G.; Smyth, K. T.; Rainville, J. P.; Kaneko, T.; Sitcliffe, J. S.; Brennan, L. A.; Duignan, J. M.; Girard, A. E.; Finegan S. M.; Cimochowski, C. R. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy 1998; Abst F-122.
- 14. (a) Macielag, M.; Abbanat, D.; Ashley, G.; Foleno, B.; Fu, H.; Li, Y.; Wira, E.; Bush, K. 42nd Interscience

Conference on Antimicrobial Agents and Chemotherapy, San Diego, Ca., 2002; Abst F-1662; (b) Abbanat, D.; Ashley, G.; Foleno, B.; Fu, H.; Hilliard, J.; Li, Y.; Licari, P.; Macielag, M.; Melton, J.; Monteenegro, D.; Raina, D.; Stryker, S.; Wira, E. J.; Bush, K. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, Ill. 2003; Abst F-1203; (c) Ashley, G. W.; Li, Y.; 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington D.C., 2004; Abst F-1409.

- 15. (a) Or, Y. S.; Wang, G.; Phan, L. T.; Niu, D.; Vo, N. H.; Qiu, Y.; Wang, Y.; Busuyek, M.; Hou, Y.; Peng, Y.; Kim, H.; Liu, T.; Farmer, Jay J.; Xu, G. U.S Patent # 6,878,691 B2. April 12, 2005; (b) Scorneaux, B.; Arya, A.; Polemeropoulos, A.; Lillard, M.; Han, F.; Amsler, K.; Sonderfan, A.; Wang, G.; Wang, Y.; Peng, Y.; Xu, G.; Kim, H.; Lien, T.; Phan, L.; Or, Y. T. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, Ill. 2003; Abst F-1191.
- From the C₁₂ ketone, C₁₂ hydrogen and C₁₂ CF₃ groups can be introduced into the macrolide core. Xiadong Lin, Georgia Carrol and Alice Rico unpublished results.
- 17. Griffith, W. F.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625–1627.
- Martin, J. C.; Dess, D. B. J. Am. Chem. Soc. 1991, 113, 7277–7287.
- 19. The epimeric C₁₂ ethyl C₁₂ hydroxy macrolide core was prepared by Dr. Xiadong Lin and Alice Rico by ethylg-rignard addition to the corresponding C₁₂ ketone macrolide. The X-ray structure of the ethyl grignard product was determined by Dr. Fook Tham, UC Riverside. See the supplementary material for details. Crystallographic data for this structure has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 604208.
- 20. (a) Sidechains for compounds 4c,4d,4l,4m,4n,4o,4p,4q, and 4t were prepared as described in Ref. 10. Sidechains for compounds 4e,4g,4h,4j, and 4r were prepared using the methods described in Ref. 10; (b) Sidechains for compounds 4a,4b,4i,4k, and 4s were prepared as described in Ref. 6a; (c) The sidechain for compound 4f was prepared as in Agouridas, Constantin; Chantot, Jean-Francois; Denis, Alexis; Gouin d'Ambrieres, Solange; Le Martret, Odile. Eur. Pat. Appl. (1995) EP 680967 A1 19951108.
- 21. For **4k** and telithromycin ¹H NMR spectra, see supplementary material.
- 22. NCCLS. 2003. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard—6th ed. NCCLS document M7-A6. NCCLS, Wayne, PA 19807, USA.
- NCCLS. 2003. Performance Standards for Antimicrobial Susceptibility Testing; Approved Standard—14th ed. NCCLS document M100-S13. NCCLS, Wayne, PA 19807, USA.