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ABSTRACT
The three-component reaction between amine, carbonyl compound
and thioglycolic acid is now considered as a major strategy for syn-
thesis of 1,3-thiazolidin-4-ones, which consists of the following steps:
(i) condensation of aldehyde and amine which results the formation
of an imine; (ii) the reaction between thioglycolic acid and the imine
which is followed by an intramolecular cyclization reaction, which
leads to the formation of the final product. In this way, if no suit-
able catalyst is employed, the completion of the reaction will not be
achieved. Hence, it is of great importance to select an appropriate
catalyst so that these compounds can be successfully synthesized.
Herein, we employed LDHs@PpPDA as a versatile catalyst for the
fabrication of novel derivatives of 1,3-thiazolidin-4-one.

ARTICLE HISTORY
Received 25 March 2020
Accepted 14 August 2020

KEYWORDS
Synthesize; condensation;
intramolecular cyclization;
thioglycolic acid;
1,3-thiazolidin-4-ones

1. Introduction

In heterocyclic compounds, which are regarded as a main category in the field of organic
chemistry and take a significant part in both pure and applied chemistry, some or all
the atoms present in their molecules are joined together in rings which not only con-
tain carbon atoms but also consist of at least one atom of other elements. They are
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considered as one of the largest groups of organic chemistry materials which are widely
employed in numerous applications, e.g. the fabrication of pharmaceutical compounds [1]
along with intermediates for preparation of the drugs which present antivirals, antibiotics,
anti-tumors, antimicrobials, anti-inflammatories, antifungals, and antidiabetics activities
[2].

Multi-component reactions (MCRs) are very appropriate for construction of the hetero-
cyclic cores [3,4]. MCRs include reactions in which three or more starting materials react
in a one-pot process to form a new product. The advantages of MCRs extend from high
atom economy, the ability to build complex molecules, avoiding the necessity of isolation
and purifications of the intermediates, consistency with the principles of green chemistry,
operational simplicity, and minimizing waste, labor, and cost [5–9].

Thiazolidine-4-one is a five-membered heterocyclic ring with N and S heteroatoms and
one carbonyl group, utilized in many strategies for fabrication of the pharmaceuticals, and
therefore, it is present in the structure of the fabricated medicines [10–13]. Nowadays,
innumerable studies have been carried out around the world to investigate the biologi-
cal activity of thiazolidine-4-one, whose extensive applications have been demonstrated
in a variety of domains, e.g. anti-HIV [14–18], antimicrobials [19,20], antihistamines
[21,22], anti-YFV (Yellow fever virus) [23], anti-cancers [24], anti-inflammatories [25],
and antioxidants [26]. It is noticeable that the fabrication of assorted derivatives with var-
ious biological properties can be carried out by modification of the substitutions which
exist in the structure of the compounds. For example, Rawal et al. could introduce a type
of derivatives named 2,3-diaryl-1,3-thiazolidin-4-one, which is a vital drug for the ther-
apy of the HIV virus [16]. Regarding the above-mentioned importance and applications
of thiazolidinones in pharmaceutical industry and commercial markets, finding the supe-
rior synthesis approaches is very important. So far, innumerable approaches have been
proposed by researchers for the fabrication of thiazolidinediones, among which there is
a commonly employed strategy which consists of one-pot three-component condensa-
tion of amine, the carbonyl compound and thioglycolic acid. According to the literatures,
various conditions and catalysts have been investigated in this reaction. For instance, in
2002, Srivastava et al. [27] synthesized 4-thiazolidinones by using DCC catalyst and THF
solvent in room temperature. In another study which was reported in 2013, Foroughifar
et al. could synthesize 1,3-thiazolidin-4-ones at 70°C in solvent-free conditions by using
Bi(SCH2COOH)3 as a catalyst [28]. In another work reported in 2016, Safaei-Ghomi et al.
fabricated novel derivatives of these compounds by using nano-sized CdZr4(PO4)6 cata-
lyst under ultrasonic irradiation [29]. Herein, we decide to fabricate innovative derivatives
of 1,3-thiazolidin-4-one in agreement with green chemistry. The schematic illustration of

Scheme 1. Synthesis of 1,3-thiazolidin-4-ones catalyzed by LDHs@PpPDA.
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Figure 1. The structure of LDHs@PpPDA.

the synthesis route is exhibited in Scheme 1. As presented in Figure 1, LDHs@PpPDA [30]
was utilized as a catalyst for this reaction and the advantages of this is its facile synthetic
steps, available raw materials, recyclability and cost-efficiency.

2. Results and discussion

Organic chemists have made numerous efforts to find out the reactions which follow the
principles of green chemistry. Therefore, this is very important to consider all the param-
eters which effect on the expansion of such reactions. Herein, we describe the synthesis of
1,3-thiazolidin-4-ones through the condensation reaction of substituted aldehydes, amine
and thioglycolic acid in the presence of LDHs@PpPDA.

In this work, the reaction among 2-pyridinecarbaldehyde, 4-methyl aniline and thio-
glycolic acid has been selected as a model reaction, and the effects of various parameters
including temperature, solvent, and catalyst have been investigated. At the First, the effect
of a variety of catalysts was investigated for the synthesis of 1,3-thiazolidin-4-ones, as
depicted in Table 1, based on which, the LDHs@PpPDA catalyst was the foremost efficient
catalyst in this synthesis approach.

Numerous effective basic sites were provided in the catalyst by –NH2 and –NH groups,
which lead to the superior catalytic activity of LDHs@PpPDA. The reaction conditions,
including solvent, temperature and catalyst content, were optimized and listed in Table 2,
based onwhich it was demonstrated that no reaction observed in the absence of the catalyst

Table 1. Comparison of various catalysts for the synthesis of 1,3-thiazolidin-4-one derivatives.

Entry Catalyst Solvent Temp. (°C) Time (min) Yield (%) Ref.

1 MNPs@SiO2-IL – 70 60 94 [31]
2 Bi(SCH2COOH)3 – 70 120 75 [28]
3 DDC THF r.t. 50 91 [27]
4 Nano-CdZr4(PO4)6 PhMe Ultrasonic irradiation 25 88 [29]
5 Fe3O4/SiO2/Salen/Mn/IL – r.t. 50 94 [32]
6 LDHs@PpPDA EtOH 70 90 95 This work
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Table 2. Optimization of the reaction conditions for the synthesis of 1,3-
thiazolidin-4-one derivatives using the LDHs@PpPDA catalyst.

Entry Catalyst Solvent Temp. (°C) Time (min) Yield (%)

1 0.05 H2O Reflux 240 42
2 0.05 EtOH 70 90 95
3 0.05 CH2Cl2 25 240 38
4 0.05 PhMe 70 240 20
5 0.05 Solvent-free 70 240 53
6 0.05 DMF 70 240 68
7 0.05 EtOAc 70 240 87
8 0.02 EtOH 70 90 68
9 0.04 EtOH 70 90 85
10 0.08 EtOH 70 90 95
11 0.05 EtOH 60 90 90
12 – EtOH 70 90 N.R.

and the presence of 0.05 g of the catalyst was a suitable amount for accomplishment of the
reaction. Furthermore, the more decrement of amount of the catalyst, decreased the effi-
ciency of reaction. Also, as expected, no considerable effects was observed on the progress
of yield in the reaction by enhancing the catalyst amount (Table 2, entries 8–10). Subse-
quently, the effect of temperatures was investigated in the model reaction, in which the
highest yield of the product could be provided at the temperature of 70°C (Table 2, entries
11). Additionally, the effect of the solvents on the reaction was investigated (Table 2, entries
1–7), among which EtOH proved that could be selected as a most appropriate solvent for
this reaction. Therefore, the best desired conditions for the synthesis of 1,3-thiazolidin-
4-one derivatives can be obtained by using 0.05 g of the catalyst, EtOH solvent and a
temperature of 70°C.

After the optimization of the conditions, the reaction of aromatic aldehyde (1.0 mmol),
aryl amine (1.0 mmol), and thioglycolic acid (1.0 mmol), in the presence of 0.05 g of
the catalyst, solvent (EtOH), and temperature of 70°C was studied. In this way, different
aldehydes and amines with different electron-withdrawing and electron-donating groups
were used, as exhibited in Table 3. In this work, it was demonstrated that the reaction
could more proceed when an aldehyde with electron-withdrawing group and an amine
with electron-donating group were employed. For investigation of the retrievability and
reusability characteristic of catalyst, the model reaction was investigated in the presence
of EtOH (5 mL) and 0.05 g of the catalyst at the temperature of 70°C. After completion of
the reaction, the separated catalyst was washed several times with water and hot ethanol,
followed by being placed in an oven to dry out. The catalyst recyclability is exhibited in
Figure 2.

Since green chemistry aims to design products and processes of more environmentally
friendliness along with less chemicals hazards, applying EtOH as a green solvent and uti-
lization of a catalyst with well recyclability properties throughout the reactions are in line
with the purpose of this work to comply with these rules.
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Table 3. Synthesis of 1,3-thiazolidin-4-one derivatives using the LDHs@PpPDA catalyst.

The characterization of the catalyst was carried out by using different techniques includ-
ing FT-IR spectroscopy, scanning electronmicroscopy (SEM), thermogravimetric analysis
(TGA), X-ray diffraction (XRD), and EELS maps [30]. In addition, the structure of the
recovered catalyst was investigated prior and after the accomplishment of the reaction.
LDHs@PpPDA was collected after the reaction and various analyses were conducted on
them.

The FT-IR spectra of the catalyst before and after reaction are shown in Figure 3. As can
be seen, the analogous characteristic bands of LDHs@PpPDA demonstrate the stability of
the catalyst throughout the recycling process.
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Figure 2. Recyclability of the LDHs@PpPDA.

Figure 3. FT-IR spectra of LDHs@PpPDA before (a) and after (b) the reaction.

The EDX spectra of the catalyst before and after the reaction were almost identical,
which indicated that there was no obvious changes for the catalyst composition after the
reaction (Figure 4). In both spectra, the clear presence of N and C signals illustrate that the
layered double hydroxides have been successfully coated with PpPDA.

SEM images of the catalyst before and after the reaction are exhibited in Figure 5. As
shown, no significant alteration in the morphology of the catalyst was observed after the
reaction, which definitely affirms the LDHs@PpPDA recyclability and stability under the
reaction condition.

Figure 6 illustrates the X-ray diffraction patterns of the catalyst before and after the
reaction. The positions and relative intensities of all characteristic diffractions at 2θ values
of 10°, 30° and 40° indicated that the original structure and crystallinity of LDHs@PpPDA
was successfully protected after the organic reaction.

Figure 7 shows FT-IR spectra for LDHs, PpPDA and LDHs@PpPDA. As shown, the
characteristic peaks of LDHs and PpDA in 500–2000 cm−1 and 2500–4000 cm−1 were
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Figure 4. EDX spectra of LDHs@PpPDA before (a) and after (b) the reaction.

Figure 5. SEM images of LDHs@PpPDA before (a) and after (b) the reaction.

changed when LDHs coated with the polymer. These results confirm that PpPDA is coated
on the surface of the LDHs.

A schematic illustration of a feasible mechanism for the synthesis of 1,3-thiazolidin-4-
one derivatives by using LDHs@PpPDA catalyst, carried out through a three-component



8 M. MIRZAEI-MOSBAT AND R. GHORBANI-VAGHEI

Figure 6. XRD pattern of LDHs@PpPDA before (a) and after (b) the reaction.

Figure 7. FT-IR spectra of LDH, PpPDA and LDHs@PpPDA.

reaction, is presented in Scheme 2. At the first step, in order to synthesize the intermediate
(I), the condensation reaction between aldehyde and aryl amine is carried out by using
LDHs@PpPDA, as the catalyst. In the next step, sulfur atom attacks as an electron-rich
source to the imine bond and forms the intermediate (II). At the final step, intermediate
(II) is activated by the catalyst and the product is produced by intramolecular cyclization.

3. Conclusion

A novel approach for the synthesis of 1,3-thiazolidin-4-one derivatives, as a high-
importance class of heterocyclic compounds, has been reported in this research study.
For this purpose, LDHs@PpPDA was employed as an outstanding and recyclable catalyst
which can provide a significant catalytic activity in the preparation of 1,3-thiazolidin-4-one
derivatives under various reaction conditions to follow the principles of green chemistry.
By employing this process, numerous advantages including facile reactionwork-up, superb
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Scheme 2. Suggested reaction mechanism for the synthesis of 1,3-thiazolidin-4-one derivatives.

recyclability and reusability of the catalyst, short reaction time, considerable yield, and
green mild reaction conditions could be obtained. The characterization of the newly pre-
pared derivatives was carried out by using conventional spectroscopy techniques, and their
structures were corroborated.

4. Experimental section

4.1. Chemicals and instruments

All commercial materials were supplied by Merck and Fluka Companies .1H NMR and
13C NMR spectra were analyzed by a spectrometer at 400 and 100MHz, respectively, in
DMSO-d6. Fourier transform infrared (FT-IR) spectra were also analyzed by a Shimadzu
435-U-04 FT spectrophotometer from KBr pellets. A BUCHI 510 apparatus was utilized
to measure melting points, carried out in open capillary tubes. Mass spectra were also
analyzed by a Shimadzu QP 1100 BX mass spectrometer.

4.2. General procedure for preparation of LDHs@PpPDA catalyst

There are totally two major steps for the synthesis procedure of LDHs@PpPDA. First,
layered double hydroxides (LDHs) were prepared through co-precipitation of solutions
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containing Zn2+ and Cr3+ metal salts [33]. Then, the LDHs reacted with poly (p-
phenylenediamine) to yield LDHs@PpPDA [30].

4.3. General procedure for synthesis of 1,3-thiazolidin-4-ones

In a 10-mL Round-bottom flask, a solution of an aromatic aldehyde (1.0 mmol), an aryl
amine (1.0 mmol) and LDHs@PpPDA (0.05 g) in EtOH (5 mL) was stirred at 70°C for
about 30 min. Afterward, thioglycolic acid (1.0 mmol) was added, and the mixture was
stirred for appropriate times. TLC was employed to investigate the completion of the reac-
tion. After that, when the reaction was accomplished, the reaction mixture was poured
into a centrifuge tube in order to separate the catalyst by using centrifugation. The result-
ing solution was poured into a petri dish and the resulting precipitates were collected and
washed with cold diethyl ether so that a highly pure product could be obtained. Physical
and spectroscopic data (FT-IR, NMR, MS, and CHN) were employed to characterize pure
crystals of 1,3-thiazolidin-4-ones.

4.4. Analytical data of products

2,3-diphenylthiazolidin-4-one (4b)
White powder. M.p. 129–130°C. Yield: 0.25 g (87%). 1H NMR (400MHz, DMSO-d6, δ,

ppm): 6.6–7.63 (m, 11H), 3.31–3.61 (m, 2H). 13C NMR (100MHz, DMSO-d6, δ, ppm):
25.59, 63.22, 124.6, 129.59, 134.66, 153.31, 156.8, 191.33.

3-phenyl-2-(thiophen-2-yl)thiazolidin-4-one (4c)
Cream powder. M.p. 148–149°C. Yield: 0.25 g (85%). 1HNMR (400MHz, DMSO-d6, δ,

ppm): 6.56–7.97 (m, 8H), 5.67 (s, 1H), 3.37–3.68 (m, 2H). 13CNMR (100MHz, DMSO-d6,
δ, ppm): 17.88, 54, 09.51, 122.65, 125.83, 127.26, 129.04, 143.97, 146.79, 169.19.

2-(pyridin-2-yl)-3-(p-tolyl)thiazolidin-4-one (4e)
Cream powder. M.p. 158–162°C. Yield: 0.28 g (95%). FT-IR (KBr, ν, cm−1): 2921, 1713,

1598, 1518, 1378, 1289, 790. 1H NMR (400MHz, DMSO-d6, δ, ppm): 8.5(s, 1H), 7.74 (s,
1H), 7.15-7.48 (m, 7H), 6.48 (s, 1H), 3.78 (m, 2H), 3.35 (s, 3H). 13C NMR (100MHz,
DMSO-d6, δ, ppm): 21.29, 32.12, 64.2, 120.64, 123.28, 124.52, 126.02, 128.69, 138.05,
149.25, 159.7, 170.87. Mass (m/z): 270. Anal. Calcd. For C15H14N2OS: C, 66.64; H, 5.22;
N, 10.36. Found: C, 66.6; H, 5.24; N, 10.29.

2-(1H-indol-3-yl)-3-phenylthiazolidin-4-one (4g)
Red powder.. M.p. 168–169°C. Yield: 0.3 g (92%). FT-IR (KBr, ν, cm−1): 3303, 2969,

1709, 1591, 1497, 1235, 743. 1HNMR (400MHz, DMSO-d6, δ, ppm): 13CNMR (100MHz,
DMSO-d6, δ, ppm): 15.46, 65.29, 112.06, 118.17, 121.61, 128.78, 135.95, 139.7, 175.53.Mass
(m/z): 294. Anal. Calcd. For C17H14N2OS: C, 69.36; H, 4.79; N, 9.53. Found: C, 69.31; H,
4.82; N, 9.48.

2-(1H-indol-3-yl)-3-(p-tolyl)thiazolidin-4-one (4h)
Red powder. M.p. 171–174°C. Yield: 0.32 g (94%). FT-IR (KBr, ν, cm−1): 3184, 1709,

1657, 1590, 1503, 1351, 1223, 745. 1H NMR (400MHz, DMSO-d6, δ, ppm): 11.15(s, 1H),
7.99–8.81 (m, 2H), 6.49–7.7 (m, 7H), 5.63 (s, 1H), 3.27 (m, 2H), 2.5 (s, 3H). 13C NMR
(100MHz, DMSO-d6, δ, ppm): 19.91, 33.87, 45.83, 110.68, 113.07, 119.21, 120.92, 129.46,
133.55, 137.3, 154.7, 170.75. Mass (m/z): 308. Anal. Calcd. For C18H16N2OS: C, 70.1; H,
5.23; N, 9.08. Found: C, 70.02; H, 5.28; N, 9.15.
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2-(4-chloro-3-nitrophenyl)-3-(p-tolyl)thiazolidin-4-one (4i)
Yellow powder. M.p. 146–148°C. Yield: 0.32 g (85%). FT-IR (KBr, ν, cm−1): 2922, 1714,

1605, 1518, 1350, 1134, 807. 1H NMR (400MHz, DMSO-d6, δ, ppm): 7-8.77 (m, 7H), 6.78
(s, 1H), 3.41 (m, 2H), 2.5 (s, 3H). 13C NMR (100MHz, DMSO-d6, δ, ppm): 20.23, 31.83,
68.7, 120.59, 129.82, 134.22, 139.34, 141.74, 150.59, 179.28. Mass (m/z): 348. Anal. Calcd.
For C16H13ClN2O3S: C, 55.1; H, 3.76; N, 8.03. Found: C, 55.04; H, 3.85; N, 7.98.

2-(4-chloro-3-nitrophenyl)-3-phenylthiazolidin-4-one (4j)
Yellow powder. M.p. 153–155°C. Yield: 0.29 g (80%). FT-IR (KBr, ν, cm−1): 2923, 1714,

1607, 1534, 1344, 1138, 735. 1H NMR (400MHz, DMSO-d6, δ, ppm): 6.87-8.35 (m, 8H),
6.61 (s, 1H), 3.49 (m, 2H). 13C NMR (100MHz, DMSO-d6, δ, ppm): 30.13, 60.17, 123.99,
129.8, 133.55, 136.61, 139.01, 142.41, 147.24, 172.46. Mass (m/z): 334. Anal. Calcd. For
C15H11ClN2O3S: C, 53.82; H, 3.31; N, 8.37. Found: C, 53.75; H, 3.37; N, 8.31.

2-(furan-2-yl)-3-phenylthiazolidin-4-one (4k)
Yellow powder. M.p. 138–140°C. Yield: 0.24 g (88%). 1H NMR (400MHz, DMSO-d6, δ,

ppm): 6.26–7.79 (m, 8H), 5.79 (s, 1H), 3.29–379 (m, 2H). 13C NMR (100MHz, DMSO-d6,
δ, ppm): 30.62, 48.88, 112.92, 115.65, 117.59, 124.96, 127.66, 130.79, 143.98, 145.52, 188.62.

2-(4-methoxyphenyl)-3-(p-tolyl)thiazolidin-4-one (4l)
Yellow powder. M.p. 130–132°C. Yield: 0.29 g (89%). FT-IR (KBr, ν, cm−1): 2960, 1672,

1591, 1496, 1438, 1393, 746. 1H NMR (400MHz, DMSO-d6, δ, ppm): 6.77-7.36 (m, 8H),
5.3 (s, 1H), 3.84 (m, 2H), 3.41 (s, 3H), 2.57 (s, 3H). 13C NMR (100MHz, DMSO-d6, δ,
ppm): 20.57, 31.15, 60.51, 71.77, 117.5, 125, 127.41, 130.13, 135.26, 138.32, 161.88, 172.47.
Mass (m/z): 299. Anal. Calcd. For C17H17NO2S: C, 68.2; H, 5.72; N, 4.68. Found: C, 68.11;
H, 5.79; N, 4.59.

2-(2-chlorophenyl)-3-(p-tolyl)thiazolidin-4-one (4m)
White powder. M.p. 128–131°C. Yield: 0.31 g (93%). FT-IR (KBr, ν, cm−1): 2919, 1691,

1609, 1518, 1439, 807. 1H NMR (400MHz, DMSO-d6, δ, ppm): 8.87 (s, 1H), 6.73-7.48 (m,
7H), 6.5 (s, 1H), 3.32 (m, 2H), 2.5 (s, 3H). 13C NMR (100MHz, DMSO-d6, δ, ppm): 19.79,
31.36, 69.41, 103.76, 114.74, 119.02, 120.14, 124.27, 129.47, 130.59, 135.43, 139.54, 178.71.
Mass (m/z): 303. Anal. Calcd. For C16H14ClNOS: C, 63.26; H, 4.65; N, 4.61. Found: C,
63.18 H, 4.72; N, 4.54.

2-(2-bromophenyl)-3-(p-tolyl)thiazolidin-4-one (4n)
Cream powder. M.p. 136–138°C. Yield: 0.34 g (90%). FT-IR (KBr, ν, cm−1): 2906,

1715, 1609, 1518, 1439, 807. 1H NMR (400MHz, DMSO-d6, δ, ppm): 7.47–7.59 (m, 2H),
6.31–7.04 (m, 6H), 5.76 (s, 1H), 3.25 (m, 2H), 2.51 (s, 3H). 13CNMR (100MHz,DMSO-d6,
δ, ppm): 19.9, 30.82, 67.34, 113.41, 117.52, 129.11, 132.86, 135.58, 139.02, 145.84, 148.24,
151.31, 178.95. Mass (m/z): 347. Anal. Calcd. For C16H14BrNOS: C, 55.18; H, 4.05; N,
4.02. Found: C, 55.09; H, 4.14; N, 3.98.
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