Article

Stereoselective Synthesis of Ribofuranoid *exo*-Glycals by One-Pot Julia Olefination Using Ribofuranosyl Sulfones

Natsuhisa Oka,* Ayumi Mori, Kanna Suzuki, and Kaori Ando*

ABSTRACT: One-pot Julia olefination using ribofuranosyl sulfones is described. The α -anomers of the ribofuranosyl sulfones were synthesized with complete α -selectivity via the glycosylation of heteroarylthiols using ribofuranosyl iodides as glycosyl donors and the subsequent oxidation of the resulting heteroaryl 1-thioribofuranosides with magnesium monoperphthalate (MMPP). The Julia olefination of the α -ribofuranosyl sulfones with aldehydes proceeded smoothly in one pot to afford the thermodynamically less stable (*E*)-*exo*-glycals with modest-to-excellent stereoselectivity (up to E/Z = 94:6) under the optimized conditions. The *E* selectivity was especially high for aromatic aldehydes. In contrast, the (*Z*)-*exo*-glycal was obtained as the main product with low stereoselectivity when the corresponding β -ribofuranosyl sulfone was used (E/Z = 41:59). The remarkable impact of the anomeric configuration of the ribofuranosyl sulfones on the stereoselectivity of the Julia olefination has been rationalized using density functional theory (DFT) calculations. The protected ribose moiety of the resulting *exo*-glycals induced completely α -selective cyclopropanation on the exocyclic carbon-carbon double bond via the Simmons-Smith-Furukawa reaction. The 2-cyanoethyl group was found to be useful for the protection of the *exo*-glycals, as it could be removed without affecting the exocyclic C=C bond.

INTRODUCTION

Exo-glycals are enol ether derivatives of sugars with an exocyclic carbon–carbon double bond.¹ These sugar derivatives have long been used as versatile synthons for a variety of molecules, such as biologically active natural products^{1b,2} and *C*-glycosyl compounds.^{1,3} They have also been studied as transition-state analogue inhibitors of sugar-processing enzymes such as glycosidases and glycosyltransferases.^{1b,c,4} Furthermore, they have attracted attention as intermediates in various biosynthetic pathways.⁵

Many reports of the synthesis of exo-glycals can be found in the literature. Sugar lactones are the most widely used precursors. A variety of reactions, such as the Julia olefination,⁶ Wittig reaction,⁷ methylenation with the Tebbe reagent or Petasis reagent,⁸ dihalomethylenation with tris-(dimethylamino)phosphine or triphenylphosphine and carbon tetrahalide,⁹ as well as nucleophilic addition of organometallic compounds and subsequent dehydration,¹⁰ are used to synthesize exo-glycals from sugar lactones. Many other methods have been reported, such as the Ramberg-Bäcklund rearrangement of glycosyl sulfones,11 Wittig reaction with glycosyl phosphonium salts,¹² Keck allylation of 1-bromoglycosyl chlorides and dehydrochlorination,¹³ Bamford-Stevens reaction,¹⁴ [2,3]-Wittig rearrangement of 1-C-alkenylglycosides,¹⁵ β -elimination reaction,¹⁶ Claisen rearrangement¹⁷ or $S_{\rm N}1'\text{-type}$ substitution 18 of 1-C-vinyl glycosides, and base-promoted alkynol cycloisomerization. 19

In the synthesis of exo-glycals with one substituent or two different substituents on the exocyclic C=C bond, the E/Zselectivity of the reaction is one of the most important factors to be considered. The thermodynamically more stable (Z)-exoglycals are available via various methods. For example, the halogenation of methylene exo-glycals with bromine and triethylamine or iodonium di-sym-collidine trifluoromethanesulfonate (IDCT) gives (Z)-halomethylene exo-glycals exclusively, and the subsequent cross-coupling reactions give various monosubstituted (Z)-exo-glycals.²⁰ Z-selective trifluoromethylation reactions of methylene exo-glycals via photoredox and copper catalysis have been reported very recently.²¹ Some of the above-mentioned reactions, i.e., the nucleophilic addition of organometallic compounds and dehydration,¹⁰ Keck allylation and dehalogenation,¹³ [2,3]-Wittig rearrangement,¹⁵ Claisen rearrangement¹⁷ or $S_N 1'$ -type substitution¹⁸ of 1-C-vinylglycosides, and base-promoted alkynol cycloisomeri-

Received: September 26, 2020

zation¹⁹ also provide (*Z*)-*exo*-glycals exclusively. The Ramberg–Bäcklund rearrangement of glycosyl sulfones¹¹ and the Wittig reaction of sugar lactones⁷ also give (*Z*)-*exo*-glycals with high stereoselectivity in many cases.

In sharp contrast, only a few methods have been reported for the synthesis of the thermodynamically less stable (E)-exoglycals with high stereoselectivity. Vincent et al. have reported a base-promoted Z-to-E isomerization of phosphono-exoglycals. However, the isomerization is not complete and limited to substrates with an electron-withdrawing substituent on the *exo*-methylene group.²² Wyatt et al. have reported that the Wittig reaction of sugar lactones is E-selective for a mannose-derived lactone7i but Z-selective when glucose- and galactose-derived substrates are used.^{7h} Currently, the Julia olefination of sugar lactones reported by Gueyrard et al. has the broadest substrate scope for the stereoselective synthesis of (E)-exo-glycals.⁶ This reaction affords (E)-exo-glycals that carry an alkyl substituent on the exocyclic C=C bond with high stereoselectivity of up to E/Z > 9:1. However, it has not been successfully applied to exo-glycals with an aryl or electronwithdrawing substituent on the C=C bond due to the low reactivity of both the sugar lactones and the α -carbanions generated from sulfones with an aryl or electron-withdrawing group.^{6b} Additionally, the adducts of the sugar lactones and sulfones do not undergo the subsequent Smiles rearrangement smoothly unless treated with an additional base after aqueous workup.6

Under these circumstances, we initiated a study on the synthesis of exo-glycals via Julia olefination using glycosyl sulfones as Julia reagents with the expectation that this approach might solve the aforementioned issues associated with the low reactivity of sugar lactones. As the first step toward this goal, an intensive study of the Julia olefination using ribofuranosyl sulfones and aldehydes was carried out. We have recently reported a novel α -selective synthesis of heteroaryl 1-thioribofuranosides 3 from 1-O-trimethylsilylribofuranose derivatives 1 via ribofuranosyl iodides 2.23 In this study, the heteroaryl 1-thioribofuranosides 3 were used as the precursors to α -ribofuranosyl sulfones 4, which were applied to Julia olefination with aldehydes for the synthesis of exo-glycals 5 (Scheme 1). In addition, the effect of the anomeric configuration of the ribofuranosyl sulfones was examined experimentally by both α -ribofuranosyl sulfones 4 and the corresponding β -ribofuranosyl sulfone, as well as theoretically by density functional theory (DFT) calculations.

RESULTS AND DISCUSSION

Initially, 2-benzothiazolyl 2,3,5-tri-O-benzyl-1-thio-α-D-ribofuranoside 3a was synthesized from 2,3,5-tri-O-benzyl-1-Otrimethylsilyl-ribofuranose 1a via ribofuranosyl iodide using our previously reported method²³ in 97% yield with complete α -selectivity. The oxidation of **3a** was then studied (Table 1). An attempt to oxidize **3a** using H_2O_2 and cat. $(NH_4)_6MO_7O_{24}$. $4H_2O^{24}$ did not afford the desired sulfone 4a. Instead, a mixture of 2,3,5-tri-O-benzyl-ribofuranose and its ethyl and isopropyl ribofuranosides was obtained, indicating that the glycosidic bond of the resulting 4a or the intermediate sulfoxide was cleaved by water or solvent alcohols (entry 1). In contrast, 4a was obtained in 85% yield when 3a was treated with urea hydrogen peroxide (UHP) and trifluoroacetic anhydride (TFAA) in the presence of NaHCO₃ (entry 2).²⁵ The yield of 4a was further improved to 99% when 3a was treated with 2 equiv of magnesium monoperphthalate

Scheme 1. Stereoselective Synthesis of α -Ribofuranosyl Sulfones 4 and Their Application to the Synthesis of *exo*-Glycals 5 by Julia Olefination

Table 1. Synthesis of Ribofuranosyl sulfone 4a

entry	reagents for the oxidation of $3a$	solvent	4a (%)
1	H_2O_2 (9 equiv), (NH ₄) ₆ Mo ₇ O ₂₄ (0.2 equiv)	EtOH– <i>i</i> -PrOH– AcOEt (4:2:1, v/v/v)	0 ^{<i>a</i>}
2 ^b	UHP (3 equiv), TFAA (3 equiv), NaHCO ₃ (5 equiv)	MeCN	85
3	MMPP (2 equiv)	CH ₂ Cl ₂ –MeOH (10:1, v/v)	99
4	MMPP (1.5 equiv)	CH ₂ Cl ₂ -MeOH (10:1, v/v)	79
5	MMPP (1 equiv)	CH ₂ Cl ₂ –MeOH (10:1, v/v)	45
6	MMPP (2 equiv)	CH ₂ Cl ₂ –DMF (10:3, v/v)	5
7	MMPP (2 equiv)	CH_2Cl_2 -DMSO (10:3, v/y)	0

^{*a*}2,3,5-Tri-O-benzyl-D-ribofuranose, ethyl 2,3,5-tri-O-benzyl-D-ribofuranoside, and isopropyl 2,3,5-tri-O-benzyl-D-ribofuranoside were generated as byproducts. ^{*b*}The reaction mixture was cooled to -40 °C prior to the addition of a mixture of UHP and TFAA in MeCN and then warmed to rt.

(MMPP) in CH_2Cl_2 -MeOH (10:1, v/v) (entry 3).²⁶ Cleavage of the glycosidic bond of 4a was not observed during oxidation. The solid-state structure of 4a was confirmed

В

· 11 C

unequivocally by X-ray crystallography.²⁷ Oxidation did not reach completion when the amount of MMPP was reduced to 1-1.5 equiv (entries 4 and 5). Almost no 4a was produced when *N*,*N*-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) was used as the cosolvent instead of MeOH (entries 6 and 7).

The optimized conditions were applied to the oxidation of heteroaryl 1-thio- α -ribofuranosides **3b**-**j**, which were also synthesized by α -selective ribofuranosylation of heteroarylthiols²⁸ using ribofuranosyl iodide as the glycosyl donor²³ (Table 2). 2-Pyridyl, 5-nitro-2-pyridyl, and 5-trifluoromethyl-2-pyridyl

Table 2. Oxidation of 3b-j^a

3

^{*a*}Sulfones **4e**–**j** were not obtained by the oxidation of **3e**–**j**. Instead, 2,3,5-tri-*O*-benzyl-D-ribofuranose and methyl 2,3,5-tri-*O*-benzyl-D-ribofuranoside were generated as byproducts.

d

sulfones **4b**–**d** were synthesized in good yield (entries 1–3), whereas sulfones **4e**–**j** were not obtained. Instead, 2,3,5-tri-*O*benzyl-ribofuranose and methyl 2,3,5-tri-*O*-benzyl-ribofuranoside were formed during oxidation, as was observed in the oxidation of **3a** with H_2O_2 and $(NH_4)_6Mo_7O_{24}$ (Table 1, entry 1). These results suggest that the glycosidic bonds of heteroaryl ribofuranosyl sulfones (or the intermediate sulfoxides) are susceptible to nucleophilic attack and that this susceptibility is affected by the heteroaryl groups.

With α -ribofuranosyl sulfones 4a-d in hand, we studied the synthesis of exo-glycal 5a by Julia olefination using benzaldehyde as a model compound (Table 3). The reactions were conducted under Barbier conditions in which sulfones 4 were deprotonated by a base in the presence of benzaldehyde. The bases were added at low temperatures, and the mixtures were gradually warmed to room temperature (rt) to promote the reactions. As shown in entries 1-3, the reactions of 4a with benzaldehyde using LiHMDS, NaHMDS, and KHMDS in CH_2Cl_2 preferentially afforded (E)-5a over (Z)-5a. The stereochemistry of (E)-5a and (Z)-5a was established using NOESY experiments.²⁷ The assignment was also confirmed by the ¹H NMR spectra, in which the *exo*-C=CH signal of (E)-5a was shifted downfield relative to that of (Z)-5a due to the effect of endocylic 4-oxygen of the ribose.^{1b,29} The highest E selectivity among these three reactions was obtained using LiHMDS (entry 1), but the yields were much higher with NaHMDS and KHMDS (entries 2 and 3). The E selectivity was improved by changing the solvent from CH₂Cl₂ to toluene (entries 4 and 5). Keeping the temperature at -78 °C throughout the reaction slowed the reaction without improving the stereoselectivity (entry 6). Increasing the initial temperature from -60 to -40 °C slightly improved the yield of 5a at

Table 3. Optimization of the Reaction Conditions for the Synthesis of *exo*-Glycal 5a by Julia Olefination Using Ribofuranosyl Sulfones 4a-d and PhCHO

90

	BnO O Het	PhCHO (1.5 equiv) base (1.4 equiv)	BnO BnO D D D D D D D D D D D D	$ \begin{array}{c} BnO & Ph \\ + & & \\ BnO & OBn \end{array} $ Het = -		1
	4a–d		(<i>F</i>)-5a	(<i>7</i>)-5a	4a 4b : Y = H 4c : Y = NO	
			(_)	(-)	4d : $Y = CF_3$	
entry	sulfone	base	solvent	conditions ^a	yield (%)	$E:Z^c$
1	4a	LiHMDS	CH_2Cl_2	-60 °C to rt, then 4 h	29	90:10
2	4a	NaHMDS	CH_2Cl_2	-60 °C to rt, then 2.5 h	80	83:17
3	4a	KHMDS	CH_2Cl_2	-60 °C to rt, then 4 h	84	79:21
4	4a	NaHMDS	toluene	-60 °C to rt, then 3 h	69	90:10
5	4a	KHMDS	toluene	-60 °C to rt, then 3 h	86	88:12
6	4a	KHMDS	toluene	−78 °C, 4 h	51	84:16
7	4a	KHMDS	toluene	-40 °C to rt, then 3 h	90	86:14
8	4a	KHMDS	THF	-60 °C to rt, then 3 h	96	94:6
9	4a	LiHMDS	DMF	-60 °C to rt, then 3 h	62	21:79
10	4a	NaHMDS	DMF	-60 °C to rt, then 3 h	78	23:77
11	4a	KHMDS	DMF	-60 °C to rt, then 3 h	77	39:61
12	4a	NaHMDS	NMP	-20 °C to rt, then 3.5 h ^b	48	28:72
13	4a	KHMDS	NMP	-20 °C to rt, then 3.5 h ^b	43	44:56
14	4a	NaHMDS	DMPU	-20 °C to rt, then 3.5 h ^b	49	26:74
15	4b	KHMDS	toluene	-60 °C to rt, then 3 h	61	63:37
16	4c	KHMDS	toluene	-60 °C to rt, then 6 h	53	92:8
17	4d	KHMDS	toluene	-60 °C to rt, then 3 h	44	71:29

"Unless otherwise noted, the bath temperature was gradually elevated from the initial value to rt over 1 h. ^bThe bath temperature was gradually elevated over 0.5 h. ^cDetermined using ¹H NMR.

Table 4. Synthesis of exo-Glycals 5b-m Using Ribofuranosyl Sulfone 4a and Various Aldehydes

the cost of a small decrease in stereoselectivity (entry 7). Both the yield and stereoselectivity were improved using a more polar solvent tetrahydrofuran (THF, entry 8), whereas the use of even more polar solvents DMF, *N*-methyl pyrrolidinone (NMP), and *N*,*N*'-dimethylpropyleneurea (DMPU) led to modest *Z* selectivity (entries 9-14).³⁰ 2-Pyridyl sulfones 4b-dalso gave 5a but in lower yields than that obtained using 4a(entries 15-17). Thus, under the optimized conditions shown in entry 8, the Julia olefination of the ribofuranosyl sulfone 4awith benzaldehyde proceeded almost quantitatively in a onepot manner to give *exo*-glycal 5a with high *E* selectivity.

Subsequently, sulfone 4a was allowed to react with various aldehydes under the optimized conditions (Table 4). Aromatic aldehydes **b**-h gave the corresponding *exo*-glycals **5b**-h with high *E* selectivity (E/Z = 93:7-87:13) (entries 1–7). Aldehydes **d** and **e** with an electron-donating methoxy group at the *para*- or *ortho*-position showed stereoselectivity similar to that of benzaldehyde (entries 3 and 4), while **b** and **c**, which contain an electron-withdrawing fluoro or nitro group at the *para*-position, resulted in a slightly lower stereoselectivity (entries 1 and 2). Aliphatic aldehydes **i**-**m** gave lower *E* selectivity (E/Z = 84:16-68:32) compared to the aromatic aldehydes (entries 8–12).

To estimate the energy difference between (E)-**Sa** and (Z)-**Sa**, (E)-**A** and (Z)-**A** were chosen as model compounds (Figure 1). Both structures were optimized via DFT calculations at the B3LYP/6-31G* level of theory, and (Z)-**A** was found to be 1.9 kcal/mol more stable than (E)-**A**. Although both structures have two intramolecular hydrogen bonds, (Z)-**A** is more stabilized by a stronger hydrogen bond between the ribose ring oxygen and one of the *o*-hydrogens of the phenyl group (O-H distance, 2.29 Å). Additionally, the phenylethenyl moiety of (Z)-**A** has a planar structure and is stabilized by the overlap of the π -system on C1-C6-C7-C8 (dihedral angle, 2.0°). In contrast, the corresponding dihedral angle in (E)-**A** is 31.3°. The reduced overlap of the π -system is attributed to the avoidance of steric repulsion between the 2-H

Figure 1. Optimized structures and energies of (E)- and (Z)-A, calculated at the B3LYP/6-31G* level.

of ribose and the phenyl group. Thus, (E)-5 are considered to be kinetic products that are thermodynamically less stable than (Z)-5. This was also confirmed by the iodine-catalyzed isomerization of alkenes to thermodynamically more stable isomers;³¹ 5a (E:Z = 94:6) and 5c (E:Z = 88:12) completely isomerized to (Z)-5a and (Z)-5c upon heating at 50 °C for 1 h in the presence of 0.3 equiv of iodine^{31c} (Table 5, entries 1, and 2). However, isomerization was not successful for alkenyland alkyl-substituted *exo*-glycals 5i and 5m (complex mixtures formed; entries 3 and 4). Therefore, this isomerization should be useful for the synthesis of stereochemically pure arylsubstituted (Z)-*exo*-glycals.

One of the objectives of this study was to elucidate the effect of the anomeric configuration of ribofuranosyl sulfones on Julia olefination. For this purpose, the corresponding β -sulfone (β -4a) was prepared according to Scheme 2 via Mitsunobu-type β -selective ribofuranosylation ($6 \rightarrow 7$) developed by Hocek et al.³² and subjected to Julia olefination with benzaldehyde under the optimized conditions. In fact, the use of β -sulfone changed the stereochemistry of the reaction; (*Z*)-5a was

	BnO		BnQ I	Ŗ
	O B	l ₂ (0.3 equiv)		J
	BnO ÓBn	CICH ₂ CH ₂ CI 50 °C, 1 h	→/ BnO` ´OE	3n
	5 (<i>E,Z</i> mixture)		(<i>Z</i>)-5 (R = A	r)
entry	starting material	R	product	yield (%)
1	5a $(E/Z = 94:6)$	Ph	(Z)-5a	83
2	5c (E/Z = 88:12)	$p-NO_2C_6H_4$	(Z)- 5c	83
3	5i $(E/Z = 84:16)$	trans-PhCH=CH	complex mixture	
4	5m $(E/Z = 68:32)$	c-Hex	complex mixture	

preferentially obtained over (E)-**5a** with low stereoselectivity (E/Z = 41:59).

We also prepared 2,3,5-tri-O-benzoyl- β -D-ribofuranosyl sulfone β -4a', which was prepared readily via neighboringgroup assistance (Scheme 3). However, its application to Julia olefination with benzaldehyde resulted in the formation of *endo*-glycal 10 due to 1,2-*syn*-elimination, which tends to occur when glycosyl sulfones are treated with a strong base.^{11g,33}

To elucidate the mechanism of the olefination reactions of the α - and β -ribofuranosyl sulfones in detail, DFT calculations were carried out for the reaction of either α -B or β -B with PhCHO. The transition structures for the C-C bond formation from the complex (α -B and PhCHO) were identified at the B3LYP/6-31G* level (Figure 2).27 The transition structure αE -TS1 is favored by 3.6 kcal/mol over α Z-TS1. The C–C distances of the forming bond are 2.33 and 2.22 Å in αE -TS1 and αZ -TS1, respectively, while the activation free energies are 4.0 and 6.1 (7.6-1.5) kcal/mol, respectively. A careful comparison of the transition structures revealed steric repulsion between the 2-H of ribose and the aldehyde proton. The H-H distance (2.04 Å) is much shorter than the sum of their van der Waals radii (2.40 Å). An intrinsic reaction coordinate (IRC) analysis of these transition structures furnished intermediates αE -Int1 and αZ -Int1, from which nucleophilic addition to the ipso carbon of benzothiazole occurred to give αE -Int2 and αZ -Int2 via transition structures αE -TS2 and αZ -TS2. The relative Gibbs free energies are -1.2 and 1.3 kcal/mol and the distances of the forming O–C bonds are 1.86 and 1.78 Å in α E-TS2 and

 α Z-TS2, respectively. The length of the C=N bond in α E-**TS2** (1.32 Å) is only 0.03 Å longer than that in α *E*-Int1, while the length of the C–SO₂ bond increased from 1.84 to 1.88 Å. Similar structural changes were seen in α Z-TS2. Therefore, nucleophilic addition to the C=N bond and elimination of the sulfonyl group occur simultaneously. Finally, the elimination of both SO₂ and a 2(3H)-benzothiazolone anion occurs to give the alkene via the transition structures αE -TS3 and αZ -TS3, whose relative Gibbs free energies are -30.9 and -17.9 kcal/ mol, respectively. The rate-determining step is TS1, and αE -TS1 giving the (*E*)-alkene is more stable than α Z-TS1 giving the (Z)-alkene by 3.6 kcal/mol. This suggests that the (E)alkene should be formed in high selectivity; thus, these calculations reproduced the experimentally observed product selectivity. The reaction of β -B with PhCHO was also analyzed using DFT calculations at the B3LYP/6-31G* level. The reaction occurs in a similar manner to that of α -B with PhCHO, and the rate-determining step is TS1. Figure 3 shows only the SM complex and TS1.²⁷ The α -carbanion β -B is more stable than the β -carbanion α -**B**, and the Gibbs free energies of the starting complexes βE -SM and βZ -SM relative to αE -SM are -9.2 and -8.9 kcal/mol, respectively. Transition structure β Z-TS1 is favored over β E-TS1 by 0.6 kcal/mol. This energy difference corresponds to a product ratio of E:Z = 27:73 at 25 °C, which is consistent with the experimental results. The distances between the C atoms of the forming C-C bond are 2.13 and 2.07 Å in βE -TS1 and βZ -TS1, respectively, and their relative Gibbs free energies are 7.0 and 6.4 kcal/mol, respectively. A comparison of the transition structures revealed the presence of favorable hydrogen bonds between the aldehyde H and both the 2- and 3-methoxy oxygens in β Z-TS1 with the distances of 2.54 and 2.56 Å, respectively. Therefore, the Z-alkene should be obtained as the main product with low selectivity, which is consistent with the experimental results.

As described in the Introduction section, *exo*-glycals have been used as versatile precursors for the synthesis of various compounds through modifications of the exocyclic C==C bonds. To elucidate the effect of the chiral ribose moiety on the stereochemistry of *exo*-C==C modifications, (*E*)-**5a** and (*Z*)-**5a** were subjected to the Simmons–Smith–Furukawa reaction.³⁴ The cyclopropanation occurred exclusively from the α -face to afford **11** and its epimer (*epi*-**11**) from (*E*)-**5a** and

Scheme 3. Synthesis of β -4a' and Its Attempted Julia Olefination with PhCHO

(*Z*)-**5a**, respectively (Schemes 4 and 5). The stereochemistry of **11** and *epi*-**11** was confirmed using NOESY experiments.²⁷ α -Selectivity in the Simmons–Smith–Furukawa reaction has also been reported for a benzyloxymethyl-protected uridine

derivative bearing a 4'-exo-C==C bond.^{34e} Our study indicates that the benzyl-group-protected ribose moiety also directs the zinc carbenoid to the α -face with its 2'- and 3'-ether moieties,

pubs.acs.org/joc

Article

Figure 3. Rate-limiting step of the one-pot Julia olefination of β -ribofuranosyl sulfone with PhCHO, calculated at the B3LYP/6–31G* level (all distances in Å). The Gibbs free energies of SM and TS1 are shown relative to that of αE -SM.

as was proposed for the α -selective cyclopropanation of the BOM-protected uridine derivative.^{34e}

Benzyl protection is useful for the synthesis of C-glycosyl compounds without C=C bonds, but a different protecting group must be used for the synthesis of compounds in which an exocyclic C=C bond is to be retained. To expand the scope of this method, we examined the applicability of other protecting groups that could be removed in the presence of the exo-C=C bond. Initially, the tert-butyldimethylsilyl (TBS) group was chosen because it can be removed using fluoride ions without affecting the C=C bond. 2-Benzothiazolyl 2,3,5tri-O-TBS-1-thioribofuranoside 12 was synthesized via the α selective ribofuranosylation of 2-mercaptobenzothiazole using the corresponding ribofuranosyl iodide²³ and subjected to oxidation with MMPP under the optimized conditions for the benzyl-protected sulfones described above (Scheme 6). However, the desired sulfone 13 was not obtained, but hemiacetal 14 was formed during the oxidation. Thus, TBSprotected sulfone 13 was found to be more sensitive to acids due to its silyl-protection³⁵ compared to benzyl-protected

Scheme 6. Attempted Synthesis of 2-Benzothiazolyl 2,3,5tri-O-TBS-ribofuranosyl Sulfone 13

sulfone 4a, which could be synthesized virtually quantitatively under the same oxidation conditions.

Therefore, we turned our attention to the 2-cyanoethyl (CE) group. The CE group has been used for the synthesis of oligoribonucleotides and can be removed quickly from the 2'-hydroxy groups of ribonucleosides by treatment with tetra-*n*-butylammonium fluoride (TBAF).³⁶ Scheme 7 depicts the synthesis of a CE-protected ribofuranosyl sulfone and its application to Julia olefination. Ribose **15** was converted into methyl ribofuranoside **16**, and the hydroxy groups were protected with CE groups via treatment with acrylonitrile and Cs_2CO_3 in *t*-BuOH.³⁷ The β -isomer of **17** was separated using chromatography and hydrolyzed to give hemiacetal **18**, which

Article

Scheme 7. Stereoselective Synthesis of 2-Benzothiazolyl 2,3,5-tri-O-(2-cyanoethyl)- α -D-ribofuranosyl Sulfone 22 and Its Application to Julia Olefination

was then silylated at the anomeric position to give 19. Treatment of 19 with TMSI gave ribofuranosyl iodide 20, which was then allowed to react *in situ* with 2-mercaptobenzothiazole to give 1-thioribofuranoside 21 with complete α -selectivity. Oxidation with MMPP under the aforementioned conditions afforded the desired sulfone 22 in good yield. As expected, 22 was less susceptible to hydrolysis than TBS-protected sulfone 13 on account of its electron-withdrawing CE groups. A one-pot Julia olefination with benzaldehyde was conducted with a reduced amount of KHMDS to prevent the undesired cleavage of the CE groups. The desired *exo*-glycal 23 was obtained in 88% yield with E/Z = 93:7.

Finally, the deprotection of 23 was examined. It was first attempted by treatment with 1 M TBAF in THF.³⁶ The deprotection was complete after 24 h at 60 °C, and the desired product (24) was generated almost quantitatively. However, the isolation of 24 from the residual tetrabutylammonium salts was difficult. Therefore, we used instead the easily removable Na_2S^{38} and found that the deprotection of 23 could be completed via treatment with 1.5 equiv of Na_2S in CH_2Cl_2 –MeOH at rt for 3 days (Scheme 8). The fully deprotected *exo*glycal 24 was isolated in 88% yield without any side reactions.

CONCLUSIONS

In conclusion, a novel one-pot Julia olefination using α -ribofuranosyl sulfones has been developed. Ribofuranosyl

Scheme 8. Deprotection of exo-Glycal 23

sulfones were obtained via α -selective glycosylation of heteroarylthiols and oxidation with MMPP. Among the heteroaryl sulfones tested, 2-benzothiazolyl sulfone was the most advantageous in terms of stability and performance as an olefination reagent. Its application to the Julia olefination with aldehydes afforded the thermodynamically less stable (E)-exoglycals efficiently in a one-pot manner with modest-to-excellent stereoselectivity. The E selectivity was especially high when aromatic aldehydes were used. Such aryl-substituted (E)-exoglycals cannot be easily synthesized using the methods reported to date. The higher E selectivity observed for arylsubstituted exo-glycals compared to alkyl-substituted ones in this novel Julia olefination is complementary to that of the Julia olefination of sugar lactones, which gives alkyl-substituted (E)exo-glycals efficiently but not aryl-substituted ones. The effect of the anomeric configuration, which is one of the most important concerns in using glycosyl sulfones, was elucidated experimentally by carrying out the Julia olefination using a β ribofuranosyl sulfone, which resulted in slight Z selectivity, as well as theoretically using DFT calculations. The successful application of 2-cyanoethyl protection to the synthesis of exoglycals suggested that it should be useful for the synthesis of various sugar derivatives having unsaturated carbon-carbon bonds.

EXPERIMENTAL SECTION

General Information. Commercially available reagents were used without purification. Dry organic solvents were prepared by appropriate procedures prior to use. The other organic solvents were of reagent grade and used as received. All reactions in dry solvents were carried out under argon. Analytical thin-layer chromatography (TLC) was performed on Merck TLC plates (No. 5715) precoated with silica gel 60 F₂₅₄. Column chromatography on silica gel was carried out using Kanto silica gel 60N (spherical, neutral, 40–50 or 63–210 μ m). Preparative TLC (PTLC) was performed on silica gel 60 F₂₅₄ PLC glass plates (20 cm × 20 cm, 1 mm thickness). Melting points were determined using a Yanaco MP-J3 micro melting point apparatus and were uncorrected. Optical rotations were

measured using a Horiba SEPA-300 high-sensitivity polarimeter. The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on a JNM-AL-400 or a JNM-ECS-400 spectrometer (JEOL). Tetramethylsilane (TMS; 0.0 ppm in CDCl₃) and DMSO-d₅ (2.50 ppm in DMSO- d_6) were used as the internal standards for ¹H NMR measurements. CDCl₃ (77.0 ppm in CDCl₃) and DMSO-d₆ (39.5 ppm in DMSO- d_6) were used as the internal standards for ¹³C NMR measurements. ¹H NMR data are reported as follows: chemical shift (multiplicity, integration, coupling constants). Multiplicity is indicated as follows: s (singlet); d (doublet); dd (doublet of doublets); ddd (doublet of doublet of doublets); dt (doublet of triplets); t (triplet); td (triplet of doublets); q (quartet); quint (quintet); sext (sextet); m (multiplet). Structural assignments were made with additional information from NOESY experiments. High-resolution mass spectra were recorded on a Waters Xevo Q-ToF mass spectrometer (ESI-ToF)

2⁻Benzothiazolyl 2,3,5-Tri-O-benzyl-1-thio-α-D-ribofuranoside (**3a**). **3a** (pale-yellow oil, 5.53 g, 9.71 mmol, 97%) was synthesized from 2-mercaptobenzothiazole (1.67 g, 10.0 mmol) and **1a** (6.40 g, 13.0 mmol) according to the procedure that we reported previously.²³ The NMR spectra were identical to those previously reported.²³

2-Benzothiazolyl 2,3,5-Tri-O-benzyl- α -D-ribofuranosyl sulfone (4a): General Procedure for the Synthesis of 4a-d. MMPP (1.55 g, 4.00 mmol) was added to a stirred solution of 3a (1.14 g, 2.00 mmol) in CH₂Cl₂/MeOH (10:1, v/v; 44.0 mL) at rt. Stirring was continued for 24 h before a saturated aqueous solution of NaHCO₃ (30 mL) was added. The resulting mixture was extracted with CH₂Cl₂ $(3 \times 30 \text{ mL})$. The organic layers were combined and washed with a saturated aqueous solution of NaHCO3 (30 mL). The aqueous layer was re-extracted with CH₂Cl₂ (30 mL). The organic layers were combined, dried over Na2SO4, and filtered, and the filtrate was concentrated under reduced pressure. The residue was washed with hexane and dried *in vacuo* to afford 4a (1.20 g, 1.99 mmol, 99%) as pale-yellow crystals. M.P. = 111–113 °C. $[\alpha]_D$ = +148.2 (c 1.02, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 8.18 (d, 1H, J = 7.6 Hz), 7.94 (d, 1H, J = 7.6 Hz), 7.56 (m, 2H), 7.40-7.15 (m, 15H), 5.65 (d, 1H, J = 5.6 Hz), 4.96 (d, 1H, J = 11.4 Hz), 4.73 (d, 1H, J = 11.4 Hz), 4.63 (t, 1H, J = 5.6 Hz), 4.59 (m, 1H), 4.55 (d, 1H, J = 12.0 Hz), 4.45 (d, 1H, J = 12.0 Hz), 4.38 (d, 1H, J = 12.0 Hz), 4.36 (d, 1H, J = 12.0 Hz), 4.03 (dd, 1H, J = 7.8, 5.6 Hz), 3.70 (dd, 1H, J = 11.6, 1.8 Hz), 3.50 (dd, 1H, J = 11.6, 3.2 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 166.0, 152.4, 137.6, 137.3, 137.2, 137.1, 128.3, 128.2, 128.2, 128.1, 127.8, 127.7, 127.6, 127.5, 127.2, 125.3, 122.0, 94.6, 82.3, 77.2, 76.8, 74.6, 73.2, 72.8, 67.6. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C33H31NNaO6S2+ 624.1485; found 624.1498.

2-Pyridyl 2,3,5-Tri-O-benzyl- α -D-ribofuranosyl Sulfone (4b). 4b (colorless oil, 1.10 g, 2.01 mmol, 86%) was obtained from 3b (1.20 g, 2.33 mmol) according to the general procedure described for 4a. Purification was carried out by column chromatography on silica gel (hexane/AcOEt = 1:0 \rightarrow 1:1, v/v). The ¹H and ¹³C NMR spectra were identical to those previously reported.³⁹ ¹H NMR (CDCl₃, 400 MHz): δ 8.69–8.67 (m, 1H), 8.06 (d, 1H, J = 7.6 Hz), 7.80 (dt, 1H, J = 7.6, 2.0 Hz), 7.45-7.40 (m, 3H), 7.34-7.25 (m, 9H), 7.23-7.20 (m, 2H), 7.18–7.15 (m, 2H), 5.68 (d, 1H, J = 5.4 Hz), 4.95 (d, 1H, J = 11.2 Hz), 4.73 (d, 1H, J = 11.2 Hz), 4.61 (t, 1H, J = 5.4 Hz), 4.54 (d, 1H, J = 11.8 Hz), 4.52 (m, 1H), 4.44 (d, 1H, J = 12.2 Hz), 4.38(d, 1H, J = 11.8 Hz), 4.36 (d, 1H, J = 12.2 Hz), 4.00 (dd, 1H, J = 8.2, 5.4 Hz), 3.68 (dd, 1H, J = 11.4, 2.2 Hz), 3.50 (dd, 1H, J = 11.4, 3.2 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 157.3, 149.9, 137.7, 137.6, 137.5, 137.4, 128.3, 128.3, 128.2, 127.8, 127.8, 127.7, 127.6, 127.5, 127.0, 123.8, 91.9, 81.8, 77.1, 77.0, 74.7, 73.2, 72.7, 67.7. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{31}H_{31}NNaO_6S^+$ 568.1764; found 568,1770.

5-Nitro-2-pyridyl 2,3,5-Tri-O-benzyl-α-D-ribofuranosyl Sulfone (4c). 4c (white foam, 1.08 g, 1.83 mmol, 98%) was obtained from 3c (1.05 g, 1.87 mmol) according to the general procedure described for 4a. Purification was carried out by column chromatography on silica gel (hexane/AcOEt = 9:1 \rightarrow 7:3, v/v). ¹H NMR (CDCl₃, 400 MHz): δ 9.27 (d, 1H, J = 2.0 Hz), 8.26 (dd, 1H, J = 8.4, 2.2 Hz), 8.06 (d, 1H, J = 8.4 Hz), 7.34–7.17 (m, 15H), 5.60 (d, 1H, J = 5.6 Hz),

4.70 (s, 2H), 4.59 (t, 1H, J = 5.6 Hz), 4.52 (d, 1H, J = 12.0 Hz), 4.51–4.47 (m, 1H), 4.50 (d, 1H, J = 12.0 Hz), 4.42 (d, 1H, J = 12.0 Hz), 4.41 (d, 1H, J = 12.0 Hz), 4.07 (dd, 1H, J = 7.0, 5.6 Hz), 3.71 (dd, 1H, J = 11.2, 1.8 Hz), 3.53 (dd, 1H, J = 11.2, 2.6 Hz). $^{13}C{}^{1}H$ NMR (CDCl₃, 100 MHz): δ 162.1, 145.0, 144.8, 137.6, 137.1, 136.8, 132.5, 128.4, 128.4, 128.2, 128.1, 127.8, 127.6, 124.0, 94.5, 82.7, 77.3, 74.4, 73.5, 73.1, 68.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₁H₃₀N₂NaO₈S⁺ 613.1615; found 613.1625.

5-Trifluoromethyl-2-pyridyl 2,3,5-Tri-O-benzyl- α -D-ribofuranosyl Sulfone (4d). 4d (white crystals, 1.46 g, 2.38 mmol, 90%) was obtained from 3d (1.54 g, 2.64 mmol) according to the general procedure described for 4a. Purification was carried out by column chromatography on silica gel (hexane/AcOEt = $19:1 \rightarrow 17:3, v/v$). M.p. = 87-88 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.86 (d, 1H, J = 1.2 Hz), 8.09 (d, 1H, J = 8.4 Hz), 7.92 (dd, 1H, J = 8.4, 1.2 Hz), 7.35-7.27 (m, 11H), 7.22-7.18 (m, 4H), 5.65 (d, 1H, J = 5.6 Hz), 4.82 (d, 1H, J = 11.0 Hz), 4.71 (d, 1H, J = 11.0 Hz), 4.60 (t, 1H, J = 5.6 Hz), 4.55 (d, 1H, J = 11.8 Hz), 4.50-4.47 (m, 1H), 4.47 (d, 1H, J = 12.2 Hz), 4.41 (d, 1H, J = 11.8 Hz), 4.38 (d, 1H, J = 12.2 Hz), 4.04 (dd, 1H, J = 8.0, 5.6 Hz), 3.69 (dd, 1H, J = 11.6, 2.4 Hz), 3.50 (dd, 1H, J = 11.6, 3.2 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 160.6, 146.7 (q, ${}^{3}J_{CF}$ = 3.8 Hz), 137.6, 137.3, 137.1, 135.0 (q, ${}^{3}J_{CF}$ = 2.8 Hz), 129.3 (q, ${}^{2}J_{CF}$ = 33.4 Hz), 128.4, 128.3, 128.2, 128.2, 127.9, 127.8, 127.8, 127.7, 127.6, 123.4, 122.5 (q, ${}^{1}J_{CF} = 272.7$ Hz), 93.1, 82.1, 77.1, 77.0, 74.6, 73.3, 72.9, 67.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₂H₃₀F₃NNaO₆S⁺ 636.1638; found 636.1638.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-phenyl-p-ribo-hex-1enitol (5a): General Procedure for the Synthesis of 5a-m. 4a (0.602 g, 1.00 mmol) and benzaldehyde (0.153 mL, 1.50 mmol) were dissolved in dry THF (10.0 mL) under argon and cooled to -60 °C. Under stirring, a 0.5 M KHMDS solution in toluene (2.80 mL, 1.40 mmol) was added dropwise. The mixture was gradually warmed to rt over 1 h. Stirring was continued for 3 h, before a saturated aqueous solution of NH₄Cl (20 mL) and H₂O (30 mL) were added. The resulting mixture was extracted with CH_2Cl_2 (3 × 30 mL). The organic layers were combined and washed with H₂O (30 mL). The aqueous layer was re-extracted with CH₂Cl₂ (30 mL). The organic layers were combined, dried over Na2SO4, and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 9:1, v/$ v) to afford 5a (0.474 g, 0.963 mmol, 96%, E:Z = 94:6) as a paleyellow oil. $[\alpha]_D = -26.3$ (c 1.66, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): (E)-5a: δ 7.39-7.26 (m, 17H), 7.19-7.16 (m, 3H), 6.23 (s, 1H, exo-C=CH), 4.80 (d, 1H, J = 4.8 Hz), 4.72 (d, 1H, J = 11.5 Hz), 4.65-4.49 (m, 6H), 4.10 (dd, 1H, J = 8.8, 4.8 Hz), 3.81 (dd, 1H, J = 11.3, 2.3 Hz), 3.63 (dd, 1H, J = 11.3, 4.6 Hz). (Z)-5a: 5.42 (s, 1H, exo-C=CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (E)-5a: δ 155.4, 137.8, 137.3, 136.0, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.8, 127.6, 127.5, 125.8, 106.2, 80.3, 78.2, 73.3, 72.7, 72.4, 70.4, 68.7. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{33}H_{32}NaO_4^+$ 515.2193; found 515.2208.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-(4-fluorophenyl)ribo-hex-1-enitol (**5b**). **sb** (pale-yellow oil, 0.0464 g, 0.0909 mmol, 91%, E/Z = 90:10) was obtained from **4a** (0.0602 g, 0.100 mmol) and 4-fluorobenzaldehyde (0.0161 mL, 0.150 mmol) according to the general procedure described for **5a**-**m**. ¹H NMR (CDCl₃, 400 MHz): (*E*)-**5b**: δ 7.38-7.17 (m, 17H), 6.98-6.92 (m, 2H), 6.17 (s, 1H, *exo*-C=CH), 4.75-4.72 (m, 2H), 4.66-4.50 (m, 6H), 4.11 (dd, 1H, *J* = 8.6, 5.0 Hz), 3.80 (dd, 1H, *J* = 11.2, 2.4 Hz), 3.62 (dd, 1H, *J* = 11.2, 4.5 Hz). (*Z*)-**5b**: δ 161.2 (d, $J_{CF} = 244.1$ Hz), 155.3, 137.9, 137.8, 137.4, 132.1 (d, $J_{CF} = 3.8$ Hz), 129.5 (d, $J_{CF} = 7.7$ Hz), 128.4, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.7, 115.3 (d, $J_{CF} = 21.9$ Hz), 105.2, 80.6, 78.3, 73.5, 72.9, 72.7, 70.5, 68.8 HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₃H₃₁FNaO₄⁺ 533.2099; found 533.2060.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-(4-nitrophenyl)-Dribo-hex-1-enitol (5c). Sc (pale-yellow oil, 0.0521 g, 0.0970 mmol, 97%, E:Z = 88:12) was obtained from 4a (0.0602 g, 0.100 mmol) and 4-nitrobenzaldehyde (0.0227 g, 0.150 mmol) according to the general procedure described for Sa-m. ¹H NMR (CDCl₃, 400 MHz): (E)- **5c**: δ 8.07 (d, 2H, *J* = 8.8 Hz), 7.38–7.20 (m, 17H), 6.21 (s, 1H, *exo*-C=CH), 4.81 (d, 1H, *J* = 5.2 Hz), 4.77–4.52 (m, 7H), 4.19 (dd, 1H, *J* = 8.1, 5.2 Hz), 3.81 (dd, 1H, *J* = 11.3, 2.4 Hz), 3.63 (dd, 1H, *J* = 11.3, 4.2 Hz). (*Z*)-**5c**: δ 5.51 (s, 1H, *exo*-C=CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (*E*)-**5c**: δ 159.1, 145.4, 143.3, 137.7, 137.4, 137.2, 128.5, 128.4, 128.2, 128.2, 128.1, 128.1, 127.8, 127.8, 123.8, 104.6, 81.5, 78.1, 73.7, 73.6, 72.9, 70.9, 68.5. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₃₃H₃₂NO₆⁺ 538.2224; found 538.2194.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-(4-methoxyphenyl)-*D*ribo-hex-1-enitol (**5d**). **5d** (pale-yellow oil, 0.0495 g, 0.0947 mmol, 95%, *E*:*Z* = 93:7) was obtained from **4a** (0.0603 g, 0.100 mmol) and *p*-anisaldehyde (0.0182 mL, 0.150 mmol) according to the general procedure described for **5a**-**m**. ¹H NMR (CDCl₃, 400 MHz): (*E*)-**5d**: δ 7.36-7.18 (m, 17H), 6.84-6.80 (m, 2H), 6.19 (s, 1H, *exo*-**C**= CH), 4.78 (d, 1H, *J* = 4.9 Hz), 4.73 (d, 1H, *J* = 11.5 Hz), 4.65-4.49 (m, 6H), 4.09 (dd, 1H, *J* = 8.8, 4.9 Hz), 3.80 (dd, 1H, *J* = 11.2, 2.4 Hz), 3.80 (s, 3H), 3.62 (dd, 1H, *J* = 11.2, 4.6 Hz). (*Z*)-**5d**: δ 5.37 (s, 1H, *exo*-**C**=**C**H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (*E*)-**5d**: δ 158.0, 154.2, 138.1, 138.0, 137.5, 129.2, 128.6, 128.4, 128.3, 128.2, 128.2, 127.9, 127.8, 127.6, 127.6, 113.9, 105.9, 80.4, 78.4, 73.4, 72.7, 72.6, 70.4, 68.9, 55.2. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₃₄H₃₄NaO₅⁺ 545.2298; found 545.2294.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-(2-methoxyphenyl)-Dribo-hex-1-enitol (5e). Se (pale-yellow oil, 0.0412 g, 0.0788 mmol, 79%, E:Z = 92:8) was obtained from 4a (0.0602 g, 0.100 mmol) and o-anisaldehyde (0.0181 mL, 0.150 mmol) according to the general procedure described for Sa-m. ¹H NMR (CDCl₃, 400 MHz): (E)-Se: δ 7.34-7.18 (m, 15H), 7.09 (dd, 2H, J = 6.7, 2.9 Hz), 6.89-6.84 (m, 2H), 6.32 (s, 1H, exo-C=CH), 4.68-4.55 (m, 6H), 4.44 (t, 2H, J = 11.2 Hz), 4.06 (dd, 1H, J = 8.8, 4.6 Hz), 3.81 (dd, 1H, J = 11.3, 2.4 Hz), 3.79 (s, 3H), 3.64 (dd, 1H, J = 11.3, 4.8 Hz). (Z)-Se: δ 5.87 (s, 1H, exo-C=CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (E)-Se: δ 156.8, 155.3, 138.1, 138.0, 137.5, 129.5, 128.4, 128.3, 128.1, 127.9, 127.8, 127.6, 127.6, 127.5, 125.2, 120.5, 110.4, 101.3, 80.4, 78.2, 73.4, 72.5, 72.4, 70.3, 69.0, 55.3. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₃₄H₃₄NaO₅⁺ 545.2298; found 545.2294.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-(2-furanyl)-D-ribohex-1-enitol (5f). Sf (pale-yellow oil, 0.0381 g, 0.0790 mmol, 79%, E:Z = 87:13) was obtained from 4a (0.0602 g, 0.100 mmol) and furfural (0.0124 mL, 0.150 mmol) according to the general procedure described for Sa-m. ¹H NMR (CDCl₃, 400 MHz): (E)-Sf: δ 7.34– 7.24 (m, 16H), 6.36 (dd, 1H, J = 3.2, 1.9 Hz), 6.10 (dt, 1H, J = 3.2, 0.7 Hz), 5.98 (s, 1H, exo-C=CH), 5.12 (d, 1H, J = 4.6 Hz), 4.75– 4.50 (m, 7H), 4.09 (dd, 1H, J = 8.9, 4.6 Hz), 3.80 (dd, 1H, J = 11.4, 2.3 Hz), 3.61 (dd, 1H, J = 11.4, 4.7 Hz). (Z)-Sf: δ 5.54 (s, 1H, exo-C=CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (E)-Sf: δ 154.8, 150.6, 140.7, 138.6, 138.0, 137.5, 128.4, 128.3, 128.1, 127.9, 127.7, 127.7, 127.6, 127.4, 111.3, 107.0, 95.7, 80.4, 78.0, 73.5, 73.4, 72.4, 70.6, 68.6. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₃₁H₃₁O₅⁺ 483.2166; found 483.2186.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-(1-naphthyl)-D-ribohex-1-enitol (5g). 5g (pale-yellow oil, 0.0350 g, 0.0645 mmol, 64%, E:Z = 89:11) was obtained from 4a (0.0602 g, 0.100 mmol) and 1-naphthaldehyde (0.0204 mL, 0.150 mmol) according to the general procedure described for 5a-m. ¹H NMR (CDCl₃, 400 MHz): (E)-5g: δ 8.09-8.05 (m, 1H), 7.89-7.85 (m, 1H), 7.77 (dd, 1H, *J* = 7.2, 2.3 Hz), 7.52-7.11 (m, 17H), 6.77 (d, 2H, *J* = 7.2 Hz), 6.65 (s, 1H, exo-C=CH), 4.69-4.54 (m, 5H), 4.40 (d, 2H, *J* = 11.7 Hz), 4.14-4.08 (m, 2H), 3.87 (dd, 1H, *J* = 11.3, 2.2 Hz), 3.69 (dd, 1H, *J* = 11.3, 4.6 Hz). (*Z*)-5g: δ 110 (s, 1H, exo-C=CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (E)-5g: δ 156.7, 138.0, 137.6, 137.3, 133.6, 133.3, 132.5, 128.4, 128.0, 127.9, 127.7, 127.6, 127.5, 127.1, 126.1, 125.9, 125.5, 125.0, 103.0, 80.6, 77.9, 73.5, 72.3, 72.0, 70.3, 68.8. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₃₇H₃₄NaO₄⁺ 565.2349; found 565.2333.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-(2-naphthyl)-D-ribohex-1-enitol (5h). Sh (pale-yellow oil, 0.0495 g, 0.0912 mmol, 91%, E:Z = 91:9) was obtained from 4a (0.0602 g, 0.100 mmol) and 2naphthaldehyde (0.0234 g, 0.150 mmol) according to the general procedure described for Sa-m. ¹H NMR (CDCl₃, 400 MHz): (E)- **Sh**: δ 7.80–7.66 (m, 4H), 7.45–7.12 (m, 18H), 6.37 (s, 1H, *exo*-C= CH), 4.86 (d, 1H, J = 4.8 Hz), 4.73 (d, 1H, J = 11.6 Hz), 4.69–4.51 (m, 7H), 4.15 (dd, 1H, J = 8.7, 4.8 Hz), 3.84 (dd, 1H, J = 11.3, 2.4 Hz), 3.65 (dd, 1H, J = 11.3, 4.5 Hz). (Z)-**Sh**: δ 5.59 (s, 1H, *exo*-C= CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (E)-**Sh**: δ 155.9, 137.9, 137.9, 137.4, 133.6, 131.8, 128.4, 128.4, 128.2, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.5, 126.8, 126.3, 126.1, 125.4, 106.3, 80.5, 78.4, 73.5, 73.1, 72.7, 70.6, 68.7. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₃₇H₃₅O₄⁺ 543.2530; found 543.2542.

(1E,3E)- and (1E,3Z)-4,7-Anhydro-5,6,8-tri-O-benzyl-1,2,3-trideoxy-1-phenyl-D-ribo-1,3-octadienitol (5i). 5i (pale-yellow oil, 0.0366 g, 0.0706 mmol, 71%, E:Z = 84:16) was obtained from 4a (0.0602 g, 0.100 mmol) and trans-cinnamaldehyde (0.0189 mL, 0.150 mmol) according to the general procedure described for 5a-m. ¹H NMR (CDCl₃, 400 MHz): (E)-Si: δ 7.40–7.16 (m, 20H), 6.70 (dd, 1H, J = 15.5, 11.4 Hz), 6.38 (d, 1H, J = 15.5 Hz), 5.97 (d, 1H, J = 11.4 Hz, exo-C=CH), 4.82–4.73 (m, 3H), 4.64–4.48 (m, 5H), 4.07 (dd, 1H, J = 8.4, 4.6 Hz), 3.78 (dd, 1H, J = 11.4, 2.4 Hz), 3.60 (dd, 1H, J = 11.4, 4.5 Hz). (Z)-Si: δ 5.39 (d, 1H, J = 11.0 Hz, exo-C= CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (E)-Si: δ 156.2, 137.9, 137.9, 137.7, 137.4, 128.7, 128.5, 128.5, 128.4, 128.3, 128.1, 128.0, 127.8, 127.8, 127.7, 127.6, 126.8, 125.9, 124.0, 106.8, 81.0, 77.4, 73.4, 72.4, 71.5, 70.0, 68.6. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₅H₃₅O₄⁺ 519.2530; found 519.2544.

(1*E*,3*E*)- and (1*E*,3*Z*)-4,7-Anhydro-5,6,8-tri-O-benzyl-1,2,3-trideoxy-2-methyl-1-phenyl- D-ribo-1,3-octadienitol (5j). 5j (paleyellow oil, 0.0344 g, 0.0646 mmol, 65%, *E*:*Z* = 75:25) was obtained from 4a (0.0603 g, 0.100 mmol) and α -methyl-trans-cinnamaldehyde (0.0209 mL, 0.150 mmol) according to the general procedure described for 5a-m. ¹H NMR (CDCl₃, 400 MHz): (*E*)-5j: δ 7.41– 7.18 (m, 20H), 6.47 (s, 1H), 5.86 (s, 1H, exo-C=CH), 4.87 (d, 1H, *J* = 4.8 Hz), 4.79–4.46 (m, 7H), 4.11 (dd, 1H, *J* = 8.8, 4.8 Hz), 3.80 (dd, 1H, *J* = 11.3, 2.3 Hz), 3.61 (dd, 1H, *J* = 11.3, 4.4 Hz), 2.03 (s, 3H). (*Z*)-5j: δ 5.15 (s, 1H, exo-C=CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (*E*)-5j: δ 154.4, 138.2, 138.1, 138.0, 137.5, 133.2, 129.1, 128.4, 128.3, 128.3, 128.1, 128.0, 128.0, 127.9, 127.8, 127.6, 127.6, 127.5, 126.1, 111.4, 79.9, 78.6, 73.4, 73.4, 72.7, 70.7, 68.7, 18.2. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₃₆H₃₆NaO₄⁺ 555.2506; found 555.2485.

(2R, 3R, 4R)-3, 4-Bis(benzyloxy)-2-benzyloxymethyl-5-octylidenetetrahydrofuran (5k). (E)-5k (pale-yellow oil, 0.0229 g, 0.0445 mmol, 45%) and (Z)-5k (pale-yellow oil, 0.0093 g, 0.018 mmol, 18%) were obtained from 4a (0.0602 g, 0.100 mmol) and octanal (0.0234 mL, 0.150 mmol) according to the general procedure described for 5a-m. Purification was carried out by column chromatography on silica gel (hexane/AcOEt = 1:0 \rightarrow 97:3, v/v) and PTLC (hexane/ AcOEt = 3:1, v/v). (E)-5k: ¹H NMR (CDCl₃, 400 MHz): δ 7.38– 7.27 (m, 15H), 5.03 (t, 1H, J = 7.8 Hz, exo-C=CH), 4.72 (d, 1H, J =11.6 Hz), 4.70 (d, 1H, J = 11.4 Hz), 4.60 (d, 1H, J = 12.0 Hz), 4.57 (d, 1H, J = 11.6 Hz), 4.54–4.48 (m, 3H), 4.44 (ddd, 1H, J = 8.8, 4.6, 2.4 Hz), 3.98 (dd, 1H, J = 8.8, 4.8 Hz), 3.75 (dd, 1H, J = 11.4, 2.4 Hz), 3.58 (dd, 1H, J = 11.4, 4.6 Hz), 2.08–1.92 (m, 2H), 1.41–1.19 (m, 10H), 0.88 (t, 3H, J = 7.0 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 152.3, 138.4, 138.1, 137.6, 128.4, 128.3, 127.9, 127.9, 127.7, 127.6, 104.5, 79.9, 77.9, 73.4, 72.3, 71.8, 70.2, 69.0, 31.8, 30.6, 29.2, 29.2, 27.3, 22.6, 14.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₄H₄₂NaO₄⁺ 537.2975; found 537.2952. (Z)-5k: ¹H NMR (CDCl₃, 400 MHz) δ 7.39–7.27 (m, 15H), 4.74 (d, 1H, J = 12.2 Hz), 4.62 (d, 1H, J = 11.8 Hz), 4.60 (d, 1H, J = 12.2 Hz), 4.55–4.44 (m, 5H, PhCH \times 3, C4-H, exo-C=CH), 4.09 (d, 1H, J = 4.4 Hz), 3.95 (dd, 1H, J = 7.8, 4.4 Hz), 3.74 (dd, 1H, J = 11.4, 2.6 Hz), 3.59 (dd, 1H, J = 11.4, 4.6 Hz), 2.17-2.07 (m, 2H), 1.43-1.25 (m, 10H), 0.87 (t, 3H, J = 7.0 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 151.3, 138.3, 138.1, 137.6, 128.4, 128.3, 128.0, 128.0, 127.8, 127.6, 127.6, 127.5, 104.0, 81.1, 74.8, 73.3, 71.9, 69.3, 69.1, 31.9, 29.8, 29.3, 29.2, 24.7, 22.7, 14.1. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{34}H_{42}NaO_4^+$ 537.2975; found 537.2969.

4,7-Anhydro-5,6,8-tri-O-benzyl-1,3-dideoxy-1-phenyl-D-ribo-oct-3-en-1-ynitol (51). (E)-51 (pale-yellow oil, 0.0296 g, 0.0573 mmol, 57%) and (Z)-51 (pale-yellow oil, 0.0131 g, 0.0254 mmol, 25%) were

obtained from 4a (0.0602 g, 0.100 mmol) and 3-phenyl-2-propinal (0.0195 g, 0.150 mmol) according to the general procedure described for 5a-m. Separation of (*E*)-5l and (*Z*)-5l was carried out by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 9:1, v/v$). The ¹H and ¹³C NMR spectra of (Z)-**51** were identical to those reported in the literature.¹⁹ (E)-51: ¹H NMR (CDCl₃, 400 MHz): δ 7.42–7.26 (m, 20H), 5.39 (s, 1H, exo-C=CH), 4.94 (d, 1H, J = 12.0 Hz), 4.76 (d, 1H, J = 12.0 Hz), 4.74 (d, 1H, J = 4.5 Hz), 4.66-4.63 (m, 1H),4.64 (d, 1H, J = 11.7 Hz), 4.58 (d, 1H, J = 12.1 Hz), 4.52 (d, 1H, J = 12.1 Hz), 4.45 (d, 1H, J = 11.7 Hz), 4.05 (dd, 1H, J = 8.8, 4.5 Hz), 3.79 (dd, 1H, J = 11.5, 2.2 Hz), 3.60 (dd, 1H, J = 11.5, 4.6 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 165.6, 138.2, 137.8, 137.3, 131.0, 128.4, 128.4, 128.3, 128.3, 128.0, 127.9, 127.7, 127.7, 127.6, 123.8, 91.1, 86.3, 85.1, 82.3, 76.8, 73.4, 73.4, 72.3, 71.4, 68.3. HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{35}H_{33}O_4^+$ 517.2373; found 517.2388. (Z)-**5**l: ¹H NMR (CDCl₃, 400 MHz): δ 7.45-7.43 (m, 2H), 7.37-7.26 (m, 18H), 4.90 (s, 1H, exo-C=CH), 4.72 (d, 1H, J = 12.0 Hz), 4.69-4.65 (m, 1H), 4.63-4.51 (m, 5H), 4.32 (d, 1H, J = 4.8 Hz), 4.07 (dd, 1H, J = 6.0, 4.8 Hz), 3.77 (dd, 1H, J = 11.5, 3.0 Hz), 3.63 (dd, 1H, I = 11.5, 3.8 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 163.1, 137.9, 137.4, 137.3, 131.4, 128.5, 128.4, 128.4, 128.1, 128.1, 128.0, 127.9, 127.7, 127.6, 124.0, 93.0, 84.2, 83.8, 81.8, 76.3, 75.5, 73.4, 72.0, 70.6, 68.4. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₅H₃₃O₄⁺ 517.2373; found 517.2380.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-cyclohexyl-1-deoxy-D-ribo-hex-1-enitol (5m). 5m (pale-yellow oil, 0.0391 g, 0.0784 mmol, 78%, E:Z = 68:32) was obtained from 4a (0.0602 g, 0.100 mmol) and cyclohexanecarboxaldehyde (0.0181 mL, 0.150 mmol) according to the general procedure described for 5a-m. ¹H NMR (CDCl₃, 400 MHz): δ 7.38–7.27 (m, 15H, (E, Z)-Ar-H), 4.92 (d, 1H, J = 10.5 Hz, (E)-exo-C=CH), 4.75-4.45 (m, 7H, (E, Z)-PhCH₂, (E)-C2-H, (Z)-C4-H), 4.43 (ddd, 1H, J = 8.8, 4.8, 2.4 Hz, (E)-C4-H), 4.33 (d, 1H, J = 9.0 Hz, (Z)-exo-C=CH), 4.06 (d, 1H, I = 4.6 Hz, (Z)-C2-H), 3.98 (dd, 1H, J = 8.8, 4.8 Hz, (E)-C3-H), 3.94 (dd, 1H, J = 8.0, 4.6 Hz, (*Z*)-C3-*H*), 3.75 (dd, 1H, *J* = 11.3, 2.4 Hz, (*E*)-C5-*H*), 3.74 (dd, 1H, *J* = 11.3, 2.5 Hz, (*Z*)-C5-*H*), 3.59 (dd, 1H, *J* = 11.3, 4.8 Hz, (*Z*)-C5-H), 3.59 (dd, 1H, J = 11.3, 4.8 Hz, (E)-C5-H), 2.50-2.40 (m, 1H, 1H)(Z)-CH(CH₂)₅), 2.05-1.95 (m, 1H, (E)-CH(CH₂)₅), 1.79-1.62 (m, 4H, (E, Z)-c-Hex), 1.38–1.01 (m, 6H, (E, Z)-c-Hex). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 151.1, 149.9, 147.4, 142.7, 140.9, 138.3, 138.3, 138.1, 138.1, 137.9, 137.4, 128.5, 128.4, 128.3, 128.3, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.6, 127.6, 127.5, 127.5, 126.9, 110.6, 110.1, 103.9, 81.2, 79.8, 78.2, 74.9, 74.2, 73.4, 73.2, 72.3, 71.8, 71.6, 70.1, 69.1, 69.1, 69.0, 65.3, 64.4, 36.4, 34.5, 34.3, 34.1, 33.6, 33.3, 33.0, 32.7, 26.4, 26.1, 25.9, 25.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₃H₃₈NaO₄⁺ 521.2662; found 521.2654.

Synthesis of (Z)-5a by lodine-Catalyzed Isomerization. A solution of 5a (E:Z = 94:6, 0.0493 g, 0.100 mmol) and I_2 (0.0076 g, 0.030 mmol) in dry 1,2-dichloroethane (1.00 mL) was stirred for 1 h at 50 °C in an oil bath under argon. Subsequently, the mixture was cooled to rt, before a saturated aqueous solution of $Na_2S_2O_3$ (2 mL) and a saturated aqueous solution of NaHCO3 (2 mL) were added. The resulting mixture was extracted with CH_2Cl_2 (3 × 10 mL). The organic layers were combined, dried over Na2SO4, and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 19:1 \rightarrow 9:1, v/v) to afford (Z)-5a (yellow solid, 0.0408 g, 0.0828 mmol, 83%). $[\alpha]_{\rm D}$ = +83.5 (c 1.06, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 7.61 (d, 2H, J = 7.2 Hz), 7.41–7.26 (m, 17H), 7.17–7.13 (m, 1H), 5.42 (s, 1H, exo-C=CH), 4.78 (d, 1H, J = 12.1 Hz), 4.72 (ddd, 1H, J = 7.0, 4.4, 2.8 Hz), 4.67–4.51 (m, 5H), 4.33 (d, 1H, J = 4.7 Hz), 4.06 (dd, 1H, J = 7.0, 4.7 Hz), 3.81 (dd, 1H, J = 11.3, 2.8 Hz), 3.66 (dd, 1H, J = 11.3, 4.4 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 153.4, 138.0, 137.8, 137.5, 135.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.6, 127.5, 125.8, 102.8, 83.0, 76.7, 76.3, 73.3, 72.0, 70.0, 69.0. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for C33H32NaO4+ 515.2193; found 515.2181.

Synthesis of (Z)-5c by lodine-Catalyzed Isomerization. (Z)-5c (pale-yellow solid, 0.0448 g, 0.0833 mmol, 83%) was obtained from 5c (E:Z = 88:12, 0.0537 g, 0.100 mmol) according to the procedure

Article

described for (*Z*)-**5a**. ¹H NMR (CDCl₃, 400 MHz): δ 8.15–8.11 (m, 2H), 7.70–7.67 (m, 2H), 7.38–7.22 (m, 15H), 5.51 (s, 1H, *exo*-C=CH), 4.75–4.47 (m, 8H), 4.09 (t, 1H, *J* = 4.9 Hz), 3.75 (dd, 1H, *J* = 11.2, 3.1 Hz), 3.63 (dd, 1H, *J* = 11.2, 3.8 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 158.3, 144.8, 142.8, 137.6, 137.3, 137.2, 128.5, 128.5, 128.4, 128.2, 128.1, 128.1, 128.0, 127.8, 127.5, 123.6, 99.7, 84.5, 77.3, 75.7, 73.4, 72.0, 71.3, 68.8 HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₃H₃₁NNaO₆⁺ 560.2044; found 560.2066.

2-Benzothiazolyl 3,5-Di-O-benzyl-1-thio- β -D-ribofuranoside (7). 7 was synthesized according to the β -selective ribofuranosylation reported by Hocek et al.³² 6^{40} (0.661 g, 2.00 mmol) and 2mercaptobenzothiazole (0.502 g, 3.00 mmol) were dried by repeated coevaporation with dry MeCN (5 \times 5 mL) and dissolved in dry MeCN (2.00 mL). The solution was cooled to 0 °C, before dry i-Pr₂NEt (0.523 mL, 3.00 mmol), diisopropyl azodicarboxylate (DIAD, 0.827 mL, 4.20 mmol), and Bu₃P (0.989 mL, 4.00 mmol) were added under stirring, and stirring was continued overnight at rt. Subsequently, the mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 4:1$, v/v) to afford 7 (0.479 g, 0.999 mmol, 50%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.93 (d, 1H, J = 8.4 Hz), 7.77 (d, 1H, J = 8.8 Hz), 7.43 (t, 1H, J = 8.4 Hz), 7.38-7.28 (m, 11H), 6.00 (d, 1H, J = 4.4 Hz), 4.65 (s, 2H), 4.58 (d, 1H, J = 12.2 Hz), 4.53 (d, 1H, J = 12.2 Hz), 4.45 (q, 1H, J = 4.4 Hz), 4.34 (q, 1H, J = 4.4 Hz), 4.24 (t, 1H, J = 4.4 Hz), 3.62 (dd, 1H, J = 10.8, 4.4 Hz), 3.57 (dd, 1H, J = 10.8, 4.4 Hz), 3.25 (d, 1H, J = 4.4 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 164.0, 152.9, 137.7, 136.8, 135.4, 128.5, 128.3, 128.2, 128.0, 127.6, 127.6, 126.0, 124.5, 122.0, 120.8, 90.3, 82.5, 78.5, 75.2, 73.4, 72.6, 69.7. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{26}H_{25}NNaO_4S_2^+$ 502.1117; found 502.1103.

2-Benzothiazolyl 2,3,5-Tri-O-benzyl-1-thio- β -D-ribofuranoside (β -3a). 7 (0.250 g, 0.520 mmol) was dried by repeated coevaporation with dry pyridine $(3 \times 3 \text{ mL})$ and dry toluene $(3 \times 3 \text{ mL})$ and dissolved in dry DMF (0.50 mL) under argon. Cs₂CO₃ (0.254 g, 0.780 mmol) was added under stirring at 0 °C and stirring was continued for 30 min. Subsequently, BnBr (0.0928 mL, 0.780 mmol) was added dropwise and stirring was continued for 10 min and for 1 d at rt, before H_2O (30 mL) was added. The resulting mixture was extracted with AcOEt (30 mL). The organic layer was washed with H₂O (30 mL), and the aqueous layer was re-extracted with AcOEt (30 mL). The organic layers were combined, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 17:3, v/v$) to afford β -3a (0.0571 g, 0.100 mmol, 19%) as a pale-yellow oil. ¹H NMR spectrum was identical to that we reported previously.²

2-Benzothiazolyl 2,3,5-Tri-O-benzyl-β-D-ribofuranosyl Sulfone (β-4a). β-4a (pale-yellow oil, 0.0495 g, 0.0823 mmol, 82%) was obtained from β -3a (0.0571 g, 0.100 mmol) according to the general procedure described for 4a. Purification was carried out by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 4:1, v/v$). ¹H NMR (CDCl₃, 400 MHz): δ 8.24 (dd, 1H, J = 7.4, 1.0 Hz), 7.98 (dd, 1H, J = 7.2, 1.6 Hz), 7.66–7.57 (m, 2H), 7.41–7.21 (m, 15H), 5.51 (d, 1H, J = 1.6 Hz), 4.80 (d, 1H, J = 12.0 Hz), 4.70 (dd, 1H, J = 5.2, 1.6 Hz), 4.61 (d, 1H, J = 12.0 Hz), 4.51 (d, 1H, J = 11.4 Hz), 4.42 (d, 1H, J = 12.0 Hz), 4.45 (d, 1H, J = 12.0 Hz), 4.45–4.41 (m, 1H), 4.40 (d, 1H, J = 11.4 Hz), 4.08 (dd, 1H, J = 8.2, 5.2 Hz), 3.65 (dd, 1H, J = 11.2, 3.4 Hz), 3.60 (dd, 1H, J = 11.2, 6.0 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 163.2, 152.8, 137.9, 137.5, 137.0, 136.3, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.6, 127.5, 125.6, 122.1, 96.7, 83.1, 78.2, 75.5, 73.2, 72.5, 72.3, 70.0. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{33}H_{31}NNaO_6S_2^+$ 624.1485; found 624.1495.

2-Benzothiazolyl 2,3,5-Tri-O-benzoyl-1-thio- β -D-ribofuranoside (β -3a'). 1-O-Acetyl-2,3,5-tri-O-benzoyl- β -D-ribofuranose (8) (0.328 g, 0.650 mmol) was dried by repeated coevaporation with dry toluene (3 × 5 mL) and dissolved in dry CH₂Cl₂ (6.00 mL) under argon. Subsequently, MS4A (1.0 g) were added, and the mixture was cooled to -20 °C. Under stirring, TMSI (0.0891 mL, 0.650 mmol) was added dropwise, and stirring was continued for 1 h. 2-Mercaptobeozothiazole (0.0836 g, 0.500 mmol) and a solution of

dry N,N-diethylaniline (0.0800 mL, 0.500 mmol) in dry CH₂Cl₂ (0.50 mL) were added successively, and stirring was continued for 4 h, before a saturated aqueous solution of NaHCO₃ (20 mL) was added. The mixture was extracted with CH_2Cl_2 (3 × 30 mL). The organic layers were combined, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 177:23$, v/v) to afford β -3a' (0.172 g, 0.280 mmol, 56%) as a white foam. ¹H NMR $(CDCl_{3}, 400 \text{ MHz}): \delta 8.09 \text{ (d, 2H, } J = 8.0 \text{ Hz}), 8.01 \text{ (d, 2H, } J = 8.0 \text{ Hz})$ Hz), 7.94–7.91 (m, 3H), 7.75 (d, 1H, J = 8.4 Hz), 7.56 (quint, 3H, J = 8.0 Hz, 7.44–7.30 (m, 8H), 6.46 (d, 1H, I = 3.6 Hz), 6.07 (dd, 1H, J = 5.6, 3.6 Hz), 6.00 (t, 1H, J = 5.6 Hz), 4.83 (dt, 1H, J = 5.6, 4.0 Hz), 4.76 (dd, 1H, J = 12.0, 4.0 Hz), 4.60 (dd, 1H, J = 12.0, 4.0 Hz). $^{13}C{^{1}H}$ NMR (CDCl₃, 100 MHz): δ 166.0, 165.2, 164.8, 161.9, 152.9, 135.6, 133.5, 133.5, 133.1, 129.8, 129.7, 129.7, 129.3, 128.7, 128.6, 128.4, 128.3, 126.1, 124.8, 122.2, 120.9, 87.4, 80.7, 75.4, 71.9, 63.6. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{33}H_{25}NNaO_7S_2^+$ 634.0965; found 634.0966.

2-Benzothiazolyl 2,3,5-Tri-O-benzoyl-β-D-ribofuranosyl Sulfone (β-4a'). β-4a' (white foam, 0.257 g, 0.399 mmol, 68%) was obtained from β -3a' (0.361 g, 0.591 mmol) according to the general procedure described for 4a. Purification was carried out by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 1:1, v/v$). ¹H NMR (\dot{CDCl}_{3} , 400 MHz): δ 8.22 (dd, 1H, J = 7.4, 1.2 Hz), 8.06 (dd, 2H, J = 8.0, 1.2 Hz), 7.97-7.94 (m, 3H), 7.87 (dd, 2H, J = 8.0, 1.2 Hz), 7.64–7.50 (m, 5H), 7.40 (dt, 4H, I = 8.0, 3.2 Hz), 7.32 (t, 2H, J = 8.0 Hz), 6.52 (dd, 1H, J = 5.4, 2.8 Hz), 6.03 (dd, 1H, J = 6.2, 5.4 Hz), 5.81 (d, 1H, J = 2.8 Hz), 4.82 (m, 1H), 4.69 (dd, 1H, J = 12.4, 4.0 Hz), 4.59 (dd, 1H, J = 12.4, 5.4 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 166.0, 164.8, 164.4, 162.7, 152.7, 137.4, 133.8, 133.6, 133.2, 129.8, 129.8, 129.7, 129.2, 128.5, 128.4, 128.3, 128.3, 128.2, 127.7, 125.6, 122.2, 95.3, 81.8, 72.1, 71.2, 63.3. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{33}H_{25}NNaO_9S_2^+$ 666.0863; found 666.0881.

(4S,5R)-2-Benzothiazolylsulfonyl-4-benzoyloxy-5-benzoyloxymethyl-4,5-dihydrofuran (10). β -4a' (0.0644 g, 0.100 mmol) and benzaldehyde (0.0153 mL, 0.150 mmol) were dissolved in dry THF (1.00 mL) under argon, and the solution was cooled to -60 °C. Under stirring, a 0.5 M KHMDS solution in toluene (0.28 mL, 0.140 mmol) was added dropwise. The temperature was gradually increased to rt over 1 h. Stirring was continued for 3 h, before a saturated aqueous solution of NH₄Cl (2 mL) and H₂O (3 mL) were added. The resulting mixture was then extracted with CH_2Cl_2 (3 × 10 mL). The organic layers were combined and washed with H₂O (10 mL). The aqueous layer was re-extracted with CH₂Cl₂ (15 mL). The organic layers were combined, dried over Na2SO4, and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 7:3, v/v$) to afford **10** (0.0484 g, 0.0928 mmol, 93%) as a paleyellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 8.07-8.03 (m, 3H), 7.90–7.86 (m, 1H), 7.72 (d, 2H, J = 7.8 Hz), 7.61 (t, 1H, J = 7.6 Hz), 7.57-7.44 (m, 5H), 7.30 (t, 2H, J = 7.8 Hz), 6.50 (d, 1H, J = 3.2 Hz), 6.17 (t, 1H, J = 3.2 Hz), 5.19-5.17 (m, 1H), 4.66 (dd, 1H, J = 12.0, 3.4 Hz), 4.57 (dd, 1H, J = 12.0, 4.0 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 165.9, 165.6, 162.8, 157.8, 152.5, 137.4, 133.8, 133.2, 129.8, 129.5, 128.7, 128.5, 128.3, 128.3, 127.7, 125.8, 122.1, 109.2, 87.8, 77.5, 63.5. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for C₂₆H₁₉NNaO₇S₂⁺ 544.0495; found 544.0485.

(15,3R,5R,6R,7R)-6,7-Bis(benzyloxy)-5-benzyloxymethyl-1-phenyl-4-oxaspiro[2.4]heptane (11). Sa (E/Z = 94:6, 0.443 g, 0.900 mmol) was dissolved in dry CH₂Cl₂ (0.50 mL) under argon. CH₂l₂ (0.218 mL, 2.70 mmol) was added dropwise to a mixture of 1.0 M Et₂Zn in hexane (2.7 mL, 2.7 mmol) and dry CH₂Cl₂ (1.50 mL) under argon in a separate flask at 0 °C under stirring and stirring was continued for 10 min. Subsequently, the latter solution was added dropwise to the former at 0 °C under stirring; then, stirring was continued for 1 d at rt. The mixture was subsequently diluted with CH₂Cl₂ (20 mL) and washed with a saturated aqueous solution of NH₄Cl (20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The organic layers were combined and washed with a saturated aqueous solution of NaCl (20 mL). The aqueous layer was re-extracted with CH2Cl2 (20 mL). The organic layers were combined, dried over Na2SO4, and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 17:3$, v/v) to afford 11 (0.412 g, 0.814 mmol, 90%, pale-yellow oil) and epi-11 (0.0029 g, 0.0057 mmol, 6%, pale-yellow oil). 11: $^1\mathrm{H}$ NMR (CDCl₃, 400 MHz): δ 7.38–7.21 (m, 13H), 7.16–7.12 (m, 5H), 6.78–6.74 (m, 2H), 4.59 (d, 2H, J = 11.8 Hz), 4.50 (d, 1H, J = 11.8 Hz), 4.48 (d, 1H, J = 12.1 Hz), 4.38 (d, 1H, J = 11.8 Hz), 4.32 (d, 1H, J = 12.1 Hz), 4.32–4.28 (m, 1H), 3.97 (dd, 1H, J = 7.4, 4.7 Hz), 3.67 (dd, 1H, J = 10.6, 3.1 Hz), 3.55 (dd, 1H, J = 10.6, 4.3 Hz), 3.33 (d, 1H, J = 4.7 Hz), 2.22 (dd, 1H, J = 9.8, 8.0 Hz), 1.47-1.40 (m, J = 9.8, 1.47-1.40 (m, J = 9.8))2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 138.3, 138.1, 137.5, 137.4, 128.3, 128.2, 128.2, 128.2, 128.1, 128.0, 127.8, 127.7, 127.5, 127.2, 125.7, 79.5, 78.6, 75.4, 73.3, 72.4, 71.6, 70.5, 69.8, 27.8, 12.1. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{34}H_{34}NaO_4^+$ 529.2349; found 529.2350. The ¹H NMR spectrum of epi-11 was identical to that of the product obtained from (Z)-5a shown below.

(1R,3R,5R,6R,7R)-6,7-Bis(benzyloxy)-5-benzyloxymethyl-1-phenyl-4-oxaspiro[2.4]heptane (epi-11). epi-11 (pale-yellow oil, 0.0990 g, 0.195 mmol, 98%) was obtained from (Z)-5a (0.0988 g, 0.201 mmol) according to the procedure described for 11. Purification was carried out by column chromatography on silica gel (hexane/AcOEt = $1:0 \rightarrow 37:3, v/v$). ¹H NMR (CDCl₃, 400 MHz): δ 7.39–7.21 (m, 15H), 7.18–7.09 (m, 5H), 4.82 (d, 1H, J = 11.9 Hz), 4.71 (d, 1H, J = 11.9 Hz), 4.66 (d, 1H, J = 11.8 Hz), 4.57 (d, 1H, J = 11.8 Hz), 4.34 (td, 1H, J = 6.2, 3.8 Hz), 4.22 (d, 1H, J = 12.1 Hz), 4.06 (d, 1H, J = 12.1 Hz), 4.00 (dd, 1H, J = 6.2, 4.8 Hz), 3.88 (d, 1H, J = 4.8 Hz), 3.27 (dd, 1H, J = 10.6, 3.8 Hz), 2.98 (dd, 1H, J = 10.6, 6.2 Hz), 1.86 (dd, 1H, J = 10.2, 7.2 Hz), 1.55 (dd, 1H, J = 10.2, 7.2 Hz), 1.36 (t, 1H, J = 7.2 Hz). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 138.4, 138.3, 137.8, 137.7, 128.3, 128.1, 127.9, 127.8, 127.7, 127.7, 127.6, 127.4, 127.3, 125.6, 80.8, 80.1, 79.8, 73.0, 72.2, 71.7, 70.8, 69.8, 26.5, 13.9. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{34}H_{34}NaO_4^+$ 529.2349; found 529.2359.

Methyl 2,3,5-Tri-O-(2-cyanoethyl)- β -D-ribofuranoside (β -17). AcCl (0.725 mL, 10.0 mmol) was mixed with dry MeOH (30.0 mL) under argon and added to a stirred mixture of ribose (7.51 g, 50.0 mmol) in dry MeOH (100.0 mL) at rt. The stirring was continued for 6 h, before NaHCO3 (5.05 g, 60.0 mmol) was added. After the insoluble materials were removed by suction filtration, the filtrate was concentrated under reduced pressure. The residue was then dried by repeated coevaporation with dry pyridine $(3 \times 10 \text{ mL})$ and dry toluene $(3 \times 10 \text{ mL})$ and dissolved in dry *t*-BuOH (250 mL). Acrylonitrile (197 mL, 3.00 mol) and Cs₂CO₃ (48.9 g, 150 mmol) were added to the solution under stirring at rt under argon. The stirring was continued for 1 h, before insoluble materials were removed by suction filtration through a pad of celite. The filtrate was concentrated under reduced pressure to give a crude mixture containing α -17 and β -17 (ca. 2:8). Purification by column chromatography on silica gel (CH₂Cl₂/AcOEt = $1:0 \rightarrow 7:3$ then AcOEt/MeOH = 4:1, v/v) afforded β -17 (12.3 g, 37.9 mmol, 76% from ribose) as a pale-yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 4.90 (d, 1H, J = 1.4 Hz), 4.19 (dt, 1H, J = 6.5, 4.7 Hz), 4.09 (dd, 1H, J = 6.5, 4.7 Hz), 3.90-3.74 (m, 7H), 3.69-3.62 (m, 2H), 3.38 (s, 3H), 2.69–2.62 (m, 6H). $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 100 MHz): δ 118.0, 117.9, 117.9, 106.1, 81.5, 79.9, 79.7, 71.8, 66.0, 65.5, 65.4, 55.3, 19.2, 19.1, 18.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₂₁N₃NaO₅⁺ 346.1373; found 346.1382.

2,3,5-Tri-O-(2-cyanoethyl)-D-ribofuranose (18). A mixture of β -17 (12.3 g, 37.9 mmol) with AcOH (190.0 mL) and 1 M HCl aq. (95.0 mL) was stirred for 4 h at 80 °C in an oil bath. The mixture was then cooled to rt and concentrated under reduced pressure. The residue was dissolved in AcOEt (150 mL) and washed successively with saturated aqueous solutions of NaHCO₃ (150 mL) and NaCl (100 mL). The aqueous layers were combined and extracted with AcOEt (10 × 100 mL). The organic layers were combined, dried over Na₂SO₄, and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on

silica gel (CH₂Cl₂/AcOEt = 6:4 \rightarrow 0:1 then AcOEt/MeOH = 4:1, v/ v) to afford **18** (10.5 g, 33.8 mmol, 89%) as a pale-yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 5.37–5.33 (m, 1H), 4.31–3.56 (m, 11H), 2.80–2.61 (m, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 118.2, 118.0, 117.8, 99.9, 95.7, 82.3, 80.8, 79.9, 79.2, 78.8, 78.8, 71.1, 70.6, 66.2, 66.0, 65.8, 65.3, 65.3, 65.0, 19.2, 19.1, 19.1, 18.9, 18.8. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₁₄H₁₉N₃NaO₅⁺ 332.1217; found 332.1205.

1-O-Trimethylsilyl-2,3,5-tri-O-(2-cyanoethyl)-D-ribofuranose (19). 18 (10.5 g, 33.8 mmol) was dried by repeated coevaporation with dry toluene $(3 \times 10 \text{ mL})$ and dissolved in dry MeCN (169.0 mL) under argon. N,O-Bis(trimethylsilyl)acetamide (16.5 mL, 67.6 mmol) was added to the solution at rt under stirring. After 2 h of stirring, H₂O (100 mL) was added, and the mixture was extracted with AcOEt (3 \times 100 mL). The organic layers were combined and washed with H₂O (100 mL). The aqueous layer was extracted with AcOEt (100 mL). The organic layers were combined, dried over Na2SO4, and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/AcOEt = 1:0 \rightarrow 2:1, v/v) to afford 19 (10.7 g, 28.1 mmol, 83%, $\alpha:\beta = 7:93$) as a pale-yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 5.46 (d, 1H, J = 3.8 Hz, α), 5.28 (d, 1H, J = 1.5 Hz, β), 4.25–4.04 (m, 2H, α , β), 4.00–3.64 (m, 9H, α , β), 2.73–2.60 (m, 6H, α , β), 0.19 (s, 9H, α), 0.16 (s, 9H, β). ¹³C{¹H} NMR (CDCl₃, 100 MHz): α-19: δ 118.2, 117.9, 96.4, 80.1, 79.6, 70.3, 66.1, 65.5, 65.5, 19.2, 18.9, 0.2. β-19: 117.9, 117.9, 117.8, 99.9, 83.3, 79.6, 79.5, 72.0, 65.8, 65.4, 19.2, 19.1, 18.9, 0.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₇H₂₇N₃NaO₅Si⁺ 404.1612; found 404.1626.

2-Benzothiazolyl 2,3,5-Tri-O-(2-cyanoethyl)- α -D-ribofuranoside (21). 19 (2.48 g, 6.50 mmol) was dried by repeated coevaporation with dry toluene $(3 \times 10 \text{ mL})$ and dissolved in dry CH₂Cl₂ (60.0 mL) under argon. Subsequently, MS4A (10.0 g) were added, and the mixture was cooled to -20 °C. Under stirring, TMSI (0.891 mL, 6.50 mmol) was added dropwise to the mixture, and stirring was continued for 1 h at the same temperature. 2-Mercaptobenzothiazole (0.836 g, 5.00 mmol) and a solution of dry N,N-diethylaniline (0.799 mL, 5.00 mmol) in dry CH₂Cl₂ (5.00 mL) were added dropwise, and stirring was continued for 4 h before a saturated aqueous solution of NaHCO₃ (50 mL) was added. The mixture was warmed to rt and extracted with CH_2Cl_2 (3 × 50 mL). The organic layers were combined, dried over Na2SO4, and filtered, and the filtrate was concentrated under reduced pressure. The residue was then purified by column chromatography on silica gel (CH₂Cl₂/AcOEt = 1:0 \rightarrow 1:1, v/v) to afford 21 (2.09 g, 4.57 mmol, 91%, $\alpha:\beta > 99:1$) as a paleyellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.91 (d, 1H, J = 8.0 Hz), 7.77 (d, 1H, J = 8.0 Hz), 7.42 (t, 1H, J = 8.0 Hz), 7.32 (t, 1H, J = 8.0 Hz), 6.80 (d, 1H, J = 5.6 Hz), 4.45 (t, 1H, J = 5.6 Hz), 4.35 (q, 1H, J = 3.0 Hz), 4.19 (dd, 1H, J = 5.6, 3.8 Hz), 4.11 (dt, 1H, J = 9.7, 5.6 Hz), 3.97 (dt, 1H, J = 9.1, 5.6 Hz), 3.89-3.69 (m, 6H), 2.79-2.63 (m, 6H). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 100 MHz): δ 165.4, 152.9, 135.5, 126.0, 124.5, 121.9, 120.9, 118.0, 117.5, 88.8, 82.0, 79.9, 78.5, 69.7, 66.2, 66.1, 65.8, 19.3, 19.0, 18.9. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for $C_{21}H_{22}N_4NaO_4S_2^+$ 481.0975; found 481.0974. 2-Benzothiazolyl 2,3,5-Tri-O-(2-cyanoethyl)- α -D-ribofuranosyl

2-Benzothiazolyl 2,3,5-Tri-O-(2-cyanoethyl)-α-*D*-ribofuranosyl Sulfone (22). 22 (white foam, 1.83 g, 3.73 mmol, 82%) was obtained from 21 (2.09 g, 4.57 mmol) according to the general procedure described for 4a. Purification was carried out by column chromatography on silica gel (hexane/AcOEt = 1:0 → 0:1, v/v). [α]_D = +154.4 (*c* 1.05, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 8.25-8.23 (m, 1H), 8.04-8.01 (m, 1H), 7.67-7.58 (m, 2H), 5.69 (d, 1H, *J* = 5.8 Hz), 4.72 (t, 1H, *J* = 5.8 Hz), 4.56 (dt, 1H, *J* = 6.8, 2.3 Hz), 4.26-4.19 (m, 2H), 4.02-3.92 (m, 2H), 3.80-3.76 (m, 1H), 3.75-3.74 (m, 2H), 3.68 (t, 2H, *J* = 6.0 Hz), 2.87-2.48 (m, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 165.1, 152.3, 137.2, 127.9, 127.4, 125.3, 122.2, 118.0, 117.9, 117.8, 94.1, 82.3, 79.1, 77.9, 68.4, 67.7, 66.2, 65.8, 18.8, 18.7. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₁H₂₂N₄NaO₆S₂⁺ \$13.0873; found \$13.0883.

2,5-Anhydro-3,4,6-tri-O-(2-cyanoethyl)-1-deoxy-1-phenyl-D-ribohex-1-enitol (23). 22 (0.0491 g, 0.100 mmol) and benzaldehyde (0.0112 mL, 0.110 mmol) were dissolved in dry THF (1.00 mL) Article

under argon and cooled to -60 °C. Under stirring, a 0.5 M KHMDS solution in toluene (0.210 mL, 0.105 mmol) was added dropwise. The mixture was gradually warmed to rt over 1 h and stirring was continued for 3 h, before a saturated aqueous solution of NH₄Cl (2 mL) and H₂O (3 mL) were added. The mixture was then extracted with CH_2Cl_2 (3 × 10 mL). The organic layers were combined and washed with H₂O (10 mL). The aqueous layer was re-extracted with CH₂Cl₂ (15 mL). The organic layers were combined, dried over Na₂SO₄, and filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ AcOEt = $1:0 \rightarrow 17:3$, v/v) to afford 23 (0.0336 g, 0.0881 mmol, 88%, E:Z = 93:7) as a pale-yellow oil. $[\alpha]_D = -52.6$ (c 1.29, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): (E)-23: δ 7.35-7.20 (m, 5H), 6.24 (s, 1H, exo-C=CH), 4.84 (d, 1H, J = 5.0 Hz), 4.38 (ddd, 1H, J = 8.6, 3.7, 2.4 Hz), 4.18 (dd, 1H, J = 8.6, 5.0 Hz), 3.97 (dt, 1H, J = 9.5, 5.8 Hz), 3.90–3.67 (m, 7H), 2.71 (t, 2H, J = 6.0 Hz), 2.65 (t, 2H, J = 6.0 Hz), 2.60–2.47 (m, 2H). (Z)-23: δ 5.48 (s, 1H, exo-C=CH). ¹³C{¹H} NMR (CDCl₃, 100 MHz): (E)-23: δ 153.7, 135.1, 128.5, 127.7, 126.3, 117.9, 117.8, 117.8, 107.0, 79.8, 78.6, 73.3, 69.2, 66.0, 65.2, 63.1, 18.9, 18.9, 18.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₂₃N₃NaO₄⁺ 404.1581; found 404.1573.

2,5-Anhydro-1-deoxy-1-phenyl-D-ribo-hex-1-enitol (24). A solution of 23 (0.0382 g, 0.100 mmol) and Na₂S (0.0117 g, 0.150 mmol) in CH₂Cl₂/MeOH (2:1, v/v; 0.30 mL) was stirred for 3 days at rt, before being concentrated under reduced pressure. The residue was then purified by column chromatography on silica gel (CH₂Cl₂/ MeOH = $1:0 \rightarrow 94:6$, v/v) to afford 24 (0.0195 g, 0.0877 mmol, 88%, E:Z = 93:7) as a pale-yellow solid. $[\alpha]_{D} = -293.8$ (c 2.19, MeOH). ¹H NMR (DMSO- d_{6} , 400 MHz): (*E*)-24: δ 7.40 (d, 2H, *J* = 7.4 Hz), 7.26 (t, 2H, I = 7.4 Hz), 7.11 (t, 1H, I = 7.4 Hz), 5.82 (s, 1H), 5.32 (d, 1H, J = 5.0 Hz), 5.23 (d, 1H, J = 6.8 Hz), 4.85 (t, 1H, J = 5.6 Hz), 4.37 (t, 1H, J = 5.0 Hz), 4.03 (ddd, 1H, J = 8.8, 5.0, 2.2 Hz), 3.85 (ddd, 1H, J = 8.8, 6.8, 5.6 Hz), 3.72 (ddd, 1H, J = 12.4, 5.6, 2.2 Hz),3.45 (dt, 1H, J = 12.4, 5.6 Hz). (Z)-24: δ 5.30 (s, 1H, exo-C=CH). ¹³C{¹H} NMR (DMSO- d_6 , 100 MHz): (*E*)-**24**: δ 159.2, 136.5, 128.3, 127.1, 125.1, 102.9, 82.5, 70.4, 68.7, 60.4. HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{12}H_{14}NaO_4^+$ 245.0784; found 245.0767.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.0c02297.

FAIR data includes the primary NMR FID files for compounds 4a-d, 5a-m, (Z)-5a,c, 7, β -4a, β -3a', β -4a', 10, 11, epi-11, β -17, 18, 19, and 21-24 (ZIP)

X-ray crystal data for **4a**; X-ray structure analysis, crystal data, structure refinement results, bond lengths, and bond angles of **4a**; computational details; NMR spectra (PDF)

Accession Codes

CCDC 2009571 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Natsuhisa Oka – Department of Chemistry and Biomolecular Science, Faculty of Engineering, Center for Highly Advanced Integration of Nano and Life Sciences, and Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System Furo-cho, Gifu University,

Gifu 501-1193, Japan; orcid.org/0000-0002-3114-9233; Email: oka@gifu-u.ac.jp

Kaori Ando – Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan; orcid.org/0000-0001-5345-2754; Email: ando@gifu-u.ac.jp

Authors

Ayumi Mori – Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

Kanna Suzuki – Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.0c02297

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Toshifumi Maruyama (Gifu University) for his skilled assistance in X-ray crystallographic analysis. This work was partially supported by JST CREST Grant Number JPMJCR18S1, Japan, and the Koshiyama Research Grant.

REFERENCES

(1) (a) Taillefumier, C.; Chapleur, Y. Synthesis and Uses of exo-Glycals. Chem. Rev. 2004, 104, 263–292. (b) Lin, C.-H.; Lin, H.-C.; Yang, W.-B. exo-Glycal Chemistry: General Aspects and Synthetic Applications for Biochemical Use. Curr. Top. Med. Chem. 2005, 5, 1431–1457. (c) Frédéric, C. J.-M.; Vincent, S. P. Synthesis of exo-Glycals and Their Biochemical Applications. Tetrahedron 2018, 74, 6512–6519.

(2) (a) Kobayashi, Y.; Fujimoto, T.; Fukuyama, T. Stereocontrolled Total Synthesis of (+)-K252a. *J. Am. Chem. Soc.* **1999**, *121*, 6501– 6502. (b) Ueda, A.; Yamamoto, A.; Kato, D.; Kishi, Y. Total Synthesis of Halichondrin A, the Missing Member in the Halichondrin Class of Natural Products. *J. Am. Chem. Soc.* **2014**, *136*, 5171–5176.

(3) Pellegrini-Moïse, N.; Richard, M. Cycloaddition Reactions of Sugar-Based Olefins, Nitrones and Nitrile Oxides: En Route to Saccharidic Spiroisoxazoli(di)nes. In *Carbohydrate-spiro-heterocycles*. *Topics in Heterocyclic Chemistry*; Somsák, L., Ed.; Springer: Cham, 2019; Vol. 57.

(4) (a) Lehmann, J.; Schwesinger, B. Attempted Affinity-Labelling of β-D-Galactosidase from Escherichia coli with 2,6:3,4-Dianhydro-1-Deoxy-D-talo-Hept-1-Enitol. Carbohydr. Res. 1982, 107, 43-53. (b) Müller, B.; Schaub, C.; Schmidt, R. R. Efficient Sialyltransferase Inhibitors Based on Transition-State Analogues of the Sialyl Donor. Angew. Chem. Int. Ed 1998, 37, 2893-2897. (c) Stolz, F.; Reiner, M.; Blume, A.; Reutter, W.; Schmidt, R. R. Novel UDP-Glycal Derivatives as Transition State Analogue Inhibitors of UDP-GlcNAc 2-Epimerase. J. Org. Chem. 2004, 69, 665-679. (d) Caravano, A.; Vincent, S. P.; Sinaÿ, P. Efficient Synthesis of a Nucleoside-Diphospho-exo-Glycal Displaying Time-Dependent Inactivation of UDP-Galactopyranose Mutase. Chem. Commun. 2004, 183, 1216-1217. (e) Caravano, A.; Dohi, H.; Sinaÿ, P.; Vincent, S. P. A New Methodology for the Synthesis of Fluorinated exo-Glycals and Their Time-Dependent Inhibition of UDP-Galactopyranose Mutase. Chem. - Eur. J. 2006, 12, 3114-3123. (f) Dumitrescu, L.; Eppe, G.; Tikad, A.; Pan, W.; El Bkassiny, S.; Gurcha, S. S.; Ardá, A.; Jiménez-Barbero, J.; Besra, G. S.; Vincent, S. P. Selectfluor and NFSI exo-Glycal Fluorination Strategies Applied to the Enhancement of the Binding Affinity of Galactofuranosyltransferase GlfT2 Inhibitors. Chem. - Eur. J. 2014, 20, 15208-15215. (g) Frédéric, C. J.-M.; Tikad, A.; Fu, J.; Pan, W.; Zheng, R. B.; Koizumi, A.; Xue, X.; Lowary, T. L.; Vincent, S. P. Synthesis of Unprecedented Sulfonylated Phosphono-*exo*-Glycals Designed as Inhibitors of the Three Mycobacterial Galactofuranose Processing Enzymes. *Chem. – Eur. J.* **2016**, *22*, 15913–15920.

(5) (a) Bender, S. L.; Widlanski, T.; Knowles, J. R. Dehydroquinate Synthase: The Use of Substrate Analogs to Probe the Early Steps of the Catalyzed Reaction. Biochemistry 1989, 28, 7560-7572. (b) Widlanski, T.; Bender, S. L.; Knowles, J. R. Dehydroquinate Synthase: The use of Substrate Analogs to Probe the Late Steps of the Catalyzed Reaction. Biochemistry 1989, 28, 7572-7582. (c) Yamauchi, N.; Kakinuma, K. Enzymic Carbocycle Formation in Microbial Secondary Metabolism. The Mechanism of the 2-Deoxy-scyllo-Inosose Synthase Reaction as a Crucial Step in the 2-Deoxystreptamine Biosynthesis in Streptomyces fradiae. J. Org. Chem. 1995, 60, 5614-5619. (d) Yang, X.; Hu, Y.; Yin, D. H.; Turner, M. A.; Wang, M.; Borchardt, R. T.; Howell, P. L.; Kuczera, K.; Schowen, R. L. Catalytic Strategy of S-Adenosyl-L-Homocysteine Hydrolase: Transition-State Stabilization and the Avoidance of Abortive Reactions. Biochemistry 2003, 42, 1900–1909. (e) Wyszynski, F. J.; Lee, S. S.; Yabe, T.; Wang, H.; Gomez-Escribano, J. P.; Bibb, M. J.; Lee, S. J.; Davies, G. J.; Davis, B. G. Biosynthesis of the Tunicamycin Antibiotics Proceeds via Unique exo-Glycal Intermediates. Nat. Chem. 2012, 4, 539-546. (f) Kean, K. M.; Codding, S. J.; Asamizu, S.; Mahmud, T.; Karplus, P. A. Structure of a Sedoheptulose 7-Phosphate Cyclase: ValA from Streptomyces hygroscopicus. Biochemistry 2014, 53, 4250-4260.

(6) Julia olefination: (a) Gueyrard, D.; Haddoub, R.; Salem, A.; Bacar, N. S.; Goekjian, P. G. Synthesis of Methylene Exoglycals Using a Modified Julia Olefination. Synlett 2005, 520-522. (b) Bourdon, B.; Corbet, M.; Fontaine, P.; Goekjian, P. G.; Gueyrard, D. Synthesis of Enol Ethers from Lactones Using Modified Julia Olefination Reagents: Application to the Preparation of Tri- and Tetrasubstituted Exoglycals. Tetrahedron Lett. 2008, 49, 747-749. (c) Tomas, L.; Boije Af Gennäs, G.; Hiebel, M. A.; Hampson, P.; Gueyrard, D.; Pelotier, B.; Yli-Kauhaluoma, J.; Piva, O.; Lord, J. M.; Goekjian, P. G. Total Synthesis of Bistramide A and Its 36(Z) Isomers: Differential Effect on Cell Division, Differentiation, and Apoptosis. Chem. - Eur. J. 2012, 18, 7452-7466. (d) Habib, S.; Larnaud, F.; Pfund, E.; Lequeux, T.; Fenet, B.; Goekjian, P. G.; Gueyrard, D. Synthesis of Fluorinated exo-Glycals through Modified Julia Olefination. Eur. J. Org. Chem. 2013, 2013, 1872-1875. (e) Habib, S.; Larnaud, F.; Pfund, E.; Mena Barragán, T.; Lequeux, T.; Ortiz Mellet, C.; Goekjian, P. G.; Gueyrard, D. Synthesis of Substituted exo-Glucals via a Modified Julia Olefination and Identification as Selective β -Glucosidase Inhibitors. Org. Biomol. Chem. 2014, 12, 690-699. (f) Habib, S.; Gueyrard, D. Modified Julia Olefination on Sugar-Derived Lactones: Synthesis of Difluoro-exo-Glycals. Eur. J. Org. Chem. 2015, 2015, 871-875. (g) Liu, X.; Yin, Q.; Yin, J.; Chen, G.; Wang, X.; You, Q.-D.; Chen, Y.-L.; Xiong, B.; Shen, J. Highly Stereoselective Nucleophilic Addition of Difluoromethyl-2-Pyridyl Sulfone to Sugar Lactones and Efficient Synthesis of Fluorinated 2-Ketoses. Eur. J. Org. Chem. 2014, 2014, 6150-6154.

(7) Wittig reaction: (a) Hanessian, S.; Tyler, P. C.; Demailly, G.; Chapleur, Y. Convergent Stereocontrolled Synthesis of Substituted exo-Glycals by Stille Cross-Coupling of Halo-exo-Glycals and Stannanes. J. Am. Chem. Soc. 1981, 103, 6243-6246. (b) Lakhrissi, Y.; Taillefumier, C.; Lakhrissi, M.; Chapleur, Y. Efficient Conditions for the Synthesis of C-Glycosylidene Derivatives: A Direct and Stereoselective Route to C-Glycosyl Compounds. Tetrahedron: Asymmetry 2000, 11, 417-421. (c) Taillefumier, C.; Lakhrissi, Y.; Lakhrissi, M.; Chapleur, Y. Facile Synthesis of Fused Furanosyl β-Amino Acids from Protected Sugar Lactones: Incorporation into a Peptide Chain. Tetrahedron: Asymmetry 2002, 13, 1707-1711. (d) Thien, H.-T. T.; Novoa, A.; Pellegrini-Moïse, N.; Chrétien, F.; Didierjean, C.; Chapleur, Y. Tetrasubstituted C-Glycosylidenes and C-Glycosyl Compounds from Di- and Monobromo-Substituted exo-Glycals. Eur. J. Org. Chem. 2011, 2011, 6939-6951. (e) Richard, M.; Chateau, A.; Jelsch, C.; Didierjean, C.; Manival, X.; Charron, C.; Maigret, B.; Barberi-Heyob, M.; Chapleur, Y.; Boura, C.; Pellegrini-Moïse, N. Carbohydrate-Based Peptidomimetics Targeting Neuropilin-1: Synthesis, Molecular Docking Study and in Vitro Biological

pubs.acs.org/joc

Activities. Bioorg. Med. Chem. 2016, 24, 5315–5325. (f) Molina, A.; Czernecki, S.; Xie, J. Stereocontrolled Synthesis of β -C-Glycosides and Amino β -C-Glycosides by Wittig Olefination of Perbenzylated Glyconolactones Derivatives. Tetrahedron Lett. 1998, 39, 7507–7510. (g) Knapp, S.; Amorelli, B.; A. Doss, G. A. Fused GalNAc-Thiazole from a Singular and Unanticipated Fragmentation. Tetrahedron Lett. 2004, 45, 8507–8510. (h) Gascón-López, M.; Motevalli, M.; Paloumbis, G.; Bladon, P.; Wyatt, P. B. C-Glycosylidene Derivatives (exo-Glycals): Their Synthesis by Reaction of Protected Sugar Lactones with Tributylphosphonium Ylids, Conformational Analysis and Stereoselective Reduction. Tetrahedron 2003, 59, 9349–9360. (i) Coumbarides, G. S.; Motevalli, M.; Muse, W. A.; Wyatt, P. B. Stereoselective Synthesis of (E)-Mannosylidene Derivatives Using the Wittig Reaction. J. Org. Chem. 2006, 71, 7888–7891.

(8) Tebbe and Petasis reagents: (a) Wilcox, C. S.; Long, G. W.; Suh, H. A New Approach to C-Glycoside Congeners: Metal Carbene Mediated Methylenation of Aldonolactones. *Tetrahedron Lett.* **1984**, 25, 395–398. (b) RajanBabu, T. V.; Reddy, G. S. 1-Methylene Sugars as C-Glycoside Precursors. J. Org. Chem. **1986**, 51, 5458–5461. (c) Csuk, R.; I. Glänzer, B. Methylenation of Aldonolactones. *Tetrahedron* **1991**, 47, 1655–1664. (d) Haudrechy, A.; Sinaÿ, P. Cyclization of Hydroxy Enol Ethers: A Stereocontrolled Approach to 3-Deoxy-D-Manno-2-Octulosonic Acid Containing Disaccharides. J. Org. Chem. **1992**, 57, 4142–4151. (e) Li, X.; Ohtake, H.; Takahashi, H.; Ikegami, S. An Efficient Synthesis of New 1'-C-Methyl- α -O-Disaccharides Using 1-Methylenesugars as the Glycosyl Donors. *Tetrahedron* **2001**, 57, 4283–4295.

(9) Dihalomethylenation: (a) Chapleur, Y. A Convenient Synthesis of Substituted Chiral Tetrahydrofurans from Sugar y-Lactones. J. Chem. Soc. Chem. Commun. 1984, 449-450. (b) Bandzouzi, A.; Chapleur, Y. Dichloromethylenation of Sugar y-Lactones: A Stereospecific Synthesis of L-(+)-Muscarine and L-(+)-Epimuscarine Toluene-p-Sulphonates. J. Chem. Soc. Perkin Trans. 1 1987, 661-664. (c) Lakhrissi, M.; Chapleur, Y. Dichloromethylenation of Lactones. 6. Efficient Synthesis of Dichloroolefins from Lactones and Acetates Using Triphenylphosphine and Tetrachloromethane. J. Org. Chem. 1994, 59, 5752-5757. (d) Novoa, A.; Pellegrini-Moïse, N.; Lamandé-Langle, S.; Chapleur, Y. Efficient Access to Disubstituted exo-Glycals. Application to the Preparation of C-Glycosyl Compounds. Tetrahedron Lett. 2009, 50, 6484-6487. (e) Novoa, A.; Pellegrini-Moïse, N.; Bourg, S.; Thoret, S.; Dubois, J.; Aubert, G.; Cresteil, T.; Chapleur, Y. Design, Synthesis and Antiproliferative Activities of Biarylolefins Based on Polyhydroxylated and Carbohydrate Scaffolds. Eur. J. Med. Chem. 2011, 46, 3570-3580. (f) Motherwell, W. B.; Tozer, M. J.; Ross, B. C. A Convenient Method for Replacement of the Anomeric Hydroxy Group in Carbohydrates by Difluoromethyl Functionality. J. Chem. Soc. Chem. Commun. 1989, 1437-1439.

(10) Nucleophilic addition and dehydration: (a) Bischofberger, K.; Hall, R. H.; Jordan, A. Synthesis of Glycosyl α-Amino Acids. J. Chem. Soc. Chem. Commun. 1975, 806-807. (b) Hall, R. H.; Bischofberger, K.; Eitelman, S. J.; Jordaan, A. Synthesis of C-Glycosyl Compounds. Part 1. Reaction of Ethyl Isocyanoacetate with 2,3:5,6-Di-O-Isopropylidene-D-Mannono-1,4-Lactone. J. Chem. Soc. Perkin Trans. 1 1977, 743-753. (c) Trost, B. M.; Runge, T. A. Palladium-Catalyzed 1,3-Oxygen-to-Carbon Alkyl Shifts. A Cyclopentanone Synthesis. J. Am. Chem. Soc. 1981, 103, 7559-7572. (d) Lay, L.; Nicotra, F.; Panza, L.; Russo, G.; Caneva, E. Synthesis of C-Disaccharides through Dimerization of exo-Glycals. J. Org. Chem. 1992, 57, 1304-1306. (e) Yang, W.-B.; Chang, C.-F.; Wang, S.-H.; Teo, C.-F.; Lin, C.-H. Expeditious Synthesis of C-Glycosyl Conjugated Dienes and Aldehydes from Sugar Lactones. Tetrahedron Lett. 2001, 42, 4657-4660. (f) Yang, W.-B.; Wu, C.-Y.; Chang, C.-C.; Wang, S.-H.; Teo, C.-F.; Lin, C.-H. Facile Synthesis of Conjugated exo-Glycals. Tetrahedron Lett. 2001, 42, 6907-6910. (g) Yang, W.-B.; Yang, Y.-Y.; Gu, Y.-F.; Wang, S.-H.; Chang, C.-C.; Lin, C.-H. Stereochemistry in the Synthesis and Reaction of exo-Glycals. J. Org. Chem. 2002, 67, 3773-3782. (h) Chen, Y.-B.; Liu, S.-H.; Hsieh, M.-T.; Chang, C.-S.; Lin, C.-H.; Chen, C.-Y.; Chen, P.-Y.; Lin, H.-C. Stereoselective Synthesis of Spiro Bis-C, C- α -Arylglycosides by Tandem Heck Type C-Glycosylation and Friedel–Crafts Cyclization. J. Org. Chem. **2016**, 81, 3007–3016. (i) Gueyrard, D.; Fontaine, P.; Goekjian, P. G. Synthesis of C-Glucoside endo-Glycals from C-Glucosyl Vinyl Sulfones. Synthesis **2006**, 2006, 1499–1503. (j) Thiery, E.; Reniers, J.; Wouters, J.; Vincent, S. P. Stereoselective Synthesis of Boat-Locked Glycosides Designed as Glycosyl Hydrolase Conformational Probes. Eur. J. Org. Chem. **2015**, 2015, 1472–1484.

(11) Ramberg-Bäcklund rearrangement: (a) Taylor, R. J. K.; McAllister, G. D.; Franck, R. W. The Ramberg-Bäcklund Reaction for the Synthesis of C-Glycosides, C-Linked-Disaccharides and Related Compounds. Carbohydr. Res. 2006, 341, 1298-1311. (b) Griffin, F. K.; Murphy, P. V.; Paterson, D. E.; Taylor, R. J. K. A Ramberg-Bäcklund Approach to exo-Glycals. Tetrahedron Lett. 1998, 39, 8179-8182. (c) Griffin, F. K.; Paterson, D. E.; Taylor, R. J. K. Ramberg-Bäcklund Approaches to the Synthesis of C-Linked Disaccharides. Angew. Chem., Int. Ed. 1999, 38, 2939-2942. (d) Paterson, D. E.; Griffin, F. K.; Alcaraz, M.-L.; Taylor, R. J. K. A Ramberg-Bäcklund Approach to the Synthesis of C-Glycosides, C-Linked Disaccharides, and C-Glycosyl Amino Acids. Eur. J. Org. Chem. 2002, 2002, 1323-1336. (e) Griffin, F. K.; Paterson, D. E.; Murphy, P. V.; Taylor, R. J. K. A New Route to exo-Glycals Using the Ramberg-Bäcklund Rearrangement. Eur. J. Org. Chem. 2002, 2002, 1305-1322. (f) McAllister, G. D.; Paterson, D. E.; Taylor, R. J. K. A Simplified Ramberg-Bäcklund Approach to Novel C-Glycosides and C-Linked Disaccharides. Angew. Chem., Int. Ed. 2003, 42, 1387-1391. (g) Yang, G.; Franck, R. W.; Byun, H. S.; Bittman, R.; Samadder, P.; Arthur, G. Convergent C-Glycolipid Synthesis via the Ramberg-Bäcklund Reaction: Active Antiproliferative Glycolipids. Org. Lett. 1999, 1, 2149-2151. (h) Pasetto, P.; Chen, X.; Drain, C. M.; Franck, R. W. Synthesis of Hydrolytically Stable Porphyrin C- and S-Glycoconjugates in High Yields. Chem. Commun. 2001, 81-82. (i) Yang, G.; Franck, R. W.; Bittman, R.; Samadder, P.; Arthur, G. Synthesis and Growth Inhibitory Properties of Glucosamine-Derived Glycerolipids. Org. Lett. 2001, 3, 197-200. (j) Pasetto, P.; Franck, R. W. Synthesis of Both Possible Isomers of the Northwest Quadrant of Altromycin B. J. Org. Chem. 2003, 68, 8042-8060. (k) Yang, G.; Schmieg, J.; Tsuji, M.; Franck, R. W. The C-Glycoside Analogue of the Immunostimulant α -Galactosylceramide (KRN7000): Synthesis and Striking Enhancement of Activity. Angew. Chem., Int. Ed. 2004, 43, 3818-3822.

(12) Glycosyl phosphonium salts: (a) Godoy, J.; Ley, S. V.; Lygo, B. Synthesis of the Spiroacetal Unit Related to the Avermectins and Milbemycins. J. Chem. Soc. Chem. Commun. 1984, 1381-1382. (b) Ousset, J. B.; Mioskowski, C.; Yang, Y.-L.; Falck, J. R. Enol Ethers: Preparation and Synthetic Applications. Tetrahedron Lett. 1984, 25, 5903-5906. (c) Jaouen, V.; Jégou, A.; Veyrières, A. A Novel Approach to Furanoid Sugars via 1,4-Iodocyclization of Pyranoid D-Galactal. Synlett 1996, 1996, 1218-1220. (d) Lieberknecht, A.; Griesser, H.; Bravo, R. D.; Colinas, P. A.; Grigera, R. J. Stereoselective Synthesis of Olefinated Sugars. Tetrahedron 1998, 54, 3159-3168. (e) Lieberknecht, A.; Griesser, H.; Krämer, B.; Bravo, R. D.; Colinas, P. A.; Grigera, R. J. Diastereoselective Synthesis of β -(3,4,6-Tri-O-Benzyl-2-Deoxy-β-D-Galactopyranosyl)-N-tert-Butoxycarbonyl-D-Alanine. Tetrahedron 1999, 55, 6475-6482. (f) Colinas, P. A.; Ponzinibbio, A.; Lieberknecht, A.; Bravo, R. D. Wittig Reaction of Glycosyl Phosphonium Salts: A stereoselective route to C-Disaccharides and C,O-Trisaccharides. Tetrahedron Lett. 2003, 44, 7985-7988.

(13) Keck allylation: (a) Praly, J.-P.; Chen, G.-R.; Gola, J.; Hetzer, G.; Raphoz, C. A Stereocontrolled Radical Access to C-Allyl β -D-Glycopyranosides from Glycopyranosylidene Dihalides Found *en* route to C-Glycodienes. Tetrahedron Lett. **1997**, 38, 8185–8188. (b) Praly, J.-P.; Chen, G.-R.; Gola, J.; Hetzer, G. C-C Bond Formation with Acetylated 1-Chloroglycopyranos-1-yl Radicals, 2. Stereocontrolled Access to Higher Sugars (Non-1-en-4-ulopyranosyl Derivatives) and Glycomimetics [3-(β -D-Glycopyranosyl)-1-Propenes and (3Z)-4,8-Anhydro-nona-1,3-dienitols]. Eur. J. Org. Chem. **2000**, 2831–2838.

(14) Bamford-Stevens reaction: (a) Tóth, M.; Somsák, L. exo-Glycals from Glycosyl Cyanides. First Generation of C-Glycosylmethylene Carbenes from 2,5- and 2,6-Anhydroaldose Tosylhydrazones. J. Chem. Soc., Perkin Trans. 1 2001, 942-943. (b) Tóth, M.; Kövér, K. E.; Bényei, A.; Somsák, L. C-Glycosylmethylene Carbenes: Synthesis of Anhydro-Aldose Tosylhydrazones as Precursors; Generation and a New Synthetic Route to exo-Glycals. Org. Biomol. Chem. 2003, 1, 4039-4046. (c) Kaszás, T.; Ivanov, A.; Tóth, M.; Ehlers, P.; Langer, P.; Somsák, L. Pd-Catalyzed Coupling Reactions of Anhydro-Aldose Tosylhydrazones with Aryl Bromides to Produce Substituted exo-Glycals. Carbohydr. Res. 2018, 466, 30-38. (d) József, J.; Juhász, L.; Somsák, L. Thio-click Reaction of 2-Deoxy-exo-Glycals Towards New Glycomimetics: Stereoselective Synthesis of C-2-Deoxy-D-glycopyranosyl Compounds. New J. Chem. 2019, 43, 5670-5686. (e) József, J.; Debreczeni, N.; Eszenyi, D.; Borbás, A.; Juhász, L.; Somsák, L. Synthesis and Photoinitiated Thiol-Ene Reactions of exo-Mannals – a New Route to C- β -D-Mannosyl Derivatives. RSC Adv. 2020, 10, 34825-34836.

(15) [2,3]-Wittig rearrangement: (a) Tomooka, K.; Nakamura, Y.; Nakai, T. [2,3]-Wittig Rearrangement Using Glucose as a Chiral Auxiliary: Asymmetric Transmission from the Anomeric Center. Synlett **1995**, 1995, 321–322. (b) Lay, L.; Meldal, M.; Nicotra, F.; Panza, L.; Russo, G. Stereoselective Synthesis of the C-Analogue of β -D-Glucopyranosyl Serine. Chem. Commun. **1997**, 1469–1470. (c) Sugimura, H.; Hasegawa, Y.; Osumi, K. Studies Relating to the Synthesis of Laurenenynes: Construction of the Alkylidene Side Chain via [2,3]-Wittig-Still Rearrangement at the Anomeric Center of a Ruranoside Derivative. Heterocycles **2000**, *52*, 99–102.

(16) β -Elimination: (a) Arzoumanian, H.; Acton, E. M.; Goodman, L. Formation and Hydroboration of an Olefinic Sugar. J. Am. Chem. Soc. 1964, 86, 74–77. (b) Lerner, L. M. Interconversion of Hexofuranosyl Nucleosides. III. Synthesis of a 4',5'-Unsaturated Hexofuranosyl Nucleoside. J. Org. Chem. 1972, 37, 477–481. (c) Aebischer, B.; Meuwly, R.; Vasella, A. Deoxy-Nitrosugars. 9th Communication. Chain Elongation of 1-C-Nitroglycosyl Halides by Substitution with Some Weakly Basic Carbanions. Helv. Chim. Acta 1984, 67, 2236–2241. (d) Molas, P.; Matheu, M. I.; Castillón, S. Stereoselective Iodine-Induced Cyclisation of Alkene Acetals. Application to the Synthesis of 3-Deoxy-exo-Glycals and Substituted Tetrahydrofurans. Tetrahedron Lett. 2004, 45, 3721–3724.

(17) Claisen rearrangement: Van Hooft, P. A. V.; Van Swieten, P. F.; Van der Marel, G. A.; Van Boeckel, C. A. A.; Van Boom, J. H. Montmorillonite K-10 Cay Assisted Transformation of Vinylketoses into Spirochromans and Arylketoses. *Synlett* **2001**, *2001*, 0269–0271.

(18) $S_N 1'$ -type substitution: (a) Yamanoi, T.; Nara, Y.; Matsuda, S.; Oda, Y.; Yoshida, A.; Katsuraya, K.; Watanabe, M. Synthetic Approach to *exo*-Glycals from 1-C-Vinyl-D-Glycopyranose Derivatives via an $S_N 1'$ -Substitution Mechanism. *Synlett* **2007**, *2007*, 0785–0789. (b) Yamanoi, T.; Matsuda, S.; Nakgawa, J.; Watanabe, M.; Oda, Y.; Yoshida, A. A Synthetic Approach to Derive *exo*-Glucal Derivatives through the Reaction of a 1-C-Vinylated Glucopyranose Derivative with Phenols. *Heterocycles* **2018**, *97*, 170–177.

(19) Alkynol cycloisomerization: Xu, M.; Miao, Z.; Bernet, B.; Vasella, A. Functionalised Monocyclic Five- to Seven-Membered *exo*-Glycals by Alkynol Cycloisomerisation of Hydroxy Buta-1,3-diynes and 1-Haloalkynols. *Helv. Chim. Acta* **2005**, *88*, 2918–2937.

(20) (a) Gómez, A. M.; Danelón, G. O.; Pedregosa, A.; Valverde, S.; López, J. C. A General Method for Convergent Synthesis of Functionalized *exo*-Glycals Based on Halogenation and Suzuki Cross-Coupling of 1-*exo*-Methylene Sugars. *Chem. Commun.* 2002, 25, 2024–2025. (b) Gómez, A. M.; Barrio, A.; Amurrio, I.; Valverde, S.; Jarosz, S.; López, J. C. Convergent Stereocontrolled Synthesis of Substituted *exo*-Glycals by Stille Cross-Coupling of Halo-*exo*-Glycals and Stannanes. *Tetrahedron Lett.* 2006, 47, 6243–6246. (c) Gómez, A. M.; Barrio, A.; Pedregosa, A.; Uriel, C.; Valverde, S.; López, J. C. Sonogashira Couplings of Halo- and Epoxy-Halo-*exo*-Glycals: Concise Entry to Carbohydrate-Derived Enynes. *Eur. J. Org. Chem.* 2010, 2010, 2910–2920. (d) Tao, Y.; Ding, N.; Ren, S.; Li, Y. Heck-Type Cross-Coupling Between Halo-*exo*-Glycals and *endo*-Glycals: A Practical Way to Achieve C-Glycosidic Disaccharides. *Tetrahedron Lett.* 2013, 54, 6101–6104.

(21) Frédéric, C. J.-M.; Cornil, J.; Vandamme, M.; Dumitrescu, L.; Tikad, A.; Robiette, R.; Vincent, S. P. Highly (*Z*)-Diastereoselective Synthesis of Trifluoromethylated *exo*-Glycals via Photoredox and Copper Catalysis. *Org. Lett.* **2018**, *20*, 6769–6773.

(22) Eppe, G.; Dumitrescu, L.; Pierrot, O.; Li, T.; Pan, W.; Vincent, S. P. A Novel Base-Induced Isomerization Gives Access to Unprecedented (*E*)-exo-Glycals. Chem. – Eur. J. 2013, 19, 11547–11552.

(23) Oka, N.; Mori, A.; Ando, K. Stereoselective Synthesis of 1-Thio- α -D-Ribofuranosides Using Ribofuranosyl Iodides as Glycosyl Donors. *Eur. J. Org. Chem.* **2018**, 2018, 6355–6362.

(24) (a) Schultz, H. S.; Freyermuth, H. B.; Buc, S. R. New Catalysts for the Oxidation of Sulfides to Sulfones with Hydrogen Peroxide. *J. Org. Chem.* **1963**, *28*, 1140–1142. (b) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. A Direct Synthesis of Olefins by Reaction of Carbonyl Compounds with Lithio Derivatives of 2-[Alkyl- or (2'-Alkenyl)- or Benzyl-Sulfonyl]-Benzothiazoles. *Tetrahedron Lett.* **1991**, *32*, 1175–1178.

(25) Oh, S.; Jeong, I. H.; Ahn, C. M.; Shin, W.-S.; Lee, S. Synthesis and Antiangiogenic Activity of Thioacetal Artemisinin Derivatives. *Bioorg. Med. Chem.* **2004**, *12*, 3783–3790.

(26) Crich, D.; Ritchie, T. J. Preparation of 2-Deoxy- β -D-lyxo-Hexosides (2-Deoxy- β -D-Galactosides). Carbohydr. Res. **1989**, 190, C3-C6.

(27) See the Supporting Information.

(28) These heteroaryl groups except for 5-nitro-2-pyridyl and 5trifluoromethyl-2-pyridyl groups were selected from other types of Julia sulfones reported in the literature. To the best of our knowledge, 5-nitro-2-pyridyl and 5-trifluoromethyl-2-pyridyl sulfones have not been used for Julia-type olefination. (a) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Stéréochimie de la Formation des Oléfines à Partir de β-Hydroxy-Sulfones Hétérocycliques Anti et Syn. Bull. Soc. Chim. Fr. 1993, 130, 336-357. (b) Fabris, J.; Časar, Z.; Smilović, I. G.; Crnugelj, M. Highly Stereoselective Formal Synthesis of Rosuvastatin and Pitavastatin Through Julia-Kocienski Olefination Using the Lactonized Statin Side-Chain. Synthesis 2014, 46, 2333-2346. (c) Ando, K.; Kobayashi, T.; Uchida, N. Practical Methylenation Reaction for Aldehydes and Ketones Using New Julia-Type Reagents. Org. Lett. 2015, 17, 2554-2557. (d) Ando, K.; Oguchi, M.; Kobayashi, T.; Asano, H.; Uchida, N. Methylenation for Aldehydes and Ketones Using 1-Methylbenzimidazol-2-yl Methyl Sulfone. J. Org. Chem. 2020, 85, 9936-9943. (e) Ando, K.; Kawano, D.; Takama, D.; Semii, Y. 1-Methyl-1H-tetrazol-5-yl (MT) Sulfones in the Julia-Kocienski Olefination: Comparison With the PT and the TBT Sulfones. Tetrahedron Lett. 2019, 60, 1566-1569. (f) Ando, K.; Takama, D. Stereoselective Synthesis of Trisubstituted (Z)-Alkenes from Ketones via the Julia-Kocienski Olefination Using 1-Methyland 1-tert-Butyl-1H-Tetrazol-5-yl Alkyl Sulfones. Org. Lett. 2020, 22, 6907-6910. (g) Blakemore, P. R.; Cole, W. J.; Kocieński, P. J.; Morley, A. A Stereoselective Synthesis of trans-1,2-Disubstituted Alkenes Based on the Condensation of Aldehydes with Metallated 1-Phenyl-1H-tetrazol-5-yl Sulfones. Synlett 1998, 1998, 26-28. (h) Kocienski, P. J.; Bell, A.; Blakemore, P. R. 1-tert-Butyl-1Htetrazol-5-yl Sulfones in the Modified Julia Olefination. Synlett 2000, 2000, 365-366. (i) Pandya, V. P.; Richhariya, S.; Divya, P.; Meeran, H. N. P. N.; Tewari, N. Novel Intermediates for the Preparation of HMG-CoA Reductase Inhibitors. WO2011/132172 A1, Oct 27, 2011, CAN: 155:589162.

(29) Lerner, L. M. Preparation of the *E* and *Z* Isomers of 9-(5,6-Dideoxy- β -D-*erythro*-Hex-4-enofuranosyl)adenine. *J. Org. Chem.* **1979**, 44, 4359–4364.

(30) (a) Charette, A. B.; Lebel, H. Enantioselective Total Synthesis of (+)-U-106305. J. Am. Chem. Soc. 1996, 118, 10327-10328.
(b) Liu, P.; Jacobsen, E. N. Total Synthesis of (+)-Ambruticin. J. Am. Chem. Soc. 2001, 123, 10772-10773.

(31) (a) Benson, S. W.; Bose, A. N. The Iodine-Catalyzed, Positional Isomerization of Olefins. A New Tool for the Precise Measurement of

Article

Thermodynamic Data. J. Am. Chem. Soc. **1963**, 85, 1385–1387. (b) Back, M. H.; Cvetanović, R. J. Reactions of Iodine Atoms with *n*-Butenes: I. Cis-Trans Isomerization of Butene-2. Can. J. Chem **1963**, 41, 1396–1405. (c) Li, Z.-J.; Cai, L.; Mei, R.-F.; Dong, J.-W.; Li, S.-Q.; Yang, X.-Q.; Zhou, H.; Yin, T.-P.; Ding, Z.-T. A Highly Efficient Transformation of cis- to trans-Cinnamic Acid Derivatives by Iodine. Tetrahedron Lett. **2015**, 56, 7197–7200.

(32) Downey, A. M.; Pohl, R.; Roithová, J.; Hocek, M. Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism. *Chem. – Eur. J.* **2017**, *23*, 3910–3917.

(33) (a) Qiu, D.; Schmidt, R. R. A Convenient Synthesis of Pyranoid Ene Lactones from Phenyl Glycosyl Sulfones. *Synthesis* **1990**, *1990*, 875–877. (b) Zhang, H.-C.; Brakta, M.; Daves, G. D., Jr Preparation of 1-(Tri-n-butylstannyl) Furanoid Glycals and Their Use in Palladium-Mediated Coupling Reactions. *Tetrahedron Lett.* **1993**, *34*, 1571–1574.

(34) (a) Simmons, H. E.; Smith, R. D. A New Synthesis of Cyclopropanes From Olefins. J. Am. Chem. Soc. **1958**, 80, 5323–5324. (b) Furukawa, J.; Kawabata, N.; Nishimura, J. A Novel Route to Cyclopropanes from Olefins. Tetrahedron Lett. **1966**, 7, 3353–3354. (c) Furukawa, J.; Kawabata, N.; Nishimura, J. Synthesis of Cyclopropanes by the Reaction of Olefins with Dialkylzinc and Methylene Iodide. Tetrahedron **1968**, 24, 53–58. (d) Brand, C.; Granitzka, M.; Stalke, D.; Werz, D. B. Reducing the Conformational Flexibility of Carbohydrates: Locking the 6-Hydroxyl Group by Cyclopropanes. Chem. Commun. **2011**, 47, 10782–10784. (e) Köllmann, C.; Wiechert, S. M.; Jones, P. G.; Pietschmann, T.; Werz, D. B. Synthesis of 4'/5'-Spirocyclopropanated Uridine and D-Xylouridine Derivatives and Their Activity against the Human Respiratory Syncytial Virus. Org. Lett. **2019**, 21, 6966–6971.

(35) Bols, M.; Pedersen, C. M. Silyl-Protective Groups Influencing the Reactivity and Selectivity in Glycosylations. *Beilstein J. Org. Chem.* **2017**, *13*, 93–105.

(36) (a) Saneyoshi, H.; Ando, K.; Seio, K.; Sekine, M. Chemical Synthesis of RNA via 2'-O-Cyanoethylated Intermediates. *Tetrahedron* 2007, 63, 11195–11203. (b) Ando, K.; Saneyoshi, H.; Seio, K.; Sekine, M. A Theoretical Study on the Elimination Reaction of Acrylonitrile from 2'-O-Cyanoethylated Nucleosides by Bu_4NF . *Tetrahedron* 2019, 75, 1–9.

(37) Saneyoshi, H.; Seio, K.; Sekine, M. A General Method for the Synthesis of 2'-O-Cyanoethylated Oligoribonucleotides Having Promising Hybridization Affinity for DNA and RNA and Enhanced Nuclease Resistance. J. Org. Chem. 2005, 70, 10453–10460.

(38) Ogawa, T.; Hatayama, K.; Maeda, H.; Kita, Y. Mild and Facile Cleavage of 2-Cyanoethyl Ester Using Sodium Sulfide or Tetrabutylammonium Fluoride. Synthesis of 1,4-Dihydropyridine Monocarboxylic Acids and Unsymmetrical 1,4-Dihydropyridine Dicarboxylates. *Chem. Pharm. Bull.* **1994**, *42*, 1579–1589.

(39) Wang, J.; Gasc, F.; Prandi, J. Samarium Diiodide Mediated Coupling of 2-Pyridylsulfonyl Furanosides with Aldehydes and Ketones: A General Synthesis of C-Furanosides. *Eur. J. Org. Chem.* **2015**, 2015, 2691–2697.

(40) Jiangseubchatveera, N.; Bouillon, M. E.; Liawruangrath, B.; Liawruangrath, S.; Nash, R. J.; Pyne, S. G. Concise Synthesis of (–)-Steviamine and Analogues and Their Glycosidase Inhibitory Activities. *Org. Biomol. Chem.* **2013**, *11*, 3826–3833.