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The novel oxonine 2, 4 have been synthesized by the reaction of Received 9 July 2019
1,3-indandione  with  4-bromo-2-hydroxybenzaldehyde  and/or
2-hydroxy-1-naphthaldehyde in the presence of 1,3-diaminopropan-
2-ol as green basic catalyst. On the other hand, the reaction of 1,3-
cyclohexanediones with 2-hydroxy aromatic aldehydes under the
same reaction condition afforded xanthenone derivatives 9-11.
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Introduction

Reports on the synthesis of oxonine derivatives are quite rare due to their infrequent
occurrence and because of the challenges associated with their stereoselective assem-
bly.[l] Hence, the creation of new method for the synthesis of new oxonenes, which is
present in marine natural products'>™ from available material is an important goal of
synthetic chemists.®) On the other hand, xanthenes exhibit a range of important bio-
logical activities such as anti-inflammatory,'® anti-viral,l”! anti-bacterial,’®! anti-
cancer!>!" antileukemic,m] and antimalarial"? properties. Moreover, they are being
used as laser dyes''® and fluorescent materials for visualization of biomolecules.!'*!
Xanthenones, especially tetrahydroxanthenones, are also an important class of com-
pounds for their distinct structural features and a great potential for further
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transformations.!*>'® Therefore, the development of new practical methods to construct
oxonine or xanthenone derivatives is of great importance.

Results and discussion

Herein, we present a new, mild, efficient, and facile method for the synthesis of new oxo-
nines and we discuss the possible reaction mechanisms for the formation of these products.
As an introductory test, we run a model reaction by refluxing 1,3-indandione (4.0 mmol)
with 4-bromo-2-hydroxybenzaldehyde (1.0 mmol) and 1,3-diaminopropan-2-ol (1.0 mmol)
in ethanol for 6h that resulted in the production of dibenzo[b,g]indeno-
[1/,2":3,4]fluoreno(1,2-d]oxonine-5,11,16,21-tetraone (2) in 86% yield instead the expected
product 3 may be due to the very high activity of indandione (as reported in our previous
work for the reaction between 2-hydroxybenzaldehyde and three molecules of indandione in
the presence of 1,3-diaminopropan-2-ol as a basic catalyst).!'”! In the same manner, 1,3-
indandione reacts with 2-hydroxy-1-naphthaldehyde under the same reaction condition to
give the corresponding oxonine 4. Also, the same products 2 and 4 had been
separated when we used either (4-aminophenyl)methanol or TRIZMA (tris(thydroxy-
methyl)-aminomethane) as a green Lewis base catalyst instead of 1,3-diaminopropan-2-ol.

In other manner, the reaction of 1,3-indandione (1.0 mmol) with 4-(diethylamino)-2-
hydroxybenzaldehyde (1.0 mmol) and cyanoguanidine (1 mmol) in 60 ml ethanol for 6 h
yielded diethylamino-2-(11-0x0-10H,11H-indeno[1,2-b]chromen-10-yl)-2,3-dihydro-1H-
indene-1,3-dione (5), which did not react with 1,3-indandione to give oxonine 7a. Also,
treatment of 1,3-indandione with salicylaldehyde in the presence of a guanidine hydro-
chloride as a Lewis acid catalyst afforded chromen-10-yl)-2,3-dihydro-1H-indene-1,3-
dione 6.1 All attempts failed to convert product 6 to oxonine 7b"®! (Scheme 1).

The chemical structures of the newly synthesized products 2-7 were confirmed by their
spectral (IR, 'H, >C NMR) and elemental analyses data. For example, the IR spectra of 2
showed absorption bands assignable for the four C=0O groups at 1762, 1714, 1702,
1664 cm ™', The "H-NMR spectra of 2 illustrated the presence of five signals in the range of
9.01-7.09 ppm characteristic for the aromatic protons. Its >°C NMR spectrum showed 4 sig-
nals at 6 192.02, 190.92, 189.99, 172.22 attributed to four carbonyl carbons and 16 signals
which are assigned to aromatic carbons at ¢ 167.08, 148.19, 136.16, 136.08, 135.99, 134.28,
134.14, 132.17, 131.48, 131.16, 129.00, 128.12, 127.57, 125.04, 123.40, 123.31.

The formation of oxonines 2, 4, 7 and xanthenone 5 were assumed to take place
through a Knoevenagel condensation between 1,3-indandione 1 and 2-hydroxy aromatic
aldehyde to produce arylidene 8, which underwent Michael addition with third mole of
1,3-indandione to give intermediate I, which cyclized through path A to give xanthe-
nones 5, 6 or react with other mole of 1,3-indandione to give intermediate III
Subsequently, cyclization took place to give intermediate V, which undergoes ring
expansion[lg’zo] via oxidation to yield oxonine 2, 4, and 7 via path B (Scheme 2).

In a further extension of these optimized reaction conditions, we continued to exam-
ine the substrate scope of the reaction using a range 1,3-cyclohexanedione derivatives to
synthesise other oxonines. We found that reaction between salicylaldehyde derivatives
and 1,3-cyclohexanediones yielded xanthenones 9a-c instead of desired oxonines
(Scheme 3). It is clear from previous data that the formation of oxonine depends on the
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7a: R=NEt,; 7Tb: R=H

Scheme 1. Synthesis of oxonine and xanthenone derivatives.

activity of 1,3-cyclodiones and the type of catalyst. However, only indandione can react
with salicylaldehydes to give the corresponding oxonine. Also, we found that using mid-
dle base such as;(4-aminophenyl)methanol, TRIZMA orl,3-diaminopropan-2-ol as a
basic catalyst for this reaction leads to the formation of oxonine while using a very
weak basic catalyst such as cyanoguanidine or acidic catalyst as guanidine hydrochloride
afforded xanthenone derivatives.

The structures of the newly synthesized compounds 9a-c were confirmed by their
spectral IR, "H, C NMR and elemental analyses. For example, IR spectrum of com-
pound 9b exhibited characteristic absorption bands at 3359cm™' (OH); 3032cm ™'
(C-H aromatic); 2968 and 2876cm ' (C-H aliphatic) and 1640 cm ! for C=0. Its
"HNMR spectrum showed singlet signal at § 10.64ppm for OH, in addition to two
singlet signals at § 7.36 and 7.00 for aromatic protons and other singlet signals at 6 5.07
for H-pyran, also it exhibited three multiplet and two singlet signals in aliphatic region
at ¢ 2.89, 2.58, 2.00, 1.06, 0.92 attributed to CH,, CH,, 2CH,, 2 CHj, 2 CHj, respect-
ively. Its ">C NMR spectrum showed one signal § 197.39 for carbonyl carbon and eight
signals which are assigned to aromatic carbons at ¢ 154.76, 149.33, 136.02, 129.85,



4 A. A. ABDELHAMID ET AL.

2,4and 7

Scheme 2. Reaction mechanism for synthesis of oxonines and xanthenones.

9a,b
9a:R=R,=Y=X=H;Z=Cl
9b:R=R,=CH,;, X=Br,Y=Cl,Z=H
9c:R=H, R,=Ph,X=Br,Y=Cl,Z=H

Scheme 3. Reaction od salicylaldehyde derivatives with 1,3-cyclohexadiones.

127.44, 124.13, 112.75, 111.61, in addition to seven signals appears at 6 60.80, 48.87,
46.75, 39.08, 32.19, 28.69, 26.67 for sp carbons.

Similar to salicylaldehydes 2-hydroxy-1-naphthaldehyde react with 5,5-dimethylcyclohex-
ane-1,3-dione in the presence of 1,3-diaminopropan-2-ol as a basic catalyst to give the corre-
sponding xanthenones 10 (Scheme 4). On the other hand, when we used other primary
aliphatic or aromatic amine as a basic catalyst, the reaction afforded Schiff bases 11 and 12
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Scheme 4. Synthesis of Schiff bases and xanthenones from naphthaldehyde.

instead of expected product 10. The chemical structures of the new products 10-12 were
confirmed by their spectral (IR, 'H, >C NMR) and elemental analyses data.

Complete experimental procedures and characterization data of compounds 2-12 are
given in supplemental material.

Experimental

All commercially available reagents were purchased from Merck, Aldrich, and Fluka
and were used without further purification. Melting points were detected with a Kofler
melting points apparatus and uncorrected. Melting points were detected with a Kofler
melting points apparatus and uncorrected. A SHIMADZU FT-IR-8400s spectrometer
was used to record IR spectra using KBr pellets. '"H- and '*C-NMR spectra (400 MHz
for 1H, 100 MHz for '>C) were observed in DMSO-ds on DELTA2-NMR spectrometer
(DELTA2, Manchester Metropolitan University, United Kingdom) with tetramethylsi-
lane as the internal standard. The '*C-NMR signals were assigned with the aid of DEPT
135/90 experiments.

General procedure for the synthesis of oxonine-5,11,16,21-tetraone
derivatives 2, 4

A reaction mixture of 4mmol (576 mg) indandione and 2 mmol of aromatic aldehydes
namely: p-bromosalicylaldehyde and 2-hydroxynaphthaldehyde in presence of 1 mmol
of 3-aminopropane-1,2-diol or 1,3-diaminopropan-2-ol as a Lewise base catalyst in
60ml ethanol was refluxed for 6h. The excess solvent was evaporated under vacuum
and the obtained solid was recrystallized from acetic acid to afford oxonine-5,11,16,21-
tetraone derivatives 2 and 4, respectively.
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9-Bromo-dibenzo[b,glindeno[10,20:3,4]fluoreno-[1,2-d]Joxonine-5,11,16,21-
tetraone (2)

Yield (86%); mp. 294-295°C; FTIR (cmfl) 1762, 1714, 1702, 1664;'"H NMR (400 MHz,
DMSO-dg) 0 9.01 (d, J=7.2Hz, 1H, CHarom), 8.23 (d, J=8.4Hz, 1 H, CHarom), 7.87
(m, 3H, CHarom), 7.65 (m, 8H, CHarom), 7.09 (m, 2H, CHarom); *C NMR
(100 MHz, DMSO-dg) ¢ 192.02, 190.92, 189.99, 172.22, 167.08, 148.19, 136.16, 136.08,
135.99, 134.28, 134.14, 132.17, 131.48, 131.16, 129.00, 128.12, 127.57, 125.04, 123.40,
123.31; Anal. Calcd. for C5,H;sBrO5 (583): C, 70.00; H, 2.59. Found: C, 69.96; H, 2.38.

Synthesis of 8-diethylamino-2-(11-oxo-10H,11Hindeno[1,2-b]chromen-10-yl)-
2,3-dihydro-1H-indene-1,3-dione (5)

In 60ml of ethanol, a mixture of 1 mmol of 4-(diethylamino)-2-hydroxybenzaldehyde
and 2 mmol (292 mg) of 1 H-indene-1,3(2H)-dione has been refluxed in the presence of
a cyanoguanidine as a Lewis base catalyst for 5h. On cooling, the solid product was col-
lected by filtration, dried under vacuum, and recrystallized from ethanol to give 5.

Yield (75%); mp. 246-247°C; FTIR (cm™') 3423, 3047, 1680, 1623; 'H NMR
(400 MHz, DMSO-d¢) 6 10.82 (s, 1H, OH), 9.23 (d, J=9.2Hz, 1H, CHarom), 8.22 (s,
1H, CHarom), 7.81-7.42 (m, 8H, CHarom), 6.45 (d, J=9.4Hz, 1H, CHarom), 6.19 (s,
1H, CH-pyran), 1.19-1.04 (m, 10H, 2CH,+2CH,;); °C NMR (100 MHz, DMSO-d) &
191.92, 183.62, 163.61, 155.10, 139.66, 136.36, 134.57, 134.29, 121.79, 110.83, 105.50,
95.78, 44.56, 12.76; Anal. Calcd. for C,oH,3NO, (449): C, 77.49; H, 5.16; N, 3.12.
Found: C, 77.45; H, 5.17; N, 3.00.

General method for synthesis of xanthen-1-one (9a-c and 10)

A mixture of 1 mmol 2-hydroxyaromaticaldehyde, 2 mmol cyclohexane-1,3-diones and
1 mmol either 3-aminopropane-1,2-diol or 1,3-diaminopropan-2-ol as a basic catalyst in
50 ml ethanol was refluxed. The reaction progress was monitored by TLC till comple-
tion after about 6 h. Excess solvent was evaporated under vacuum and the resulted solid
was filtered and recrystallized from ethanol.

7-Chloro-9-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-2,3,4,9-tetrahydro-1H-
xanthen-1-one (9a)

Yield (83%); mp. 251-252°C; FTIR (cm™') 3361, 3020, 2967, 2915, 1632, 1618; 'H
NMR (400 MHz, DMSO-d¢) 6 10.73 (br. s, 1H, OH), 7.24 (d, J=8.8 Hz, 1 H, CHarom),
7.02 (s, 1H, CHarom), 6.92 (d, J=8.4Hz, 1H, CHarom), 5.02 (s, 1H, CH-pyran), 2.46
(m, 4H, 2CH,), 2.20 (m, 4H, 2CH,), 1.79 (m, 4H, 2CH,); >*C NMR (100 MHz, DMSO-
de) 0 197.82, 167.84, 149.87, 134.10, 131.05, 130.26, 129.07, 126.30, 123.98, 118.22,
114.57, 112.09, 40.48, 37.13, 27.64, 20.87; Anal. Calcd. for C,oH,,ClO, (344.5): C, 66.19;
H, 4.97. Found: C, 66.29; H, 4.95.
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General method for synthesis of Schiff bases 11 and 12

A mixture of 1 mmol 2-hydroxynaphthaldehyde, 2 mmol 5,5-dimethylcyclohexane-1,3-
dione and 1mmol either 1-aminopropan-1-ol or 1-(3-aminophenyl)ethanol as a basic
catalyst in 60 ml ethanol was refluxed for 6h. Excess solvent was evaporated under vac-
uum and the resulted solid was filtered, washed with cold ethanol, and recrystallized
from ethanol to give 11 or 12, respectively.

1-(1-hydroxypropyl)iminomethyl-2-naphthol (11)

Yield (91%); mp. 107 °C; FTIR (cmfl) 3418, 3245, 3027, 2967, 2892, 1625; 'H NMR
(400 MHz, DMSO-dg) 6 9.02 (s, 1H, CH=N), 8.03 (m, 1H, CHarom), 7.69 (m, 2H,
CHarom), 7.43 (m, 1 H, CHarom), 7.19 (m, 1H, CHarom), 6.70 (m, 1H, CHarom), 5.00
(s, 1H, OH), 3.86 (m, 1H, CHaliphatic), 3.92 (m, 1H, CHaliphatic), 3.46 (m, 2H,
OH + CHaliphatic), 1.12 (s, 3H, CHj); ’C NMR (100 MHz, DMSO-ds) ¢ 178.97,
159.80, 137.71, 135.06, 129.39, 128.38, 126.60. 122.48, 118.75, 105.92, 65.83, 58.05, 21.34;
Anal. Calcd. for C,,H;5NO, (229): C, 73.34; H, 6.59; N, 6.11. Found: C, 73.41; H, 6.50;
N, 6.04.
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