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ABSTRACT: The improved process for synthesis of (±)-tapentadol, the FDA approved analgesic drug is 

achieved from tetrahydrothiopyran-4-one as the 5-carbon source. 

KEYWORDS: tapentadol, tetrahydrothiopyran-4-one, analgesic, Grignard addition 

INTRODUCTION 

 

 Pain management involves complex biological processes. There are a good numbers of drugs 

available in the market for the treatment of this unpleasant feeling. The biological process of pain engage 

interactions of emotions, senses and behavior.1 

Currently the pain symptoms are treated by many approaches. They are classified into anesthetics, non-

steroidal anti-inflammatory drugs, opioids, anti-depressants and others. Morphine (1a) (fig. 1) is on the 

top of the pain treatment in adverse cases.2 However, this is an addictive chemical and also patients can 

have withdrawal symptoms once treatment is stopped. 

Codeine (1b) (Fig. 1) is also an approved drug, which works by a similar mechanism like morphine and 

is less addictive compared to morphine.3 Tramadol (2), which is a synthetic equivalent of codeine, was 

introduced as a pain killer in the mid-1990s. This works by combining weak µ-opioid and mono-

aminergically (noradrenaline and serotonin) mediated mechanisms.4 The next generation molecule 

discovered was tapentadol (3) by  Grünenthal (German pharmaceutical company),5,6 which works as a 

dual action analgesic and is used in nociceptive and neuropathic pain. The innovators process involved 

classical Grignard chemistry and reduction.7 The total synthesis of tapentadol was recently reviewed.8, 9 

 

Figure 1. Structures of FDA approved analgesic drugs. 
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Our group has been engaged in developing practical and scalable synthesis of FDA approved drugs viz, 

nebivolol,10a asenapine,10b zafirlukast,10c cephalotaxine,10d galanthamine10e etc. We were intrigued by the 

excellent properties of tapentadol which has been approved by FDA, for the relief of moderate to severe 

acute pain.11 The detailed literature of tapentadol is mostly in the patented domain. The strategies used by 

most researcher depend on an acyclic approach wherein the Grignard addition of 3-bromoanisole onto 

ethyl ketone generates diastereomeric mixtures which were carried forward to achieve the target molecule 

(scheme 1).7,12 

Scheme 1: Previous and present approaches for synthesis of tapentadol. 

 

The reactions are mostly based on diethyl ketone (3 - pentanone) or derivatives thereof. 3 - Pentanone 

being a volatile compound, the quantities required are more and recovery of starting material is less. Use 

of 4-thiopyranone makes the process more compatible to recover starting material and to reuse it.  

We reasoned, the Grignard addition of bromoanisole onto a cyclic ketone, which upon opening of the 

cyclic form would be a preferred option for a better diastereo control (scheme 2). It occurred to us that 

thiopyran-4-one (available at 3-5 USD/Kg on bulk pricing) could be the best five carbon equivalent, in 

cyclic form, which could be reductively opened after Grignard addition. 
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Scheme 2: Retrosynthetic Analysis of Tapentadol. 
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The original plan was to introduce the dimethylamino methylene group through asymmetric 

desymmetrization which was not very prudent (Table 1). Attempts to use organocatalytic reactions 

resulted in good yields with no enantioselectivity. The first step of synthesis, Mannich addition, was 

carried out using 37% aqueous formaldehyde and 40% aqueous dimethylamine with 4-thiopyranone 6 to 

yield 5a in 76% yield.13 Reaction with L- proline did not result in the preferential formation of any one 

enantiomer, probably due to the catalytic role played by the reagent (dimethylamine). Few other chiral 

organocatalysts also had the same outcome (see supporting information). A reaction of 100 g scale with 

optimized conditions gave 74 g of 5a in 76% yield along with recovery of the starting material (scheme 

3).   
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 6

Table 1 Screening for optimal reaction conditionsa 

 

Standard reaction conditions: [a] The reaction was carried out with 6 (0.5 mmol), aldehyde/dimethylamine (0.25 mmol) in 

solvent (0.2 M) at room temperature for 24 h. [b] Crude product yield [brsm]. [c] ee determined by chiral GCMS in case of L-

proline catalysed reactions [d] reaction was carried out under reflux for 3 h.  

Scheme 3: Synthesis of Tapentadol. 

 

To the Mannich adduct 5a, was added Grignard reagent of 3-bromoanisole (prepared from magnesium 

turnings and 3-bromoanisole in THF) to generate a single diastereomeric tertiary alcohol 4 in 82% of 

crude yield which was used for the next step without purification.14 The next obvious synthetic 
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 7

transformation was to deoxygenate the tertiary alcohol in 4. Here, we screened various acids and reducing 

agents to eliminate the hydroxyl group without disturbing the adjacent stereocenter (Table 2). Among all 

conditions, the best was found to be the conversion of compound 4 in TFA/CH2Cl2 (2:1) solvent in 

presence of NaBH4 to realize a mixture of 7 & 8 where 8:2 selectivity was observed with 81% yield.15 

After water workup, mixture of 7/8 was subjected to desulphurization-hydrogenation, with Raney Ni and 

H2 at atmospheric pressure in one-pot to produce the methoxy tapentadol 9 with 97% diastereoselectivity 

(confirmed in the next step) in favor of desired diastereomer. Interestingly, the hydrogenation of double 

bond in compound 8 also gave 9 with required anti-diastereoselectivity. The demethylation of 9 was 

achieved by refluxing in 48% aqueous HBr to produce the tapentadol 3a in 96% yield which was 

confirmed by comparison to a standard using HPLC analysis. Total process for the synthesis of target 

molecule was achieved without any column chromatography with overall ~ 37% yield. 

The advantage of the current strategy using ketone 6 was the higher de obtained as compared to previous 

routes. The synthetic operation from cheaply available tetrahydrothiopyran-4-one 6 provided an added 

advantage of scale up at a lowest cost than the acyclic strategy. The resolution of the desired mixture is 

known using L-(-)-dibenzoyltartaric acid.16  
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Table 2. Optimization Conditions for Dehydroxylation[a] 

 

Standard reaction conditions: [a] The reaction was carried out with acid (0.8 mmol), reducing agent (3.0 mmol) in CH2Cl2 (0.2 

M) at room temperature. [b] Determined by LCMS.  [c] Combined crude product yield. [d] 15 equiv. of NaBH4 in 0.2 M of 

TFA/CH2Cl2 (2:1) solvent.  [e] Reaction was carried out without using solvent and product 8 was observed exclusively. 

 

In conclusion, a straight forward and rapid synthesis of (±)-tapentadol was achieved, with better 

diastereoselectivity, from totally different raw materials, which are of commercial relevance.  

 

EXPERIMENTAL SECTION 

General information: Unless otherwise noted, all reagents were used as received from commercial 

suppliers.  CH2Cl2 was dried in the presence of calcium hydride and distilled prior to use. THF was dried 

in the presence of sodium metal using benzophenone as indicator and distilled prior to use.   Reactions 

were monitored using thin-layer chromatography (SiO2).  TLC plates were visualized with UV light (254 

nm), iodine treatment or using ninhydrin stain. Column chromatography was carried out using silica gel 

(60-120 mesh & 100-200 mesh) packed in glass columns.  NMR spectra were recorded at 300, 400, 500 
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 9

MHz (H) and at 75, 101, 126 MHz (C), respectively.  Chemical shifts (δ) are reported in ppm, using the 

residual solvent peak in CDCl3 (H: δ = 7.26 and C: δ = 77.1 ppm) as internal standard, and coupling 

constants (J) are given in Hz.  HRMS were recorded using ESI-TOF techniques.  

EXPERIMENTAL SECTION 

3-((Dimethylamino)methyl)tetrahydro-4H-thiopyran-4-one (5a): Tetrahydrothiopyran-4-one (6) 

(100.0 g, 860.7 mmol), formaldehyde (37% aq. Solution, 34.92 mL, 430.3 mmol), dimethylamine  (40% 

aq. Solution, 53.3 mL, 473 mmol) and DMSO (1.5 L) were added to a 5 L reaction vessel equipped with 

a mechanical stirrer for 24 h. After completion, the reaction mixture was extracted three times with ethyl 

acetate (1×1.5 L, then 2×1 L). The organic layer was acidified (up to pH 2) using 2N HCl to make it 

hydrochloride salt which was extracted into water (2×1.5 L). Evaporation of the organic layer gave 35 g 

of starting material which was recovered and reused. Then to that aqueous layer was added 2N NaOH (up 

to pH 9) to make it free amine which was extracted into ethyl acetate (3×1 L), concentrated under reduced 

pressure to give compound 5a as a brownish oil,  74 g (76% yield based on staring material recovery). 1H 

NMR (500 MHz, CDCl3) δ 3.17 (dd, J = 13.4, 4.3 Hz, 1H), 2.91-2.97 (m, 3H), 2.88 – 2.81 (m, 1H), 2.78 

– 2.73 (m, 1H), 2.71 - 2.66 (m, 2H), 2.43 – 2.37 (m, 1H), 2.21 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 

210.0, 58.8, 51.0, 45.8, 43.6, 34.5, 31.1; IR (neat)  υmax  2940, 2822, 2771, 1701, 1458, 1262, 1038, 850 

cm-1; HRMS (ESI) calcd for C8H16NOS  [M+H]+: 174.0953 ; found: 174.0951. 

3-((Dimethylamino)methyl)-4-(3-methoxyphenyl)tetrahydro-2H-thiopyran-4-ol (4): To a dry 5 L 

four-neck flask provided with a thermometer, a stirrer, a cooling tube and a dropping funnel were charged 

activated Mg turnings (12.3 g, 508 mmol) and dry THF (500 mL) followed by drop wise addition of a 

THF solution (250 mL) of 3-bromoanisole (41.8 mL, 331 mmol) under nitrogen with stirring, where heat 

generation was observed after 10 min. and then it was allowed to cool for 1 h. After the Grignard reagent 

was prepared, it was slowly added to the 3-((dimethylamino)methyl)tetrahydro-4H-thiopyran-4-one (5a) 

(44.0 g, 254 mmol) in THF (500 mL) drop wise at 0 °C and the stirring was continued for 12 h at room 

temperature. After completion of the reaction, sat. NH4Cl (25 mL) was added to the reaction mixture 
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 10

slowly at 0 °C and the product 3-((dimethylamino)methyl)-4-(3-methoxyphenyl)tetrahydro-2H-

thiopyran-4-ol (4) was obtained by extraction with ethyl acetate (1×1.5 L, then 1×1 L) followed by 

concentration to yield yellow oil (58.2 g, 82 %, a single diastereomer). 1H NMR (500 MHz, CDCl3) δ 

7.28 – 7.24 (m, 1H), 7.16 – 7.03 (m, 2H), 6.77 (dd, J = 8.1, 1.8 Hz, 1H), 3.82 (s, 3H), 3.53 (t, J = 12.7 

Hz, 1H), 3.24 (td, J = 13.6, 2.9 Hz, 1H), 2.47 (dd, J = 14.0, 4.4 Hz, 1H), 2.40 – 2.34 (m, 2H), 2.27 – 2.20 

(m, 2H), 2.08 (s, 6H), 2.03 – 1.94 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 159.8, 151.1, 129.4, 117.3, 

111.9, 110.8, 76.2, 62.1, 55.4, 47.9, 46.1, 42.7, 29.4, 24.9; IR (neat)  υmax  3420, 2923, 2832, 1593, 1471, 

1429, 1256, 1042, 925, 756, 698 cm-1; HRMS (ESI) calcd for C15H24NO2S  [M+H]+: 282.1528 ; found: 

282.1525. 

1-(4-(3-Methoxyphenyl) tetrahydro-2H-thiopyran-3-yl)-N, N-dimethylmethanamine (7): 

To a stirred solution of trifluoroacetic acid (150 mL) under inert conditions was added NaBH4 (91 g, 2.4 

mol) slowly at 0 °C followed by addition of a solution of 3-((dimethylamino)methyl)-4-(3-

methoxyphenyl)tetrahydro-2H-thiopyran-4-ol (4) (45.0 g, 160. mmol) in CH2Cl2 (250 mL) to the reaction 

at the same temperature. The reaction mixture was allowed to stir for 6 hours at ambient temperature. 

After completion, reaction mixture was poured into ice water (600 mL) and to the mixture was added 

saturated Na2CO3 solution (up to pH 9). The reaction mixture was extracted with CH2Cl2 (2×200 mL, 

then 1×100 mL), organic layer was dried and evaporated to give a mixture of products (7& 8) as light 

brown oil, 34.5 g (81%) which was used directly for the next reaction without any further purification. 

Crude 1H NMR showed olefin proton at δ 6.09 – 6.05 ppm as multiplet revealed minor presence of 

compound 8. 

3-(3-Methoxyphenyl)-N,N,2-trimethylpentan-1-amine (9): The crude 1-(4-(3-

methoxyphenyl)tetrahydro-2H-thiopyran-3-yl)-N,N-dimethylmethanamine (7) (55.0 g, 207 mmol) was 

dissolved in 750 mL of MeOH and treated with a suspension of Raney Ni (200 g) in 300 mL of MeOH 

and heated to 80 °C in an autoclave with an internal hydrogen pressure of 1 bar for 12 h. The reaction was 

monitored by TLC and if necessary another batch of Raney nickel was added. After completion, the 
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 11

reaction mixture was allowed to settle and the supernatant was removed via pipette and filtered through 

Celite. Additional MeOH (500 mL) was added to the reaction mixture and stirred for 5 min before again 

being allowed to settle and the supernatant removed. This process was repeated an additional two times 

and the combined filtrates were concentrated to give 3-(3-methoxyphenyl)-N,N,2-trimethylpentan-1-

amine (9) (38 g, 78 %) as yellow oil with 97% diastereomeric excess (based on LCMS analysis). 

1H NMR (500 MHz, CDCl3) δ 7.20 (t, J = 7.8 Hz, 1H), 6.77 – 6.66 (m, 3H), 3.8 (s, 3H), 2.35 – 2.28 (m, 

1H), 2.21 (s, 1H), 2.17 (s, 6H), 2.05 – 2.0 (m, 1H), 1.83 – 1.68 (m, 2H), 1.63 – 1.52 (m, 1H), 0.97 (d, J = 

6.8 Hz, 3H), 0.72 (t, J = 7.4 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 159.5, 146.2, 129.1, 121.1, 114.7, 

110.7, 64.9, 55.2, 51.7, 45.9, 36.6, 24.2, 16.1, 12.5.; IR (neat)  υmax  3171, 2943, 2825, 1593, 1461, 1250, 

1040, 780, 706; HRMS (ESI) calcd for C15H26NO  [M+H]+: 236.2014 ; found: 236.2022. 

3-(1-(Dimethylamino)-2-methylpentan-3-yl)phenol (3a): A mixture of 3-(3-methoxyphenyl)-N,N,2-

trimethylpentan-1-amine (9) (51.0 g, 217 mmol) and aqueous hydrobromic acid (48%, 300 mL) was 

heated under stirring at 100-110 °C for 3 h and cooled to room temperature. To the reaction mixture was 

added sodium bicarbonate (up to pH 9), resulting mixture was extracted with ethyl acetate (500 mL). The 

organic layer was washed with water and dried over anhydrous sodium sulphate and concentrated to give 

3-(1-(dimethylamino)-2-methylpentan-3-yl)phenol (3a) (46 g, 96 %) as a Pale yellow oil. By HPLC 

analysis revealed exclusive anti diastereomer. 

NMR data for 3-(1-(dimethylamino)-2-methylpentan-3-yl)phenol (3a) (anti): 1H NMR (500 MHz, 

CDCl3) δ 7.12 (t, J = 7.8 Hz, 1H), 6.68 – 6.61 (m, 2H), 6.58 (s, 1H), 2.33 – 2.27 (m, 1H), 2.17 (s, 6H), 

2.15 – 2.10 (m, 1H), 2.09 – 2.00 (m, 1H), 1.90 – 1.83 (m, 1H), 1.78 – 1.68 (m, 1H), 1.60 – 1.49 (m, 1H), 

0.96 (d, J = 6.7 Hz, 3H), 0.70 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 156.5, 146.1, 129.2, 

120.3, 115.8, 113.3, 64.8, 51.5, 45.7, 36.6, 23.9, 16.2, 12.4; IR (neat)  υmax  3391, 2958, 2871, 1695, 1464, 

1266, 1029, 775; HRMS (ESI) calcd for C14H24NO  [M+H]+: 222.1858 ; found: 222.1865. 
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NMR data for 3-(1-(dimethylamino)-2-methylpentan-3-yl)phenol (3b) (syn) (obtained from table 2. entry 

1 reaction conditions):  

1H NMR (400 MHz, CDCl3) δ 7.10 (t, J = 7.8 Hz, 1H), 6.65 (dd, J = 8.0, 2.1 Hz, 2H), 6.59 – 6.55 (m, 

1H), 2.46 – 2.37 (m, 1H), 2.29 – 2.25 (m, 1H), 2.24 (s, 6H), 2.02 – 1.94 (m, 1H), 1.94 – 1.82 (m, 1H), 

1.78 – 1.58 (m, 2H), 0.80 – 0.71 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 156.2, 144.6, 128.9, 121.4, 

116.0, 113.4, 65.4, 50.7, 45.9, 35.8, 26.8, 15.6, 12.7; IR (neat)  υmax  3310,  2951, 2865, 1595, 1465, 1263, 

1028, 779 cm-1; HRMS (ESI) calcd for C14H24NO  [M+H]+: 222.1858 ; found: 222.1878 
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