Synlett

Letter

Synthesis of Optically Active Maresin 2 and Maresin $2_{n-3 DPA}$

Narihito Ogawa^{*a} Takahito Amano^a Yuichi Kobayashi^b

^a Department of Applied Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

N. Ogawa et al.

^b Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

Received: 02.09.2020 Accepted after revision: 02.10.2020 Published online: 02.11.2020 DOI: 10.1055/s-0040-1705959; Art ID: st-2020-u0484-l

Abstract Maresins are among the most potent antiinflammatory lipid metabolites. We report stereoselective syntheses of maresin 2 and maresin 2_{n-3 DPA}. The *anti*-diol was constructed through epoxide ring opening of an optically active β , γ -epoxy aldehyde, synthesized in situ by Swern oxidation of the corresponding alcohol. Finally, the target compounds were synthesized through a Sonogashira coupling of a C9–C22 iodide and methyl (*Z*)-oct-4-en-7-ynoate or methyl oct-7-ynoate, respectively.

Key words maresins, asymmetric synthesis, trienes, Swern oxidation

Resolvins and protectins, metabolized from polyunsaturated fatty acids, are specialized pro-resolving mediators (SPMs).¹ SPMs have been reported to actively promote the resolution of inflammation. In 2014, Serhan isolated maresin 2 from human macrophages as a metabolite derived from docosahexaenoic acid (Figure 1).² This compound shows a strong antiinflammatory effect at 1 ng per mouse in a mouse peritonitis model.² Maresin 2_{n-3} DPA, possessing a single bond at the C4-C5 position of maresin 2, also shows an antiinflammatory effect.³ Several SPMs are undergoing initial clinical trials, and maresin 1 has recently been reported to possess wound-healing activity.⁴ Consequently, maresin 2 and maresin $2_{n-3 DPA}$ are also of interest as candidates for drug-discovery research. However, maresins are available only in minute amounts from natural sources. In addition, commercially available maresin 2 is expensive, making it difficult to obtain sufficient amounts. The groups of Spur and Hansen have reported syntheses of these compounds through the chiral-pool method with 2-deoxy-D-ribose as a starting material.⁵ However, drug-discovery research requires a flexible synthetic method that can efficiently supply the desired chiral centers. We have previously synthesized various lipid mediators by constructing chiral centers by asymmetric reactions.⁶ Here, we report stereoselective syntheses of maresin 2 and maresin $2_{n-3 DPA}$ by using asymmetric reactions.

Scheme 1 outlines our retrosynthetic analysis of maresin 2 (**2**). We planned to construct the triene of **2** by connecting two components, the terminal alkyne **4** and the iodoalkene **5**, by a Sonogashira coupling reaction, followed by acetylene reduction.⁶ The internal *cis*-olefin **4** would be obtained from γ -butyrolactone by a Wittig reaction. The vicinal diol at C13–C14 would be constructed stereoselectively by a Sharpless asymmetric epoxidation, followed by an epoxide ring opening of the β , γ -epoxy aldehyde.

The first step in our synthesis of maresin 2 (2) involved the preparation of enyne **4** (Scheme 2). Phosphonium salt **9** was synthesized from but-3-yn-1-ol (**8**) by a previously reported procedure.⁷ The ring-opening reaction of γ -butyrolactone (**10**) with Et₃N/MeOH generated the corresponding alcohol, which was then oxidized with sulfur trioxide/pyridine (SO₃·py) to yield aldehyde **11**. Wittig reaction of **11**

narihito@meiji.ac.jp

Syn lett

N. Ogawa et al.

В

with phosphonium salt **9** in the presence of NaHMDS afforded the terminal alkyne **4**⁸ in 64% yield over the three steps.

Next, the iodoolefin **5** was prepared via the epoxy alcohol **19**. Propane-1,3-diol (**12**) was converted into the silyl ether **13** by a reported procedure (Scheme 3).⁹ Oxidation of **13** by SO₃·py was followed by the addition of alkyne **14**¹⁰ to the resulting aldehyde to give alcohol *rac*-**15** in 65% yield. Oxidation of *rac*-**15** followed by asymmetric transfer hydrogenation¹¹ produced the optically active alcohol (*S*)-**15** in 69% yield with 98% ee, as determined by ¹H NMR analysis of its α -methoxy- α -(trifluoromethyl)phenylacetic (MTPA) ester derivative. Treatment of (*S*)-**15** with Red-Al not only reduced the triple bond, but also promoted deprotection of

the TBDPS group. As a result, the resulting primary hydroxy group was protected once again with TBDPSCl to give allylic alcohol **17**⁸ in 51% yield. This was then converted into the epoxy alcohol **18** by a Sharpless asymmetric epoxidation^{6c,12} in 75% yield with >99% ee, as determined by ¹H NMR analysis of the MTPA ester derivative. In this reaction, the enantiomeric purity was improved by kinetic resolution of **17** (98% ee). Protection of epoxy alcohol **18** followed by deprotection using DDQ afforded alcohol **19** in 58% yield.

Enal **20**,⁸ containing a vicinal diol, was prepared in 69% vield by oxidation of epoxy alcohol **19** followed by cleavage of the epoxide ring (Scheme 4). Protection of **20** with TB-SOTf in the presence of 2,6-lutidine gave the disilyl ether 21 in 83% yield; this was subsequently converted into envne 22 (76% yield) by treatment with TMSCHN₂ and LDA.¹³ The (E)stereoselectivity of the olefin in 22 was >99%, as determined by ¹H NMR spectroscopy. Hydrozirconation of **22** with Cp₂Zr(H)Cl, generated in situ from Cp₂ZrCl₂ and DIBAL,¹⁴ followed by iodination of the resulting vinylzirconium species with I₂ produced vinyl iodide **23**.⁸ The TBS and TBDPS groups in 23 were then replaced by TES groups in a two-step reaction to produce 24. Swern oxidation¹⁵ of 24 occurred regioselectively at the terminal carbon to afford an aldehyde that, upon Wittig reaction with phosphonium salt **7**^{5a} followed by desilylation, afforded iodoolefin **5**⁸ in 59% vield over three steps.

In the last stage, the synthesis of maresin 2 (**2**) was completed, as shown in Scheme 5. Polyene **25** was synthesized in 61% yield by Sonogashira coupling of the alkyne **4** and iodoolefin **5**.⁶ Finally, reduction of **25** by Zn(Cu/Ag),^{6b,c,16} fol-

Syn lett

N. Ogawa et al.

lowed by hydrolysis with aqueous LiOH afforded maresin 2 (**2**) in 63% yield.¹⁷ The spectral data (NMR and UV) of **2** were in good agreement with those reported previously.^{5b}

Next, maresin $2_{n-3 DPA}$ (**3**) was synthesized according to the method shown in Scheme 6. Alkyne **28** was obtained by Sonogashira coupling of iodoolefin **5** with alkyne **27**, pre-

pared from oct-7-yn-1-ol (**26**) in three steps. Maresin 2_{n-3} _{DPA}(**3**) was then synthesized in a two-step reaction by using the same method as used for **2**. The spectral data (NMR and UV) and $[\alpha]_{D}$ of **3** were consistent with those reported previously.^{5a}

In conclusion, we have accomplished asymmetric syntheses of maresin 2 (2) and maresin $2_{n-3 DPA}$ (3). Alkyne 4 was synthesized from γ -butyrolactone (10) and phosphonium salt 7 in three steps. Meanwhile, vicinal diol 20 was constructed by a Sharpless asymmetric epoxidation and a Swern oxidation. Diol 20 was then converted into iodoolefin 5 by a multistep reaction. Finally, reaction of 4 with 5 gave maresin 2 (2) in 22 steps from propane-1,3-diol (12) with a total yield of 0.79%. We also synthesized 3 by using the same approach as that described for 2 in 22 steps from 12, with a total yield of 0.58%. The spectral data for 2 and 3 were consistent with those previously reported.⁵

Funding Information

This work was supported by Research Project Grant (B) by Institute of Science and Technology Meiji University (N.O.).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705959.

D

N. Ogawa et al.

References and Notes

- (1) (a) Dalli, J.; Serhan, C. N. Br. J. Pharmacol. 2018, 8, 1024.
 (b) Serhan, C. N. Nature 2014, 510, 92.
- (2) Deng, B.; Wang, C.-W.; Arnardottir, H. H.; Li, Y.; Cheng, C.-Y. C.; Dalli, J.; Serhan, C. N. PLoS One 2014, 9, e102362.
- (3) Dalli, J.; Colas, R. A.; Serhan, C. N. Sci. Rep. 2013, 3, 1940; corrigendum: Sci. Rep. 2014, 4, 6726.
- (4) (a) Wang, C. W.; Yu, S. H.; Fretwurst, T.; Larsson, L.; Sugai, J. V.;
 Oh, J.; Lehner, K.; Jin, Q.; Giannobile, W. V. J. Dent. Res. 2020, 99, 930. (b) Serhan, C. N.; Levy, B. D. J. Clin. Invest. 2018, 128, 2657.
- (5) (a) Sønderskov, J.; Tungen, J. E.; Palmas, F.; Dalli, J.; Serhan, C. N.; Stenstrøm, Y.; Hansen, T. V. *Tetrahedron Lett.* **2020**, *61*, 151510.
 (b) Rodriguez, A. R.; Spur, B. W. *Tetrahedron Lett.* **2015**, *56*, 256.
- (6) (a) Ogawa, N.; Sone, S.; Hong, S.; Lu, Y.; Kobayashi, Y. Synlett **2020**, 31, 1735. (b) Morita, M.; Tanabe, S.; Arai, T.; Kobayashi, Y.
 Synlett **2019**, 30, 1351. (c) Morita, M.; Wu, S.; Kobayashi, Y. Org.
 Biomol. Chem. **2019**, 17, 2212.
- (7) Kobayashi, Y.; Morita, M.; Ogawa, N.; Kondo, D.; Tojo, T. Org. Biomol. Chem. 2016, 14, 10667.
- (8) The double bond of the product was obtained with high selectivity. The corresponding olefin isomer could not be detected by ¹H NMR spectroscopy.
- (9) Druais, V.; Hall, M. J.; Corsi, C.; Wendeborn, S. V.; Meyer, C.; Cossy, J. Org. Lett. 2009, 11, 935.
- (10) Banfi, L; Basso, A.; Guanti, G.; Riva, R. *Tetrahedron* **2006**, *62*, 4331.
- (11) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. *J. Am. Chem.* Soc. **1997**, *119*, 8738.
- (12) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. *J. Am. Chem. Soc.* **1987**, *109*, 5765.
- (13) (a) Miwa, K.; Aoyama, T.; Shioiri, T. Synlett **1994**, 107. (b) Colvin,
 E. W.; Hamill, B. J. J. Chem. Soc., Chem. Commun. **1973**, 151.
- (14) (a) Huang, Z.; Negishi, E.-i. Org. Lett. 2006, 8, 3675. (b) Spino, C.; Tremblay, M.-C.; Godbout, C. Org. Lett. 2004, 6, 2801; corrigendum: Org. Lett. 2005, 7, 1673. (c) Kiyotsuka, Y.; Igarashi, J.; Kobayashi, Y. Tetrahedron Lett. 2002, 43, 2725.
- (15) Afonso, C. M.; Barros, M. T.; Maycock, C. D. J. Chem. Soc., Perkin Trans. 1 1987, 1221.

- Letter
- (16) Boland, W.; Schroer, N.; Sieler, C.; Feigel, M. Helv. Chim. Acta **1987**, *70*, 1025.

(17) Maresin 2 (2)

Cu(OAc)₂ (101 mg, 0.55 mmol) and AgNO₃ (103 mg, 0.61 mmol) were added to a slurry of Zn (1.08 g, 16.5 mmol) in H₂O (1 mL), and the mixture was stirred for 1 h then filtered by using a Hirsch funnel. The remaining Zn solids were washed successively with H₂O (1 mL), MeOH (1 mL), acetone (1 mL), and Et₂O (1 mL). The activated Zn solids were transferred to 1:1 MeOH-H₂O (2 mL), and a solution of alkyne **25** (30.7 mg, 0.082 mmol) in MeOH (1 mL) was added to the suspension of activated Zn. The mixture was stirred for 11 h then filtered through a plug of cotton that was washed with EtOAc. The mixture was concentrated, and the residue was semi-purified by chromatography (silica gel), ready for the next reaction.

To an ice-cold solution of the resulting ester in MeOH (1 mL) and THF (1 mL) was added 2 N aq LiOH (0.82 mL, 1.64 mmol). After 5 h at 0 °C, citrate–phosphate buffer (pH 5.0, 40 mL) was added, and the resulting mixture was extracted with EtOAc (×7). The combined extracts were dried (MgSO₄) and concentrated, and the residue was purified by chromatography (silica gel, hexane–EtOAc) to give maresin 2 (**2**) as a pale-yellow oil; yield: 18.5 mg (63% from **25**); R_f = 0.61 (hexane–EtOAc, 1:2); $[\alpha]_D^{24}$ +45.8 (*c* 0.37, MeOH).

IR (neat): 3454, 2064, 1727, 1652 cm⁻¹. ¹H NMR (400 MHz, CD₃OD): δ = 0.86 (t, *J* = 7.4 Hz, 3 H), 1.97 (quin, *J* = 7.4 Hz, 2 H), 2.02–2.13 (m, 1 H), 2.20–2.33 (m, 5 H), 2.70 (t, *J* = 6.2 Hz, 2 H), 2.89 (t, *J* = 6.0 Hz, 2 H), 3.47 (dt, *J* = 8.4, 5.0 Hz, 1 H), 3.92 (dd, *J* = 7.0, 5.0 Hz, 1 H), 4.84 (s, 3 H, overlapped with the residue from CD₃OD), 5.15–5.43 (m, 7 H), 5.72 (dd, *J* = 14.8, 7.0 Hz, 1 H), 5.94 (t, *J* = 11.0 Hz, 1 H), 6.16 (dd, *J* = 14.8, 11.0 Hz, 1 H), 6.26 (dd, *J* = 14.8, 11.0 Hz, 1 H), 6.48 (dd, *J* = 14.8, 11.0 Hz, 1 H). ¹³C NMR (100 MHz, CD₃OD): δ = 14.7, 21.5, 23.8, 26.6, 27.0, 31.8, 35.0, 75.8, 76.3, 127.1, 128.2, 129.1, 129.5, 129.7, 129.8, 131.0, 131.2, 132.7, 133.6, 133.7, 133.8, 177.1. HRMS (FD): *m/z* [M⁺] calcd for C₂₂H₃₂O₄: 360.23006; found: 360.23029. UV (MeOH): λ_{max} = 262, 274, 282 nm.