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ABSTRACT
A highly inexpensive, and operationally simple seralite SRC-120
(strongly acidic cation exchange resin) catalyzed synthesis of 3,30-
bis(indolyl)methanes (BIMs) from indoles and low/high boiling point
carbonyl compounds under solvent-free condition is reported.
Synthesis of BIMs with low boiling point carbonyls at room tempera-
ture takes prolonged reaction time and give low yields at high tem-
perature. The reported method overcomes these limitations and
works remarkably well with low/high boiling point aldehydes/
ketones in shorter reaction times (5–10min) under microwave irradi-
ation conditions and provides moderate to excellent yields (65–94%).
Moreover, the recyclability of the catalyst for at least five times with-
out notable loss in activity makes the whole process attractive and
green protocol.
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Introduction

3,30-bis(indolyl)methane (BIM) is a condensation product of indole-3-carbinol (I3C)
obtained from cruciferous plants.[1] BIM scaffolds are also present in various natural
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products derived from marine and terrestrial microorganisms (Fig. 1), e.g., bisindole
sulfate (Arcyria denudate),[2] vibrindole A (Vibrio parahaemolyticus),[3] arsindoline B
(Aeromonas Sp.),[4] rebeccamycin (Lechevalieria aerocolonigenes),[5] and staurosporines
(Streptomyces Sp.).[6] BIMs exhibit a wide range of biological activities such as anti-
cancer,[7] antileishmanial,[8] antioxidant,[9] antibacterial,[10] and antiinflammatory.[11]

Due to its varied pharmacological activities, there is continuous interest in simple, cost-
effective, and green approaches in BIMs synthesis.
In general, synthesis of symmetrical and unsymmetrical BIMs[12] occurs by electro-

philic substitution reaction of indoles with carbonyl compounds in the presence of
Lewis or Bronsted acids,[13] protic acids,[14] solid acid catalysts,[15] organocatalyst,[16]

and metal catalyst.[17] The reusable ionic liquids and heterogeneous catalysts for the
synthesis of BIMs have been developed and overcome some of the limitations caused by
the above developed methods.[18] However, the high cost and acute toxicity of ionic
liquids and the use of organic solvents in heterogeneous catalysts for the synthesis of
BIMs are some of the existing limitations. There are some reports of using water as a
medium,[19] but long-chain alkyl aldehydes give a lower yield of BIMs because of poor
miscibility in water. In recent years, Zhang et al.[20] performed the visible light-induced
aerobic oxidative cross-coupling of glycine derivatives with indoles to synthesize BIMs
in the presence of rhodamine 6G (Rh-6G) as photocatalyst in dichloromethane, whereas
Qiu and coworkers[21] have demonstrated the UV-light-Induced Friedel�Crafts alkyl-
ation of indoles with carbonyl compounds in the presence of CF3SO2Na in toluene for
synthesizing BIMs. The use of recyclable Fe/Al pillared clay[22] and hyper-cross-linked
microspheres[23] as catalysts under solvent-free conditions followed green protocol for
the synthesis of BIMs. However, these methods require high temperature hence not use-
ful for low boiling point aldehydes and ketones. Also, the preparation and characteriza-
tion of these catalysts are tedious processes. Based on our previous experience working
with BIM formation from carbonyl compounds in solvent-free reaction conditions, we
have observed that ketones need longer time and high temperatures because of steric
hindrance.[22] Thus, the focus of our current method is the rapid, scalable, and econom-
ical synthesis of BIMs under solvent-free conditions applicable for low to high boiling
point alkyl aldehydes or ketones.
In our previous work, we performed a structure-activity relationship study of BIMs

and observed that BIMs synthesized from 5-bromoindole and alkyl aldehydes are potent
inhibitors of cancer cell proliferation in comparison to the aryl aldehydes.[24] Due to
their importance as potent inhibitors of cancer, and to overcome the limitations of their
synthesis, we have developed a robust and greener protocol for the synthesis of BIMs.
Herein, we demonstrate the microwave-assisted synthesis of BIMs[25] from indoles and
carbonyl compounds by seralite SRC-120. The reason for selecting microwave-assisted
synthesis is a remarkable decrease in reaction time for the products, which required
high temperature and longer time for synthesis.[26] Hence, we speculated that for low
boiling point ketones/aldehydes, microwave-assisted is a useful technique. The seralite
SRC-120 is a commercially available low-cost strongly acidic cation exchange resin that
will act as a catalyst and support for reactants in the microwave. In literature, seralite
SRC-120 used for esterification of ethylene glycol,[27] preparation of resin immobilized
CuO nanoparticles for alcohol oxidation,[28] epoxidation of linseed oil.[29] These
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reported reactions stimulated us to check the applicability of seralite SRC-120 for the
synthesis of BIMs.

Results and discussions

A test reaction was performed with indole (1, 1mmol) and low boiling point ketone,
i.e., acetone (2a, 0.5mmol) in the presence of seralite SRC-120 (0.5 fold to the weight
of 1) in the microwave for 5 mins for the synthesis of 3,30-(propane-2,2-diyl)bis(1H-
indole) (3a). The product 3a was obtained in low yield (28%, Table 1, entry 1) because
of less quantity of resin support. Next, the amount of resin was increased by 1 and 2
folds to the weight of indole 1, and the yield of compound 3a obtained was 60% and
75% (Table 1, entry 2, and 3), respectively. After that, the reaction time was increased,
which resulted in a minor improvement in yield (79%, Table 1, entry 4). The formation
of compound 3a was not observed in the absence of a catalyst (Table 1, entry 5), indi-
cating its crucial role in the synthesis of BIM.
After the standardization of reaction conditions, the scope of various sterically hin-

dered alkyl and aryl ketones (Scheme 1) was checked. Alkyl ketones, like cyclopenta-
none and cyclohexanone, gave compounds 3b and 3c in 68% and 65% yields,
respectively. Aryl ketones, such as acetophenone and 4-bromo acetophenone, gave 3d
and 3e in 72% and 74% yields. The substrate scope of indoles was also tested, as 5-
bromo indole and 5-methoxy indole reacted smoothly with acetone to get compounds
3f and 3g in 82% and 68% yield.
Further, the scope of alkyl and aryl aldehydes was checked to synthesize BIMs

(Scheme 2). 5-bromoindole reacted with low boiling point propionaldehyde and butyral-
dehyde under standardized reaction condition, which produced compound 3h in 86%,
and 3h in 85% yield, respectively. High boiling point aldehyde, octanal resulted in com-
pounds 3j in 81% yield. BIMs synthesized from benzaldehyde and aromatic aldehydes
with electron-withdrawing and electron-donating groups attached, such as 4-chloroben-
zaldehyde and 4-methoxybenzaldehyde produced compounds 3k in 92%, 3l in 94% and
3m in 88% yield, respectively, indicating that electron-withdrawing groups give slightly
higher yield in comparison to electron-donating groups. It was also observed that BIMs

Table 1. Standardization of reaction condition for synthesis of compound 3a.a

Entry Seralite SRC-120 Time (min) % Yieldb

1 59mg (0.5-fold) 5 28
2 117mg (1-fold) 5 60
3 234mg (2-fold) 5 75
4 234mg (2-fold) 10 79
5c – 5 npd

aReaction conditions: indole 1 (1mmol, 117mg), acetone 2a (0.5mmol, 37 mL), seralite SRC-120 (0.5 to 2-fold with
respect to indole), MW 450W, 5–10min. bIsolated yield of 3a. cNo seralite SRC-120. dNo product formation.
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synthesized from aldehydes are more reactive and give a higher yield than the ketones.
Synthesis of compounds 3f and 3h was also performed at room temperature conditions,
which takes 18 h and 1 h for its conversion, and yields obtained as 74% and 85%,
respectively (see Supporting information for details).
The recyclability of the seralite SRC-120 catalyst was also investigated. The catalyst

was recovered by adding dichloromethane to the reaction mixture, filtering and
washing with ethyl acetate, and finally dried under a vacuum. The recyclability of
the catalyst was examined for five-run (Fig. 2). We have observed less than 15% loss
in efficacy in terms of yield for the compound 3k. The loss in catalytic efficiency
was most likely due to loss of �Hþ during reaction, workup, handling, and morpho-
logical change of the catalyst, which needs to be studied and reported in due course.
Finally, a small scale and gram-scale synthesis was performed for compound 3o

(Scheme 3) to demonstrate the practical application of the standardized reaction condi-
tions. Compound 3o is a precursor for the NGD-16, which is the most potent anti-
cancer compound against breast cancer cell line (MCF-7), as reported in our previous
work. NGD-16 enhances the expression of proapoptotic protein Par4 and concomitantly
decreases the expression of pro-survival protein GRP78 and resulted in apoptosis.[27]

Figure 1. Bis(indolyl)methanes obtained from plants and microorganisms.
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Figure 2. Effect of recyclability of the seralite SRC-120 catalyst on the yield of the compound 3k.
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The desired product 3o was obtained with 83% yield in small scale reaction (0.25mmol
scale, method A, Scheme 3) whereas 85% yield of 3o was isolated under gram scale
reaction (1mmol, method B, Scheme 3). This indicated that the current reaction was
working very well under gram scale reaction as well.

Scheme 1. Substrates Scope in synthesis of BIMs from alkyl/aryl ketones with indoles. aReaction con-
ditions: indoles (1mmol), ketones (0.5mmol), seralite SRC-120 (2-folds to the weight of indole or sub-
stituted indole), MW 450W, 10min; Isolated yields.

Scheme 2. Substrates Scope in synthesis of BIMs from alkyl/aryl aldehydes with 5-bromoindole.
aReaction conditions: 5-bromoindole (1mmol), aldehydes (0.5mmol), seralite SRC-120 (2 folds to the
weight of indoles), MW 450W, 5min; Isolated yields.
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A plausible reaction mechanism for the seralite SRC-120 catalyzed synthesis of BIMs
proposed in Scheme 4. First, resin activates the carbonyl group of the aldehyde/ketones
because of the highly cationic nature of the resin. Next, the nucleophilic attack of indole
occurs at activated carbonyl, leading to the formation of an intermediate A. This inter-
mediate A undergoes deprotonation of indole 3rd-position to produce intermediate B,
followed by rearrangement to produce highly reactive intermediate C. Now, second
equivalent of indole attacks to the highly reactive intermediate C, and forms bis(indo-
lyl)methane intermediate D. Which further undergoes deprotonation of 3rd-position of
another indole to produce desired bis(indolyl)methanes. In this whole process water
was eliminated as a byproduct and the resin was reusable for another reaction.
Finally, a comparison is made between previously known methods (entry 1–12, Table

2) and our current method for the synthesis of compound 3a (entry 13, Table 2). It was

Scheme 3. Gram scale synthesis of most potent anti-cancer inhibitor NGD-16. Method A (small scale)
aReaction conditions: 3n (262mg, 0.5mmol), octanal (40 mL, 0.25mmol), seralite SRC-120 (524mg),
MW 450W, 5min; 83% isolated yield of 3o. Method B (Gram scale) aReaction conditions: 3n (1.05g,
2mmol), octanal (160 mL, 1mmol), seralite SRC-120 (2 g), MW 450W, 5min, 85% isolated yield of 3o.

Scheme 4. Proposed mechanism for the synthesis of BIMs in the presence of seralite SRC-120.
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found that the present method is better compared to the other methods in terms of the
properties of catalyst (reusable, low cost, easy to handle, and stable), reaction conditions
(solvent-free and less time), and yield.

Conclusion

In conclusion, we have used readily available, low cost and highly stable seralite SRC-
120 as an active catalyst for the microwave-assisted solvent-free synthesis of a variety of
BIM compounds. In literature, BIM synthesis with low boiling point ketones at room
temperature required longer reaction time and at a higher temperature under solvent-
free conditions gives poor yield. This simple and convenient operation works very well
for low/high boiling point ketones/aldehydes and provides moderate to excellent yields.
The recyclability of the seralite SRC-120 catalyst without notable loss in catalytic activity
for at least five times, further adds in the worthiness of this process. These all signifi-
cant features make this whole process a greener, attractive and alternative synthetic
route for the preparation of BIMs.

General

Chemical reagents and solvents were purchased from SRL, spectrochem, Sigma Aldrich,
or TCI and used as received. Flash column chromatography was carried out on a
CombiFlash RF automated chromatography system using silicycle columns. Thin-layer
chromatography (TLC) was performed using silica gel (60 F-254) coated aluminum
plates (EMD Millipore), and spots were visualized by exposure to ultraviolet light (UV).
NMR spectra were acquired on Bruker Avance III HD 400 and 500MHz NMR instru-
ments. High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific
Orbitrap Velos Pro mass spectrometer coupled with a Thermo Scientific Accela 1250
UPLC and an autosampler using electrospray ionization (ESI) in the positive mode.
Reactions were carried out using Raga’s Scientific Microwave Synthesis System (Model:
RG34L). Seralite SRC-120 was purchased from Sisco Research Laboratory Pvt. Ltd.
(product No. 14891).

Table 2. Comparison of the previously reported methods with the current method.
Entry Catalyst Reaction conditions Yield (%) Ref.a

1 CF3SO2Na O2/air, U. V., toluene, r. t., 24 h 81 [21]
2 (C4F9SO2NHCO)2C6H4 H2O, 30 �C, 1 h 80 [30]
3 PEG1000-DAIL solvent free, r. t., 50min 73 [31]
4 Nanocomposite of MoS2-RGO H2O, 30 �C, 4–24 h 54 [32]
5 Hydrated ferric sulfate EtOH, 6 h, 50 �C 72 [33]
6 TBAHS EtOAc, 12 h, 60 �C 45 [34]
7 [TEOA][HSO4] Solvent free, r. t., 30min 70 [35]
8 Povidone-phosphotungstic acid CH2Cl2, 1 h, 25 �C 90 [36]
9 Br2 CH3CN, 50 �C, 24 h 74 [37]
10 BF3-Et2O Et2O, r. t., 29 h 56 [38]
11 1,3-Dibromo-5,5-dimethylhydantoin Solvent free, 50 �C, 2.20 h 80 [39]
12 Triphenylphosphine-m-sulfonate/Carbon Tetrabromide Solvent free, r. t., 4 h 83 [40]
13 Seralite SRC-120 Solvent free, MW 450W, 10min 79 cmb

aReferences. bCurrent method.
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General procedure for microwave assisted reaction (3a–3m and 3o)

To a reaction vial, indoles (1.0mmol), aldehydes/ketones (0. 5mmol), and seralite SRC-
120 (2 folds to the weight of indoles) were added and mixed well. The sealed reaction
vial was irradiated at 450W in microwave for an appropriate time (5–10 mins). After
cooling, dichloromethane was added to the reaction mixture, filtered and washed with
dichloromethanes (2� 20mL), and finally dried under vacuum to recover the catalyst.
The filtrate was purified by flash column chromatography (Silicycle column, gradient
elution with 0–60% EtOAc/Hexanes).

Notes

(a) alkyl aldehydes/ketones are liquid at room temperature. So, it is easy to mix them
with indoles and adsorb on the resin. (b) In the case of low molecular weight alkyl
ketone and aldehyde, like acetone and propanal, we have added few dichloromethane
drops to make homogeneous solutions with high molecular weight 5-bromoindole.
After that, we have adsorbed the mixture on the resin. (c) In case both reactants are
solid, we have dissolved reactant mixture in dichloromethane and then adsorbed on the
resin. (d) We have recovered solvent after adsorption on vacuum drying. (e) aldehydes
take 5min, and ketone takes 10min for the formation of BIM.
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