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Abstract Maresins are among the most potent antiinflammatory lip-
id metabolites. We report stereoselective syntheses of maresin 2 and
maresin 2n-3 DPA. The anti-diol was constructed through epoxide ring
opening of an optically active ,-epoxy aldehyde, synthesized in situ by
Swern oxidation of the corresponding alcohol. Finally, the target com-
pounds were synthesized through a Sonogashira coupling of a C9–C22
iodide and methyl (Z)-oct-4-en-7-ynoate or methyl oct-7-ynoate, re-
spectively.
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Resolvins and protectins, metabolized from polyunsatu-

rated fatty acids, are specialized pro-resolving mediators

(SPMs).1 SPMs have been reported to actively promote the

resolution of inflammation. In 2014, Serhan isolated mares-

in 2 from human macrophages as a metabolite derived from

docosahexaenoic acid (Figure 1).2 This compound shows a

strong antiinflammatory effect at 1 ng per mouse in a

mouse peritonitis model.2 Maresin 2n-3 DPA, possessing a sin-

gle bond at the C4–C5 position of maresin 2, also shows an

antiinflammatory effect.3 Several SPMs are undergoing ini-

tial clinical trials, and maresin 1 has recently been reported

to possess wound-healing activity.4 Consequently, maresin

2 and maresin 2n-3 DPA are also of interest as candidates for

drug-discovery research. However, maresins are available

only in minute amounts from natural sources. In addition,

commercially available maresin 2 is expensive, making it

difficult to obtain sufficient amounts. The groups of Spur

and Hansen have reported syntheses of these compounds

through the chiral-pool method with 2-deoxy-D-ribose as a

starting material.5 However, drug-discovery research re-

quires a flexible synthetic method that can efficiently sup-

ply the desired chiral centers. We have previously synthe-

sized various lipid mediators by constructing chiral centers

by asymmetric reactions.6 Here, we report stereoselective

syntheses of maresin 2 and maresin 2n-3 DPA by using asym-

metric reactions.

Figure 1  Structures of maresins

Scheme 1 outlines our retrosynthetic analysis of mares-

in 2 (2). We planned to construct the triene of 2 by connect-

ing two components, the terminal alkyne 4 and the iodo-

alkene 5, by a Sonogashira coupling reaction, followed by

acetylene reduction.6 The internal cis-olefin 4 would be ob-

tained from -butyrolactone by a Wittig reaction. The vici-

nal diol at C13–C14 would be constructed stereoselectively

by a Sharpless asymmetric epoxidation, followed by an ep-

oxide ring opening of the ,-epoxy aldehyde.

The first step in our synthesis of maresin 2 (2) involved

the preparation of enyne 4 (Scheme 2). Phosphonium salt 9

was synthesized from but-3-yn-1-ol (8) by a previously re-

ported procedure.7 The ring-opening reaction of -butyro-

lactone (10) with Et3N/MeOH generated the corresponding

alcohol, which was then oxidized with sulfur trioxide/pyri-

dine (SO3·py) to yield aldehyde 11. Wittig reaction of 11
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with phosphonium salt 9 in the presence of NaHMDS af-

forded the terminal alkyne 48 in 64% yield over the three

steps.

Next, the iodoolefin 5 was prepared via the epoxy alco-

hol 19. Propane-1,3-diol (12) was converted into the silyl

ether 13 by a reported procedure (Scheme 3).9 Oxidation of

13 by SO3·py was followed by the addition of alkyne 1410 to

the resulting aldehyde to give alcohol rac-15 in 65% yield.

Oxidation of rac-15 followed by asymmetric transfer hydro-

genation11 produced the optically active alcohol (S)-15 in

69% yield with 98% ee, as determined by 1H NMR analysis of

its -methoxy--(trifluoromethyl)phenylacetic (MTPA) es-

ter derivative. Treatment of (S)-15 with Red-Al not only re-

duced the triple bond, but also promoted deprotection of

the TBDPS group. As a result, the resulting primary hydroxy

group was protected once again with TBDPSCl to give allylic

alcohol 178 in 51% yield. This was then converted into the

epoxy alcohol 18 by a Sharpless asymmetric epoxida-

tion6c,12 in 75% yield with >99% ee, as determined by 1H

NMR analysis of the MTPA ester derivative. In this reaction,

the enantiomeric purity was improved by kinetic resolution

of 17 (98% ee). Protection of epoxy alcohol 18 followed by

deprotection using DDQ afforded alcohol 19 in 58% yield.

Scheme 3  Synthesis of epoxy alcohol 19

Enal 20,8 containing a vicinal diol, was prepared in 69%

yield by oxidation of epoxy alcohol 19 followed by cleavage

of the epoxide ring (Scheme 4). Protection of 20 with TB-

SOTf in the presence of 2,6-lutidine gave the disilyl ether 21

in 83% yield; this was subsequently converted into enyne 22

(76% yield) by treatment with TMSCHN2 and LDA.13 The (E)-

stereoselectivity of the olefin in 22 was >99%, as deter-

mined by 1H NMR spectroscopy. Hydrozirconation of 22

with Cp2Zr(H)Cl, generated in situ from Cp2ZrCl2 and

DIBAL,14 followed by iodination of the resulting vinylzirco-

nium species with I2 produced vinyl iodide 23.8 The TBS and

TBDPS groups in 23 were then replaced by TES groups in a

two-step reaction to produce 24. Swern oxidation15 of 24

occurred regioselectively at the terminal carbon to afford an

aldehyde that, upon Wittig reaction with phosphonium salt

75a followed by desilylation, afforded iodoolefin 58 in 59%

yield over three steps.

In the last stage, the synthesis of maresin 2 (2) was com-

pleted, as shown in Scheme 5. Polyene 25 was synthesized

in 61% yield by Sonogashira coupling of the alkyne 4 and io-

doolefin 5.6 Finally, reduction of 25 by Zn(Cu/Ag),6b,c,16 fol-

Scheme 1  Retrosynthetic analysis of maresin 2 (2)
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lowed by hydrolysis with aqueous LiOH afforded maresin 2

(2) in 63% yield.17 The spectral data (NMR and UV) of 2 were

in good agreement with those reported previously.5b

Next, maresin 2n-3 DPA (3) was synthesized according to

the method shown in Scheme 6. Alkyne 28 was obtained by

Sonogashira coupling of iodoolefin 5 with alkyne 27, pre-

pared from oct-7-yn-1-ol (26) in three steps. Maresin 2n-3

DPA (3) was then synthesized in a two-step reaction by using

the same method as used for 2. The spectral data (NMR and

UV) and []D of 3 were consistent with those reported pre-

viously.5a

Scheme 6  Synthesis of maresin 2n-3 DPA (3)

In conclusion, we have accomplished asymmetric syn-

theses of maresin 2 (2) and maresin 2n-3 DPA (3). Alkyne 4

was synthesized from -butyrolactone (10) and phosphoni-

um salt 7 in three steps. Meanwhile, vicinal diol 20 was

constructed by a Sharpless asymmetric epoxidation and a

Swern oxidation. Diol 20 was then converted into iodoolefin

5 by a multistep reaction. Finally, reaction of 4 with 5 gave

maresin 2 (2) in 22 steps from propane-1,3-diol (12) with a

total yield of 0.79%. We also synthesized 3 by using the

same approach as that described for 2 in 22 steps from 12,

with a total yield of 0.58%. The spectral data for 2 and 3

were consistent with those previously reported.5
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Scheme 4  Synthesis of iodoolefin 5
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Scheme 5  Synthesis of maresin 2 (2)
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(silica gel), ready for the next reaction.

To an ice-cold solution of the resulting ester in MeOH (1 mL)

and THF (1 mL) was added 2 N aq LiOH (0.82 mL, 1.64 mmol).

After 5 h at 0 °C, citrate–phosphate buffer (pH 5.0, 40 mL) was

added, and the resulting mixture was extracted with EtOAc

(×7). The combined extracts were dried (MgSO4) and concen-

trated, and the residue was purified by chromatography (silica

gel, hexane–EtOAc) to give maresin 2 (2) as a pale-yellow oil;

yield: 18.5 mg (63% from 25); Rf = 0.61 (hexane–EtOAc, 1:2);

[]D
24 +45.8 (c 0.37, MeOH).

IR (neat): 3454, 2064, 1727, 1652 cm–1. 1H NMR (400 MHz,

CD3OD):  = 0.86 (t, J = 7.4 Hz, 3 H), 1.97 (quin, J = 7.4 Hz, 2 H),

2.02–2.13 (m, 1 H), 2.20–2.33 (m, 5 H), 2.70 (t, J = 6.2 Hz, 2 H),

2.89 (t, J = 6.0 Hz, 2 H), 3.47 (dt, J = 8.4, 5.0 Hz, 1 H), 3.92 (dd, J =

7.0, 5.0 Hz, 1 H), 4.84 (s, 3 H, overlapped with the residue from

CD3OD), 5.15–5.43 (m, 7 H), 5.72 (dd, J = 14.8, 7.0 Hz, 1 H), 5.94

(t, J = 11.0 Hz, 1 H), 6.16 (dd, J = 14.8, 11.0 Hz, 1 H), 6.26 (dd, J =

14.8, 11.0 Hz, 1 H), 6.48 (dd, J = 14.8, 11.0 Hz, 1 H). 13C NMR

(100 MHz, CD3OD):  = 14.7, 21.5, 23.8, 26.6, 27.0, 31.8, 35.0,

75.8, 76.3, 127.1, 128.2, 129.1, 129.5, 129.7, 129.8, 131.0, 131.2,

132.7, 133.6, 133.7, 133.8, 177.1. HRMS (FD): m/z [M+] calcd for

C22H32O4: 360.23006; found: 360.23029. UV (MeOH): max =

262, 274, 282 nm.
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