pubs.acs.org/joc

"Doubly Customizable" Unit for the Generation of Structural Diversity: From Pure Enantiomeric Amines to Peptide Derivatives

Dacil Hernández,* Carmen Carro, and Alicia Boto*

ABSTRACT: Readily available, low-cost 4R-hydroxy-L-proline (Hyp) is introduced as a "doubly customizable" unit for the generation of libraries of structurally diverse compounds. Hyp can be cleaved at two points, followed by the introduction of new functionalities. In the first cycle, the removal and replacement of the carboxylic group are carried out, followed (second cycle) by the scission of the 4,5-position and manipulation of the resulting chains. In this way, three new chains are generated and can be transformed independently to afford a diversity of products with tailored substituents, such as β -amino aldehydes, diamines, β -amino acid derivatives, including Nalkylated ones, or modified peptides. Many of these products are high-profit

compounds but, in spite of their commercial value, are still scarce. Moreover, the process takes place with stereochemical control, and either pure R or S isomers can be obtained with small variations of the synthetic route.

■ INTRODUCTION

"Customizable" amino acid units such as Hyp, Ser/Thr, or Glu have proven to be valuable for the conversion of readily available amino acids into a variety of nonproteinogenic residues or amino acid analogues.^{1,2} In addition, these units allow the site-selective modification of peptides and the fast generation of peptide libraries.³

Customizable units undergo the cleavage of a certain functional group or C–C bond, followed by the introduction of novel groups such as acetoxy, amino, thioalkyl, phosphoryl, alkyl, or aryl, depending on the reaction conditions (Scheme 1).^{1,2} We had previously introduced 4-hydroxyproline (Hyp) as a customizable unit, where the C_4-C_5 bond was cleaved using a domino radical scission–oxidation process (conversion $1 \rightarrow 2$, Scheme 1), generating an N-acetoxymethyl 4-oxohomoalanine derivative with new N- and α -chains, which could be functionalized independently.^{1,4} Resulting products 3 presented two new tailored chains and high *S* purity.

In the present paper, we report a Hyp-derived doubly customizable unit, where two different C–C bonds are cleaved sequentially, generating three new chains that can be manipulated separately (conversion $4 \rightarrow 6$, Scheme 1). Moreover, both the nature and the stereochemistry of the resulting product can be tailored, by choosing the appropriate set of reaction conditions, affording an important structural diversity. Amines, diamines, amino acids, and amino acid analogues with either *R* or *S* configuration can be obtained from a single, low-cost L-Hyp unit. The application of this doubly customizable unit to generate branched peptides will also be highlighted.

Scheme 1. Introduction of the Doubly Customizable Hyp Unit

Received: November 17, 2020 Published: January 12, 2021

© 2021 American Chemical Society

RESULTS AND DISCUSSION

One-pot decarboxylation of the Hyp unit and introduction of a new chain at C-2 were studied first (Scheme 2). Natural 4*R*-

Scheme 2. Influence of the Protecting Group P in the Stereochemical Outcome

hydroxyproline presents a stereogenic center at C-4, which could be used after decarboxylation for the stereocontrolled introduction of new chains on C-2. Two strategies were studied: in the first one, the role of the protecting group **P** in inducing *R* or *S* stereochemistry was explored. Readily available and removable groups were chosen, such as benzyl and silyl ethers. Thus, commercial hydroxyproline derivative 7 was transformed into benzyl ether **8** and bulky silyl ether **9** in good yields.⁵ These substrates underwent radical decarboxylation—oxidation by treatment with (diacetoxyiodo)benzene (DIB) and iodine under irradiation with visible light, generating a 2-acetoxypyrrolidine (not shown).⁶ This intermediate was

pubs.acs.org/joc

treated in situ with a Lewis acid to generate an iminium ion (8a or 9a), which was trapped by C-nucleophiles.^{6,7} In the case of small nucleophile allyltrimethylsilane (allylTMS), both substrates were transformed into 2,4-cis products 10 and 11. The prevalence of the cis product over the less hindered trans isomer⁸ is due to a stereoelectronic effect described by Woerpel for 4-substituted five-membered cyclic iminium ions.^{8a,b} Thus, when the substituent at C-4 is an oxygenated function, the iminium intermediate 8a or 9a adopts an envelop conformation, where axial H-groups hinder the introduction of nucleophiles from the face opposite to the OP group.

With bulkier nucleophiles, such as 1-phenyl-2-(trimethylsilyloxy)ethene, the ratio of 2,4-cis and trans isomers depended on the size of the protecting group P. Thus, for P =Bn, cis isomer 12 was obtained as the sole product, but for the much larger P = TBDPS, a separable cis/trans mixture 13:14 was obtained, in good global yield.

The previous major products (2,4-cis) had a 2S configuration for compounds 10 and 11 and a 2R configuration for products 12 and 13. To obtain the other 2-isomers, a second approach was followed, where the inversion of the configuration at C-4 was carried out readily (conversion $15 \rightarrow 16$, Scheme 3) by an intramolecular Mitsunobo reaction, followed

Scheme 3. Prevalence of the Other 2-Isomers

by cleavage of the strained ring to afford ester 17.⁹ The preparation of benzyl ether 18 and silyl enol ether 19 was carried out as before, 5,10 and then the one-pot radical scission—oxidation—alkylation was studied. To our satisfaction, the stereochemistry of the new substrate did not favor side reactions, and the scission proceeded readily. The nucleophile allylTMS was added, giving similar results as before. New products 20/21 are again 2,4-*cis* (no 2,4-trans compounds were observed), but the 2*R* isomers were obtained instead.

With the possibility to obtain either 2*R* or 2*S* isomers, the introduction of different nucleophiles was studied using the less bulky *tert*-butyldimethylsilyl (TBS) ether **22** as the substrate (Scheme 4).¹⁰ The sequential radical scission–oxidation–alkylation was carried out with allylTMS, PhC-(OTMS)=CH₂, and the silyl ketene Me₂C=C(OTMS)OMe to afford products **23–26**. Interestingly, the two first nucleophiles afforded only the 2,4-cis product, but the ketene

Scheme 4. Preparation of the Substrates for the Second Cycle of Transformations

provided separable mixtures of the cis and trans isomers. This is due to the steric hindrance generated during the approach of this crowded, tetrasubstituted ketene to the iminium intermediate. It should be pointed out that β -amino acids, such as compounds 25 and 26, are valuable reagents for the preparation of bioactive peptides with superior resistance to protease degradation¹¹ and also for the development of foldamers with tunable properties in material science.¹² This method readily affords β -units with the unusual D-stereochemistry (e.g. 25), while the L-isomers could be obtained from substrate 17.

The transformation of products 10, 12, 20, 21, and 23-26 into acyclic derivatives, by scission of the C_4-C_5 bond (second cycle of transformations), was studied next (Schemes 5 and 6).

Scheme 5. Removal of the Protecting Group to Provide Scission Substrates 27-33

pubs.acs.org/joc

33

Article

The deprotection of the different hydroxy derivatives was carried out under different conditions, as shown in Scheme 5, providing the substrates for the second scission in good to excellent yields.

38 (61%)

Then, substrates 27, 29, 30, 32, and 33 underwent the scission reaction to give N-acetoxymethyl derivatives 34-38 in good yields (Scheme 6).⁴ These aldehydes (and related ones) can be readily oxidized using mild conditions¹³ to afford different β -amino acids, which are valuable commercial products.

The aldehyde can also undergo reductive amination^{4c} to give different chiral diamines, as illustrated with transformations 36 \rightarrow 39 and 38 \rightarrow 41 (Scheme 7). In the case of ketone 39, the reaction proceeded selectively and the ketone was unaffected due to the higher reactivity of the aldehyde. As shown in the scheme, the reductive amination proceeds without affecting the N,O-acetal. Then, the acetal can be transformed independently (conversions $39 \rightarrow 40$ and $41 \rightarrow 42$), adding diversity to the product libraries. It should be pointed out that the addition of allyITMS to substrate 39 proceeds chemoselectively, and only the N,O-acetal is transformed, while the ketone remains intact.

The ready introduction of an olefinic chain to the amine in product 40 is noteworthy since it can be used for ligation to other molecules.¹⁴ Finally, the reduction of the N,O-acetal in 37 to a methyl group provided N-methyl β -amino ester 41. Although N-alkyl β -amino acids are valuable components of foldamers, they are commercially scarce; this route could provide easy access to these compounds.

The reductive amination can be useful to generate many different δ -amino-substituted β -amino esters, with either L- or D-residues, as shown by conversions $37 \rightarrow 43$ and $38 \rightarrow 44$ (Scheme 8), where a morpholino group found in the antimicrobial Cobicistat was introduced.¹⁵ In addition, the reductive amination can provide branched peptides^{16a} with β amino acid units^{16b} (conversions $37 \rightarrow 45$ and $38 \rightarrow 46$), Scheme 7. Selective Functionalization of the Carbonylic Chain and the *N*,*O*-Acetal, Expanding Library Diversity

Scheme 8. Preparation of β , δ -Diamino Esters 43/44 and Branched Dipeptides 45/46

which could be components of functional materials or peptide drugs.

Finally, the β -amino aldehydes can also be functionalized with other reactions, as shown in Scheme 9 for the synthesis of peptides with a rigid dehydroamino acid unit.¹⁷ The Horner– Wadsworth–Emmons (HWE) reaction of aldehydes **34–36** with peptide-derived phosphonates **47** and **48**^{1c} afforded peptides **49–51** in 83–86% yield. The products were obtained as the Z isomers, as shown in the nuclear Overhauser enhancement spectroscopy (NOESY) experiments (Supporting information). Interestingly, with ketone substrate **36**, the reaction took place chemoselectively, and only the aldehyde reacted with the phosphonate. In all of the cases, no epimerizations were observed under the mild reaction conditions, and the desired products were obtained with high enantiomeric (or diastereomeric) purity.

Since the amino group from 34 to 36 could be used to attach another peptide chain, this methodology could allow the creation of new branched peptides, where turns or other secondary structure elements could be induced.¹⁸ The introduction of amino acids containing aryl ketones in these peptides could be particularly interesting since they not only are components of bioactive compounds such as daptomycin (Cubicin),¹⁹ but some, such as 6-(2-dimethylaminonaphthoyl) alanine (DANA)/aladan,^{20a,b} or AcF,^{20c} serve as fluorophores in medical probes and molecular imaging.²⁰

This versatile methodology, which allows the creation of three new chains with stereochemical control will be used to create libraries of potential antimicrobial compounds against pathogens and phytopathogens.²¹ These results will be communicated in due course.

CONCLUSIONS

A novel, Hyp-derived "doubly customizable unit" for the ready generation of libraries of amines and amino acid-derived compounds, including modified peptides, is presented herein. This unit can be cleaved at two points, followed by the introduction of new functionalities. Starting from readily available, low-cost 4*R*-hydroxy-L-proline, three new chains are generated and can be manipulated independently to afford a diversity of products with tailored substituents.

Moreover, the process takes place with stereochemical control, and either pure *R* or *S* isomers can be obtained with small variations of the synthetic route. In two transformation cycles, the customizable Hyp unit is converted into β -amino aldehydes, diamines, β -amino acid derivatives, including N-alkylated ones, or modified peptides. Many of these products are high-profit compounds but, in spite of their commercial value, are still scarce.

The first step is a one-pot radical decarboxylation oxidation—alkylation reaction, where the carboxyl group at C-2 is removed and replaced by an alkyl chain. The stereochemistry of the new product is controlled by the adjacent stereogenic center at C-4. In a second transformation cycle, the reactive hydroxy group at C-4 is deprotected and activated for a second scission, which cleaves the C_4 — C_5 bond. The resulting product has a new acyclic α -chain and an *N*,*O*acetal that can be processed separately, increasing the library diversity.

Article

Scheme 9. Preparation of Modified Peptides

The synthesis of branched and modified peptides, including some with rigid dehydroamino acid units, is illustrated as well. The process takes place under mild conditions and good overall yields. The versatility of this doubly customizable unit allows the synthesis of many different structures and will be further explored in the future.

EXPERIMENTAL SECTION

General Methods. Commercially available reagents and solvents were of analytical grade or were purified by standard procedures prior to use. All reactions involving air- or moisture-sensitive materials were carried out under a nitrogen atmosphere. Melting points were determined by a hot-stage apparatus and were uncorrected. Optical rotations were measured at the sodium line and ambient temperature (26 °C) in CHCl₃ solutions. NMR spectra were determined at 500 or 400 MHz for ¹H and 125.7 or 100.6 MHz for ¹³C, at 26 or 70 °C, as stated for each case. Sometimes, due to slower rotamer interconversion at 26 °C, two (or more) sets of signals were visible at room temperature, while only one set of signals (rotamer average) was seen at 70 °C due to faster rotamer interconversion. For some compounds, the ¹H NMR spectra show some signals as broad bands (br b) due to equilibria between rotamers.

¹H NMR spectra are reported as follows (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, q = quartet, m = multiplet, br = broad, br b = broad band, br s = broad singlet; coupling constant(s) in Hertz). Mass spectra were recorded using electrospray ionization techniques (ESI) or electronic impact (EI); the latter was determined at 70 eV using an ion trap

mass analyzer. Merck silica gel 60 PF₂₅₄ and 60 (0.063–0.2 mm) were used for preparative thin-layer chromatography (TLC) and column chromatography, respectively. The reagent for TLC analysis was KMnO₄ in NaOH/K₂CO₃ aqueous (aq) solution, and the TLC was heated until development of color.

Preparation of Scission Substrates for Transformation Cycle 1. The characterization data of the following compounds was already reported: Compound 7_{3}^{4c} compounds 9_{3}^{5b} 10, and 12_{5}^{8d} compound 17_{5}^{22} product 22_{5}^{10} and compounds 23 and $24_{.}^{8c}$

(2S,4R)-4-(Benzyloxy)-N-(methoxycarbonyl)-L-proline (8). 4R-Benzyloxy-N-(methoxycarbonyl) proline methyl ester 52²³ (204 mg, 0.70 mmol) was dissolved in 1 M KOH in 9:1 methanol (MeOH)/ H_2O (5 mL), and the reaction mixture was stirred at 0 °C for 3 h. Then, 5% aq HCl was added until pH 2 and the mixture was extracted by ethyl acetate (EtOAc). The organic layer was dried over sodium sulfate, filtered, and the solvent was removed under vacuum, affording compound 8 as a viscous oil (194 mg, 99%): $[\alpha]_{\rm D}^{20}$ -57 (c 0.15, CHCl₃). IR (CHCl₃) ν_{max} : 1699, 1455, 1394, 1199 cm⁻¹. ¹H NMR $((CD_3)_2CO, 500$ MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.30-7.25 (m, 4H), 7.25-7.20 (m, 1H), 4.52–4.48 (m, 2H), 4.43 (t, J = 7.4 Hz, 1H), 4.24–4.19 (m, 1H), 3.67 (s, 3H), 3.68–3.62 (m, 1H), 3.58 (dd, J = 11.5, 5.0 Hz, 1H), 2.44-2.35 (m, 1H), 2.19 (ddd, J = 13.3, 6.4, 5.5 Hz, 1H). ¹³C{¹H} NMR ((CD₃)₂CO, 125.7 MHz, 26 °C): δ 173.9/173.6 (C), 155.9/155.4 (C), 138.6 (C), 128.7 (2 × CH), 128.0 (2 × CH), 127.9 (CH), 77.3/76.4 (CH), 71.2 (CH), 58.3/57.9 (CH₃), 52.5 (CH₃), 52.4/52.1 (CH₂), 37.0/35.8 (CH₂). High-resolution mass spectrometry (HRMS) (ESI) m/z: [M + Na]⁺ calcd for C₁₄H₁₇NO₅Na

302.1004; found 302.1004. Anal. calcd for $C_{14}H_{17}NO_5$: C, 60.21; H, 6.14; N, 5.02. Found: C, 60.38; H, 6.27; N, 5.26.

Methyl (1S,4S)-3-Oxo-2-oxa-5-azabicyclo[2.2.1]heptane-5-carboxylate (16). A solution of (2S,4R)-N-methoxycarbonyl-4-hydroxy-L-proline 15 (800 mg, 4.23 mmol) and triphenylphosphine (1.27 g, 4.84 mmol) in dry tetrahydrofuran (THF) (80 mL) was cooled to 0 °C and treated with diethylazodicarboxylate (0.76 mL, 4.84 mmol). The mixture was stirred at room temperature for 20 h; then, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetone, 97:3), yielding compound 16 as a viscous oil (512 mg, 71%): $[\alpha]_D^{20}$ +53 (c 0.31, CHCl₃). IR (CHCl₃) ν_{max} : 1801, 1709, 1450, 1392, 1329, 1121 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 26 °C): δ 5.10–5.09 (m, 1H), 4.65-4.55 (m, 1H), 3.74 (s, 3H), 3.58 (d, J = 10.5 Hz, 1H), 3.48 (d, I = 10.5 Hz, 1H), 2.25–2.21 (m, 1H), 2.02 (d, I = 11 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 26 °C): δ 170.7 (C), 155.0 (C), 78.3 (CH), 57.4 (CH), 53.1 (CH₃), 50.0 (CH₂), 39.1 (CH₂). MS m/z (rel intensity) 171 (M⁺, 3), 127 (M⁺ - CO₂, 16). HRMS (EI) m/z: [M]⁺ calcd for C₇H₉NO₄ 171.0532; found 171.0536; [M – CO₂]⁺ calcd for C₆H₉NO₂ 127.0633; found 127.0638. Anal. calcd for C7H9NO4: C, 49.12; H, 5.30; N, 8.18. Found: C, 49.17; H, 5.52; N, 8.01.

Methyl (2S,4S)-4-(Hydroxy)-N-(methoxycarbonyl)proline (17). Compound 16 (220 mg, 1.29 mmol) was dissolved in MeOH (10 mL) and treated at 0 °C with sodium methoxide (348 mg, 6.45 mmol). The reaction mixture was stirred for 6 h and then was poured into water and extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated under vacuum, and the residue was purified by column chromatography on silica gel (hexane/EtOAc, 30:70), yielding compound 17 as a viscous oil (215 mg, 83%): $\left[\alpha\right]_{D}^{2}$ -22 (c 0.65, CHCl₃). IR (CHCl₃) ν_{max} : 3606, 3476, 1728, 1702, 1456, 1391, 1084 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 4.42– 4.36 (m, 2H), 3.77 (s, 3H), 3.71 (s, 3H), 3.65-3.55 (m, 2H), 2.87 (br s, 1H, OH), 2.32 (ddd, J = 14.0, 9.5, 4.5 Hz, 1H), 2.11 (d, J = 13.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 174.7 (C), 155.2 (C), 70.5 (CH), 58.1 (CH), 55.9 (CH₂), 52.6 (CH₃), 52.5 (CH₂), 38.2 (CH₂). MS m/z (rel intensity) 203 (M⁺, 1), 144 (M⁺ - CO_2Me , 100). HRMS (EI) m/z: [M]⁺ calcd for $C_8H_{13}NO_5$ 203.0794; found 203.0799; $[M - CO_2Me]^+$ calcd for $C_6H_{10}NO_3$ 144.0661; found 144.0667. Anal. calcd for C8H13NO5: C, 47.29; H, 6.45; N, 6.89. Found: C, 47.10; H, 6.68; N, 6.87.

Methyl (2S,4S)-4-(Benzyloxy)-N-(methoxycarbonyl)proline (18a). A solution of the hydroxyproline derivative 17 (300 mg, 1.48 mmol) in dry dimethylformamide (DMF) (5 mL) was treated with benzyl bromide (0.26 mL, 2.2 mmol) and silver oxide (342 mg, 1.48 mmol). The reaction mixture was stirred at room temperature, in the absence of light, for 16 h. Then, it was filtered and washed with 5% aq HCl and water, dried over anhydrous Na2SO4, and concentrated under vacuum. The residue was purified by column chromatography (hexanes/EtOAc 80:20), yielding compound 18a as a viscous oil (296 mg, 68%): $[\alpha]_D^{20}$ –33 (c 0.62, MeOH). IR (CHCl₃) ν_{max} : 1746, 1699, 1455, 1228, 1096 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.33-7.23 (m, 5H), 4.45 (s, 2H), 4.43-4.37 (m, 1H), 4.14-4.08 (m, 1H), 3.68 (s, 3H), 3.64 (s, 3H), 3.70–3.50 (m, 2H), 2.40–2.32 (m, 1H), 2.32–2.25 (m, 1H). $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, 125.7 MHz, 70 °C): δ 172.2 (C), 155.3 (C), 137.9 (C), 128.4 (2 × CH), 127.7 (CH), 127.5 (2 × CH), 76.1 (CH), 71.0 (CH₂), 57.9 (CH), 52.5 (CH₃), 52.1 (CH₃), 52.0 (CH₂), 36.4/35.3 (CH₂). MS m/z (rel intensity) 293 (M⁺, <1), 91 (PhCH₂, 100). HRMS (EI) m/z: [M]⁺ calcd for C₁₅H₁₉NO₅ 293.1263; found 293.1261; [PhCH₂]⁺ calcd for C7H7 91.0548; found 91.0550. Anal. calcd for C15H19NO5: C, 61.42; H, 6.53; N, 4.78. Found: C, 61.22; H, 6.69; N, 4.44.

(25,45)-4-(Benzyloxy)-N-(methoxycarbonyl)proline (18). Methyl ester 18a (200 mg, 0.68 mmol) was dissolved in 1 M KOH in 9:1 MeOH/H₂O (5 mL), and the solution was stirred at 0 °C for 3 h. Then, 5% aq HCl was added until pH 2, and the mixture was extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated under vacuum, affording compound 18 as a

pubs.acs.org/joc

viscous oil (170 mg, 90%): $[\alpha]_{D}^{20} - 24$ (*c* 0.24, CHCl₃). IR (CHCl₃) ν_{max} : 1755, 1737, 1701, 1455, 1393, 1094 cm⁻¹. ¹H NMR (CD₃OD, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.34–7.22 (m, 5H), 4.50 (d, *J* = 12.0 Hz, 1H), 4.46 (d, *J* = 11.5 Hz, 1H), 4.40–4.32 (m, 1H), 4.20–4.16 (m, 1H), 3.68 (s, 3H), 3.67–3.63 (m, 1H), 3.52 (dd, *J* = 11.5, 2.5 Hz, 1H), 2.45–2.33 (m, 2H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 70 °C): δ 175.2 (C), 161.0 (C), 139.5 (C), 129.3 (2 × CH), 128.6 (2 × CH), 128.0 (CH), 72.0 (CH), 65.3 (CH₂), 59.1 (CH), 53.2 (CH₂), 53.1 (CH₃), 36.6 (CH₂). MS *m*/*z* (rel intensity) 279 (M⁺, 1), 91 (PhCH₂, 100). HRMS (EI) *m*/*z*: [M]⁺ calcd for C₁₄H₁₇NO₅ 279.1107; found 279.1111; [PhCH₂]⁺ calcd for C₇H₇ 91.0548; found 91.0545. Anal. calcd for C₁₄H₁₇NO₅: C, 60.21; H, 6.14; N, 5.02. Found: C, 60.48; H, 6.38; N, 4.86.

Methyl (2S,4S)-4-(tert-Butyldiphenylsilyloxy)-N-(methoxycarbonyl)proline (19a). Compound 17 (1.0 g, 4.92 mmol) was dissolved in dry DMF (15 mL) and treated with imidazole (1.26 g, 18.51 mmol) and tert-butyldiphenylsilyl chloride (3.40 g, 12.38 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 16 h, poured into water, and extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated under vacuum. The residue was purified by column chromatography (hexanes/EtOAc 80:20), yielding compound **19a** as a viscous oil (1.45 mg, 67%): $[\alpha]_D^{20}$ -29 (c 0.43, MeOH). IR (CHCl₃) ν_{max} : 1754, 1696, 1455, 1394, 1092 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: $\delta_{\rm H}$ 7.68–7.61 (m, 4H), 7.47–7.36 (m, 6H), 4.39– 4.35 (m, 2H), 3.74 (s, 3H), 3.68 (s, 3H), 3.60-3.40 (m, 2H), 2.28-2.12 (m, 2H), 1.04 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100.6 MHz, 26 °C): δ 172.3/172.1 (C), 155.5/155.1 (C), 135.68 (2 × CH), 135.65 (2 × CH), 133.33/133.25 (C), 133.13/133.11 (C), 129.90/129.88 (CH), 129.86/129.84 (CH), 127.78/127.76 (2 × CH), 127.74/ 127.72 (2 × CH), 71.6/70.7 (CH), 57.9/57.7 (CH), 55.0/54.5 (CH₂), 55.59/52.55 (CH₃), 52.2 (CH₃), 39.4/38.4 (CH₂), 26.7 (3 × CH₃), 18.9 (C). MS m/z (rel intensity) 441 (M⁺, <1), 384 (M⁺ -^tBu, 100). HRMS (EI) m/z: [M]⁺ calcd for C₂₄H₃₁NO₅Si 441.1972; found 441.1988; $[M - {}^{t}Bu]^{+}$ calcd for C₂₀H₂₂NO₅Si 384.1267; found 384.1267. Anal. calcd for C24H31NO5Si: C, 65.28; H, 7.08; N, 3.17. Found: C, 65.46; H, 7.35; N, 3.00.

(2S,4S)-4-(tert-Butyldiphenylsilyloxy)-N-(methoxycarbonyl)proline (19). The methyl ester 19a (860 mg, 1.95 mmol) was dissolved in 1 M KOH in 9:1 MeOH/H₂O (8 mL), and the reaction mixture was stirred at 0 °C for 16 h. Then, 5% aq HCl was added until pH 2 and the mixture was extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated under vacuum, affording compound **19** as a viscous oil (781 mg, 94%): $[\alpha]_D^{20}$ –33 (*c* 0.44, CHCl₃). IR (CHCl₃) ν_{max} : 1754, 1701, 1457, 1393, 1093 cm⁻ ¹H NMR (CD₃OD, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.74–7.60 (m, 4H), 7.48–7.32 (m, 6H), 4.43-4.32 (m, 2H), 3.67 (s, 3H), 3.48-3.39 (m, 2H), 2.30-2.20 (m, 2H), 1.04 (s, 6H), 1.03 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 100.6 MHz, 26 °C): δ 175.2/175.0 (C), 157.4/157.3 (C), 137.3 (C), 136.9/136.8 (2 × CH), 136.6 (C), 136.0 (CH), 131.1 (CH), 131.0/130.4 (2 × CH), 128.9/128.5 (4 × CH), 73.3/72.4 (CH), 59.3/59.0 (CH), 56.4/56.0 (CH₂), 53.2 (CH₃), 40.3/39.4 (CH₂), 27.2 (2 × CH₃), 27.1 (CH₃), 19.8 (C). MS m/z (rel intensity) 426 ($M^+ - H_1 < 1$), 199 ([Ph_2SiOH]⁺, 100). HRMS (EI) m/z: $[M - H]^+$ calcd for $C_{23}H_{28}NO_5Si$ 426.1737; found 426.1755; [Ph₂SiOH]⁺ calcd for C₁₂H₁₁OSi 199.0579; found 199.0579. Anal. calcd for C23H29NO5Si: C, 64.61; H, 6.84; N, 3.28. Found: C, 64.82; H. 6.87: N. 3.11.

General Procedure for the Decarboxylation–Oxidation– Alkylation Process. To a solution of the hydroxyproline substrate (0.2 mmol) in dry dichloromethane (DCM, 4 mL) were added iodine (25 mg, 0.1 mmol) and DIB (129 mg, 0.4 mmol). The resulting mixture was stirred for 3 h at 26 °C, under irradiation with visible light (80 W tungsten-filament lamp). Then, the reaction mixture was cooled to 0 °C and treated with BF₃·OEt₂ (50 μ L, 57 mg, 0.4 mmol) and the nucleophile (0.6 mmol). The mixture was stirred for 1 h and then poured into a 1:1 mixture of 10% aqueous Na₂S₂O₃ and

saturated aqueous NaHCO₃ (10 mL), followed by extraction with CH_2Cl_2 . The organic layer was dried over sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by chromatography on silica gel (hexanes/ethyl acetate) to give the 2-alkyl pyrrolidines.

(2S,4R)-2-Allyl-4-benzyloxy-1-methoxycarbonyl Pyrrolidine (10). Obtained from acid 8 (56 mg, 0.2 mmol) according to the general scission-oxidation-alkylation sequence using allyltrimethylsilane (95 μ L, 69 mg, 0.6 mmol) as the nucleophile. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 80:20), yielding product 10 (40 mg, 73%, $R_{\rm f}$ = (0.11) as a viscous oil: $[\alpha]_{D}^{20}$ +21 (c 0.85, CHCl₃). IR (CHCl₃) ν_{max} : 1686, 1455, 1391, 1121, 1095 cm⁻¹.¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.32–7.22 (m, 5H), 5.81–5.73 (m, 1H), 5.07 (br d, J = 8.0 Hz, 1H), 5.05 (br d, J = 17.5 Hz, 1H), 4.51 (d, J = 11.5 Hz, 1H), 4.48 (d, J = 11.5 Hz, 1H), 4.09–4.06 (m, 1H), 3.94–3.87 (m, 1H), 3.73–3.68 (m, 1H), 3.68 (s, 3H), 3.43 (dd, J = 12.0, 3.5 Hz, 1H), 2.70–2.62 (m, 1H), 2.38 (ddd, J = 13.5, 9.0, 8.0 Hz, 1H), 2.06 (ddd, J = 13.5, 8.0, 6.0 Hz, 1H), 2.00 (ddd, J = 13.5, 4.0, 3.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 155.5 (C), 138.3 (C), 135.2 (CH), 128.4 (2 × CH), 127.6 (CH), 127.5 (2 × CH), 117.0 (CH₂), 77.2 (CH), 71.3 (CH₂), 56.6 (CH), 52.2 (CH₂), 52.0 (CH₃), 38.9 (CH₂), 35.2 (CH₂). MS m/z (rel intensity) 274 (M⁺ – H, <1), 234 (M⁺ – CH₂CHCH₂, 90), 91 ([PhCH₂]⁺, 100). HRMS (EI) m/z: [M – H]⁺ calcd for C₁₆H₂₀NO₃ 274.1443; found 274.1445; [M -CH₂CHCH₂]⁺ calcd for C₁₃H₁₆NO₃ 234.1130; found 234.1122; [PhCH₂]⁺ calcd for C₇H₇ 91.0548; found 91.0547. Anal. calcd for C₁₆H₂₁NO₃: C, 69.79; H, 7.69; N, 5.09. Found: C, 69.69; H, 7.82; N, 5.31.

(2S,4R)-2-Allyl-4-(tert-butyldiphenylsilyloxy)-1-methoxycarbonyl Pyrrolidine (11). Obtained from the acid 9 (85.4 mg, 0.2 mmol) according to the general scission-oxidation-alkylation sequence using allyltrimethylsilane (95 μ L, 69 mg, 0.6 mmol) as the nucleophile. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 98:2), yielding 20 +17 (c product 11 (65 mg, 77%, $R_{\rm f}$ = 0.10) as a viscous oil: $[\alpha]_{\rm D}$ 0.90, CHCl₃). IR (CHCl₃) ν_{max} : 1687, 1455, 1391, 1235, 1112 cm⁻¹ ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.69–7.63 (m, 4H), 7.47–7.36 (m, 6H), 5.83-5.76 (m, 1H), 5.11 (d, J = 17.0 Hz, 1H), 5.07 (d, J = 17.0 Hz, 1H)10.0 Hz, 1H), 4.38-4.34 (m, 1H), 3.88-3.83 (m, 1H), 3.68 (s, 3H), 3.59–3.53 (m, 1H), 3.33 (dd, J = 11.5, 4.0 Hz, 1H), 2.72 (br b, 1H), 2.54 (ddd, J = 13.8, 8.8, 8.0 Hz, 1H), 1.98 (ddd, J = 13.8, 8.2, 6.0 Hz, 1H), 1.88 (dt, J = 13.0, 4.0 Hz, 1H), 1.10 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 155.5 (C), 135.79 (2 × CH), 135.75 (2 × CH), 135.2 (CH), 133.91 (C), 133.86 (C), 129.85 (CH), 129.83 (CH), 127.78 (2 × CH), 127.76 (2 × CH), 117.0 (CH₂), 71.9 (CH), 56.8 (CH), 54.8 (CH₂), 52.0 (CH₃), 38.9 (CH₂), 38.5 (CH₂), 27.0 (3 × CH₃), 19.1 (C). MS m/z (rel intensity) 424 (M⁺ + H, 6), 366 (M⁺ – CMe₃, 100). HRMS (EI) m/z: [M + H]⁺ calcd for C₂₅H₃₄NO₃Si 424.2308; found 424.2314; [M - CMe₃]⁺ calcd for C₂₁H₂₄NO₃Si 366.1525; found 366.1527. Anal. calcd for C25H33NO3Si: C, 70.88; H, 7.85; N, 3.31. Found: C, 70.97; H, 7.85; N, 3.30.

(2*R*,4*R*)-4-Benzyloxy-1-methoxycarbonyl-2-(2-oxo-2phenylethyl)pyrrolidine (12). Obtained from acid 8 (56 mg, 0.2 mmol) according to the general scission–oxidation–alkylation sequence using 1-phenyl-1-trimethylsiloxyethylene (125 μL, 115 mg, 0.6 mmol) as the nucleophile. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 80:20), yielding product **12** (59.3 mg, 84%, *R*_f = 0.11) as a viscous oil: $[\alpha]_D^{20}$ +14 (*c* 0.23, CHCl₃). IR (CHCl₃) ν_{max} : 3090, 3066, 1684, 1455, 1391, 1199 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.93 (br d, *J* = 8.0 Hz, 2H), 7.50 (dd, *J* = 7.5, 7.3 Hz, 1H), 7.46–7.30 (m, 2H), 7.28–7.22 (m, 5H), 4.48 (s, 2H), 4.47–4.43 (m, 1H), 4.14–4.10 (m, 1H), 3.71–3.64 (m, 1H), 3.67 (s, 3H), 3.62–3.59 (m, 2H), 3.42– 3.31 (m, 1H), 2.19 (ddd, *J* = 13.8, 8.2, 5.3 Hz, 1H), 2.10 (br d, *J* = 14.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 199.0 (C), 155.3 (C), 138.1 (C), 137.5 (C), 132.8 (CH), 128.5 (3 × CH), 128.4 (2 × CH), 128.1 (2 × CH), 127.5 (2 × CH), 77.6 (CH), 71.1 (CH₂), 54.1 (CH), 52.4 (CH₂), 52.1 (CH₃), 43.5 (CH₂), 36.1 (CH₂). MS m/z (rel intensity) 353 (M⁺, 1), 91 ([PhCH₂]⁺, 100). HRMS (EI) m/z: [M] ⁺ calcd for C₂₁H₂₃NO₄ 353.1624; [PhCH₂]⁺ calcd for C₇H₇ 91.0548; found 91.0546. Anal. calcd for C₂₁H₂₃NO₄: C, 71.37; H, 6.56; N, 3.96. Found: C, 71.66; H, 6.44; N, 4.02.

(2R,4R)-4-(tert-Butyldiphenylsilyloxy)-1-methoxycarbonyl-2-(2oxo-2-phenylethyl)pyrrolidine (13) and its (2S,4R)-lsomer (14). Obtained from acid 9 (85.4 mg, 0.2 mmol) according to the general scission—oxidation—alkylation sequence using 1-phenyl-1-trimethylsiloxyethylene (125 μ L, 115 mg, 0.6 mmol) as the nucleophile. After work-up and solvent evaporation, the residue was purified by radial chromatography (toluene/EtOAc, 99:1), yielding product 13 (62 mg, 62%, $R_f = 0.17$) and the minor isomer 14 (25 mg, 25%, $R_f = 0.10$).

(22,4*R*)-4-(tert-Butyldiphenylsilyloxy)-1-methoxycarbonyl-2-(2oxo-2-phenylethyl)pyrrolidine (**13**). $[α]_D^{20}$ +17 (c 1.0, CHCl₃). IR (CHCl₃) $ν_{max}$: 1684, 1455, 1391, 1104, 1025 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.99 (d, *J* = 7.5 Hz, 2H), 7.64–7.60 (m, 4H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.45–7.31 (m, 8H), 4.48–4.40 (m, 2H), 3.80 (br b, 1H), 3.67 (s, 3H), 3.60–3.40 (m, 3H), 2.16 (ddd, *J* = 13.5, 8.3, 5.0 Hz, 1H), 1.96 (br d, *J* = 14.0 Hz, 1H), 1.06 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 198.9 (C), 155.4 (C), 137.5 (C), 135.7 (4 × CH), 133.7 (C), 133.6 (C), 132.9 (CH), 129.90 (CH), 129.87 (CH), 128.6 (2 × CH), 128.2 (2 × CH), 127.83 (2 × CH), 127.79 (2 × CH), 72.3 (CH), 55.2 (CH₂), 54.2 (CH), 52.1 (CH₃), 43.5 (CH₂), 39.5 (CH₂), 27.0 (3 × CH₃), 19.1 (C). MS *m*/*z* (rel intensity) 444 (M⁺ – CMe₃, 47), 199 (Ph₂SiOH, 100), 105 (PhCO, 64). HRMS (EI) *m*/*z*: [M – CMe₃]⁺ calcd for C₁₂H₁₀OSi 199.0579; found 199.0586; [PhCO]⁺ calcd for C₁₂H₁₀OSi 199.0579; found 199.0586; [PhCO]⁺ calcd for C₇H₅O 105.0340; found 105.0338. Anal. calcd for C₃₀H₃₅NO₄Si: C, 71.82; H, 7.03; N, 2.79. Found: C, 71.58; H, 7.20; N, 2.35.

(2S,4R)-4-(tert-Butyldiphenylsilyloxy)-1-methoxycarbonyl-2-(2-oxo-2-phenylethyl)pyrrolidine (14). $[\alpha]_D^{20}$ –17 (c 0.45, CHCl₃). IR $(CHCl_3) \nu_{max}$: 1686, 1453, 1392, 1113, 1025 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.84 (d, J = 7.6 Hz, 2H), 7.55–7.52 (m, 4H), 7.43 (dd, J = 7.2, 7.0 Hz, 1H), 7.35-7.23 (m, 8H), 4.45-4.41 (m, 1H), 4.31 (dddd, J = 4.5, 4.5, 4.0, 4.0 Hz, 1H), 3.58 (s, 3H), 3.62-3.52 (m, 1H), 3.43 (br d, J = 10.5 Hz, 1H), 3.23 (dd, J = 11.3, 4.7 Hz, 1H), 2.74 (dd, J = 9.3, 15.3 Hz, 1H), 2.20-2.16 (m, 1H), 1.70 (ddd, J = 13.5, 7.0, 6.0 Hz, 1H), 0.96 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 198.4 (C), 155.9 (C), 137.5 (C), 135.7 (4 \times CH), 134.0 (C), 133.9 (C), 132.9 (CH), 129.8 (2 × CH), 128.5 (2 × CH), 128.2 (2 × CH), 127.8 (4 × CH), 71.3 (CH), 54.8 (CH₂), 53.8 (CH), 52.1 (CH₃), 43.5 (CH₂), 40.8 (CH₂), 27.0 $(3 \times CH_3)$, 19.1 (C). MS m/z (rel intensity) 444 (M⁺ - CMe₃, 65), 105 (PhCO, 100). HRMS (EI) m/z: $[M - CMe_3]^+$ calcd for $C_{26}H_{26}NO_4Si$ 444.1631; found 444.1631; [PhCO]⁺ calcd for C₇H₅O 105.0340; found 105.0338. Anal. calcd for C30H35NO4Si: C, 71.82; H, 7.03; N, 2.79. Found: C, 71.74; H, 7.20; N, 3.20.

(2R,4S)-2-Allyl-4-benzyloxy-1-(methoxycarbonyl)pyrrolidine (20). Obtained from acid 18 (56 mg, 0.2 mmol) according to the general scission-oxidation-alkylation sequence using allyltrimethylsilane (95 μ L, 69 mg, 0.6 mmol) as the nucleophile. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 80:20), yielding product 20 (35 mg, 63%, $R_{\rm f} = 0.18$) as a viscous oil: $[\alpha]_{\rm D}^{20}$ -19 (c 0.63, CHCl₃). IR $(CHCl_3) \nu_{max}$: 1686, 1455, 1392, 1122, 1094 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.32-7.22 (m, 5H), 5.81-5.75 (m, 1H), 5.07-5.02 (m, 2H), 4.51 (d, J = 12.0 Hz, 1H), 4.48 (d, J = 11.5 Hz, 1H),4.10-4.06 (m, 1H), 3.93-3.88 (m, 1H), 3.73-3.68 (m, 1H), 3.68 (s, 3H), 3.43 (dd, J = 11.8, 3.3 Hz, 1H), 2.70–2.60 (m, 1H), 2.38 (ddd, J = 13.6, 9.2, 7.9 Hz, 1H), 2.06 (ddd, J = 13.6, 8.2, 6.0 Hz, 1H), 2.00 (dt, J = 13.6, 3.8 Hz). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 100.6 MHz, 26 °C): δ 155.5 (C), 138.3 (C), 135.2 (CH), 128.4 (2 × CH), 127.6 (CH), 127.5 (2 × CH), 117.0 (CH₂), 77.2 (CH), 71.3 (CH₂), 56.6 (CH), 52.2 (CH₂), 52.0 (CH₃), 38.9 (CH₂), 35.2 (CH₂). MS m/z (rel intensity) 275 (M⁺, <1), 274 (M⁺ – H, 1), 91 ([PhCH₂]⁺, 100). HRMS (EI) m/z: [M]⁺ calcd for C₁₆H₂₁NO₃ 275.1521; found 275.1512; [M – H]⁺ calcd for C₁₆H₂₀NO₃ 274.1443; found 274.1446; [PhCH₂]⁺ calcd for C₇H₇ 91.0548; found 91.0549. Anal. calcd for C₁₆H₂₁NO₃: C, 69.79; H, 7.69; N, 5.09. Found: C, 69.51; H, 8.06; N, 5.00.

(2R,4S)-2-Allyl-4-(tert-butyldiphenylsilyloxy)-1-methoxycarbonyl Pyrrolidine (21). Obtained from acid 19 (85.4 mg, 0.2 mmol) according to the general scission-oxidation-alkylation sequence using allyltrimethylsilane (95 μ L, 69 mg, 0.6 mmol) as the nucleophile. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 98:2), yielding product 21 (60 mg, 71%, $R_f = 0.10$) as a viscous oil: $[\alpha]_D^{20} - 20$ (c 0.47, CHCl₃). IR (CHCl₃) ν_{max} : 1685, 1455, 1391, 1236, 1112 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: $\delta_{\rm H}$ 7.65–7.61 (m, 4H), 7.42–7.34 (m, 6H), 5.81–5.74 (m, 1H), 5.08 (d, J = 17.0 Hz, 1H), 5.05 (d, J =10.0 Hz, 1H), 4.35-4.31 (m, 1H), 3.86-3.80 (m, 1H), 3.65 (s, 3H), 3.59-3.45 (m, 1H), 3.31 (dd, J = 11.3, 3.2 Hz, 1H), 2.77-2.63 (m, 1H), 2.51 (1H, ddd, J = 13.5, 9.0, 8.0 Hz, 1H), 1.94 (ddd, J = 14.0, 8.0, 6.0 Hz, 1H), 1.85 (ddd, J = 13.0, 4.0, 3.5 Hz, 1H), 1.07 (s, 9H). $^{13}\text{C}\{^{1}\text{H}\}$ NMR (CDCl₃, 125.7 MHz, 70 °C): δ 155.5 (C), 135.7 (4 \times CH), 135.2 (CH), 133.8 (2 × C), 129.8 (2 × CH), 127.7 (4 × CH), 117.1 (CH₂), 71.9 (CH), 56.8 (CH), 54.8 (CH₂), 52.0 (CH₃), 38.8 (CH₂), 38.4 (CH₂), 27.0 (3 × CH₃), 19.1 (C). MS m/z (rel intensity) 422 (M⁺ – H, 6). HRMS (EI) m/z: [M – H]⁺ calcd for C25H32NO3Si 422.2151; found 422.2158. Anal. calcd for C25H33NO3Si: C, 70.88; H, 7.85; N, 3.31. Found: C, 70.76; H, 7.72; N, 3.70.

(2S,4R)-2-Allyl-4-(tert-butyldimethylsilyloxy)-1-methoxycarbonyl Pvrrolidine (23). Obtained from acid 22 (61 mg, 0.2 mmol) according to the general scission-oxidation-alkylation sequence using allyltrimethylsilane (95 μ L, 69 mg, 0.6 mmol) as the nucleophile. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 95:5), yielding product 23 (46 mg, 77%, $R_{\rm f} = 0.10$) as a viscous oil: $[\alpha]_{\rm D}^{20}$ +21 (c 0.40, CHCl₃). IR $(CHCl_3) \nu_{max}$: 1685, 1455, 1391, 1257, 1085 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: $\delta_{\rm H}$ 5.82–5.73 (m, 1H), 5.07 (dq, J = 17.0, 1.5 Hz, 1H), 5.05 (dq, J = 10.0, 1.0 Hz, 1H), 4.35-4.31 (m, 1H), 3.91-3.87 (m, 1H), 3.70 (s, 3H), 3.70–3.65 (m, 1H), 3.23 (dd, J = 11.3, 3.8 Hz, 1H), 2.67 (br s, 1H), 2.42 (ddd, J = 14.0, 9.0, 8.5 Hz, 1H), 2.06 (ddd, J = 13.8, 8.5, 6.0 Hz, 1H), 1.79 (dt, J = 13.2, 4.0 Hz, 1H), 0.91 (s, 9H), 0.076 (s, 3H), 0.074 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 155.5 (C), 135.3 (CH), 116.9 (CH₂), 70.9 (CH), 56.8 (CH), 55.1 (CH₂), 52.0 (CH₃), 38.7 (2 × CH₂), 25.8 (3 × CH₃), 18.0 (C), -4.86 (CH₃), -4.89 (CH₃). MS *m*/*z* (rel intensity) 258 (M⁺ – CH₂CH=CH₂, 100). HRMS (EI) m/z: [M – CH₂CH= CH₂]⁺ calcd for C₁₂H₂₄NO₃Si 258.1525; found 258.1513. Anal. calcd for C15H29NO3Si: C, 60.16; H, 9.76; N, 4.68. Found: C, 60.33; H, 9.74; N, 4.62.

(2R,4R)-4-(tert-Butyldimethylsilyloxy)-1-methoxycarbonyl-2-(2oxo-2-phenylethyl)pyrrolidine (24). Obtained from acid 22 (61 mg, 0.2 mmol) according to the general scission-oxidation-alkylation sequence using 1-phenyl-1-trimethylsiloxyethylene (125 µL, 115 mg, 0.6 mmol) as the nucleophile. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 90:10), yielding product 24 (50 mg, 66%, $R_f = 0.11$) as a viscous oil: $[\alpha]_{D}^{20}$ +19 (c 0.65, CHCl₃). IR (CHCl₃) ν_{max} : 1683, 1455, 1391, 1257, 1103 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.97 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.43 (dd, J = 8.0, 7.5 Hz, 2H), 4.47-4.37 (m, 2H), 3.68 (s, 3H), 3.67-3.63 (m, 2H), 3.42-3.35 (m, 2H), 2.24 (ddd, J = 13.5, 8.5, 5.0 Hz, 1H), 1.88 (br d, J = 13.5 Hz, 1H), 0.87 (s, 9H), 0.08 (s, 3H), 0.04 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 199.0 (C), 155.4 (C), 137.6 (C), 132.8 (CH), 128.5 (2 × CH), 128.1 (2 × CH), 71.3 (CH), 55.4 (CH₂), 54.2 (CH), 52.1 (CH₃), 43.8 (CH₂), 40.0 (CH₂), 25.8 (3 × CH₃), 18.0 (C), -4.9 (CH₃), -5.0 (CH₃). MS m/z (rel intensity) 320 (M⁺ - CMe₃, 67), 105 (PhCO, 100). HRMS (EI) m/z: [M - CMe₃]⁺ calcd for C₁₆H₂₂NO₄Si 320.1318; found 320.1310; [PhCO]⁺ calcd for C₇H₅O 105.0340; found 105.0338. Anal. calcd for C₂₀H₃₁NO₄Si: C, 63.62; H, 8.28; N, 3.71. Found: C, 63.64; H, 8.39; N, 3.87.

(2*R*,4*R*)-2-(1,1-Dimethyl-2-methoxy-2-oxoethyl)-4-(tert-butyldimethylsilyloxy)-1-(methoxycarbonyl)pyrrolidine (25) and Its (25,4*R*)-lsomer (26). Obtained from acid 22 (61 mg, 0.2 mmol) using 1-methoxy-2-methyl-1-(trimethylsilyloxy)propene (125 μ L, 108 mg, 0.6 mmol) according to the general decarboxylation—oxidation alkylation sequence. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 80:20), yielding products 25 (27 mg, 38%, $R_{\rm f}$ = 0.12) and 26 (25 mg, 35%, $R_{\rm f}$ = 0.15) as viscous oils.

Product **25**. $[α]_D^{20}$ +11 (*c* 0.41, CHCl₃). IR (CHCl₃) $ν_{max}$: 1726, 1697, 1450, 1388, 1134 cm⁻¹. ¹H NMR (CD₃OD, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 4.30 (dd, *J* = 8.7, 7.1 Hz, 1H), 4.29–4.23 (m, 1H), 3.96 (dd, *J* = 11.3, 7.3 Hz, 1H), 3.66 (s, 3H), 3.62 (s, 3H), 2.89 (dd, *J* = 11.2, 8.0 Hz, 1H), 2.37–2.31 (m, 1H), 1.66–1.60 (m, 1H), 1.16 (s, 3H), 1.14 (s, 3H), 0.89 (s, 9H), 0.073 (s, 3H), 0.067 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 70 °C): δ 178.9 (C), 158.2 (C), 70.8 (CH), 63.4 (CH), 55.8 (CH₂), 53.1 (CH₃), 52.4 (CH₃), 48.3 (C), 37.8 (CH₂), 26.2 (3 × CH₃), 22.7 (CH₃), 21.5 (CH₃), 18.8 (C), -4.7 (CH₃), -4.8 (CH₃). HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₇H₃₃NO₅SiNa 382.2026; found 382.2028. Anal. calcd for C₁₇H₃₃NO₅Si: C, 56.79; H, 9.25; N, 3.90. Found: C, 56.85; H, 8.93; N, 3.52.

Product **26**. $[\alpha]_D^{20}$ -13 (*c* 0.59, CHCl₃). IR (CHCl₃) ν_{max} : 1725, 1698, 1448, 1385, 837 cm⁻¹. ¹H NMR (500 MHz, CD₃OD, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 4.42–4.31 (m, 2H), 3.72 (br dd, *J* = 12.0, 4.0 Hz, 1H), 3.66 (s, 3H), 3.63 (s, 3H), 3.15 (dd, *J* = 12.0, 3.5 Hz, 1H), 1.96–1.86 (m, 2H), 1.12 (s, 3H), 1.10 (s, 3H), 0.85 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H). ¹³C NMR (CD₃OD, 125.7 MHz, 70 °C): δ 178.8 (C), 159.7 (C), 72.2 (CH), 63.7 (CH), 58.1 (CH₂), 53.0 (CH₃), 52.4 (CH₃), 48.5 (C), 38.4 (CH₂), 26.1 (3 × CH₃), 22.3 (CH₃), 21.7 (CH₃), 18.7 (C), -4.7 (CH₃), -4.8 (CH₃). HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₇H₃₃NO₅SiNa 382.2026; found 382.2026. Anal. calcd for C₁₇H₃₃NO₅Si: C, 56.79; H, 9.25; N, 3.90. Found: C, 56.90; H, 8.87; N, 3.59.

General Procedures for the Synthesis of 2-alkyl-4-(hydroxy)pyrrolidines. Method A (PG = Bn). Pd/C (10%, 30 mg) was added to a solution of the pyrrolidine derivative (0.3 mmol) in dry MeOH (4 mL). The mixture was purged with successive cycles of vaccuum/hydrogen to remove air and replace it by hydrogen (1 atm, H₂ balloon) and stirred at room temperature for 16. Then, it was filtered over celite, and the filtrate was concentrated under vacuum to afford 4-(hydroxy)pyrrolidines.

Method B ($PG = {}^{t}BuMe_{2}Si$ or ${}^{t}BuPh_{2}Si$). The silylated product (0.3 mmol) was dissolved in dry THF (3 mL) and the mixture was cooled to 0 °C and treated with tetra-*n*-butylammonium fluoride (TBAF) (124.5 mg, 0.45 mmol). The solution was stirred at room temperature for 3 h and then poured into water and extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated under vacuum, and the residue was purified by chromatography on silica gel (hexanes/ethyl acetate) to give 4-(hydroxy)pyrrolidines.

(2*R*,4*S*)-4-(*Hydroxy*)-2-(*propyl*)-*N*-(*methoxycarbonyl*)*pyrrolidine* (27). Obtained from product 20 (82.5 mg, 0.3 mmol) according to procedure A. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 90:10), yielding compound 27 as a viscous oil (50.5 mg, 90%, $R_f = 0.13$): $[\alpha]_D^{20} -42$ (*c* 0.27, CHCl₃). IR (CHCl₃) ν_{max} : 3613, 1684, 1455, 1392, 1119 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ_H 4.42–4.38 (m, 1H), 3.88–3.83 (m, 1H), 3.75 (dd, *J* = 11.8, 6.0 Hz, 1H), 3.69 (s, 3H), 3.27 (ddd, *J* = 12.0, 4.0, 1.0 Hz, 1H), 2.20 (ddd, *J* = 13.5, 8.5, 6.3 Hz, 1H), 1.97–1.88 (m, 1H), 1.74 (ddd, *J* = 13.5, 4.3, 3.8 Hz, 1H), 1.67 (br s, 1H), 1.60–1.53 (m, 1H), 1.41–1.27 (m, 2H), 0.95 (t, *J* = 7.4

Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 155.7 (C), 70.6 (CH), 57.2 (CH), 54.7 (CH₂), 52.1 (CH₃), 39.1 (CH₂), 37.4 (CH₂), 19.5 (CH₂), 13.9 (CH₃). HRMS (ESI) m/z: [M + Na]⁺ calcd for C₉H₁₇NO₃Na 210.1106; found 210.1106. Anal. calcd for C₉H₁₇NO₃: C, 57.73; H, 9.15; N, 7.48. Found: C, 57.63; H, 9.36; N, 7.58.

(2R,4S)-2-Allyl-4-hydroxy-1-methoxycarbonylpyrrolidine (28). Obtained from compound 21 (127 mg, 0.3 mmol) according to the general method B. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 30:70), yielding product 28 (52 mg, 94%, $R_f = 0.25$) as a viscous oil: $[\alpha]_D^{20}$ -47 (\tilde{c} 0.67, CHCl₃). IR (CHCl₃) ν_{max} : 3611, 1686, 1455, 1391, 1121, 1075 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 5.84– 5.74 (m, 1H), 5.12-5.05 (m, 2H), 4.43-4.36 (m, 1H), 3.96-3.90 (m, 1H), 3.72 (dd, J = 11.7, 6.5 Hz, 1H), 3.70 (s, 3H), 3.31 (ddd, J = 11.5, 3.5, 1.1 Hz, 1H), 2.71–2.64 (m, 1H), 2.44 (br ddd, J = 14.0, 9.0, 8.0 Hz, 1H), 2.16 (ddd, J = 14.0, 8.0, 5.5 Hz, 1H), 1.83 (ddd, J = 13.5, 4.0, 3.5 Hz, 1H), 1.71 (br s, 1H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 155.6 (C), 135.1 (CH), 117.4 (CH₂), 70.5 (CH), 56.8 (CH), 55.1 (CH₂), 52.1 (CH₃), 39.0 (CH₂), 38.4 (CH₂). HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₉H₁₅NO₃Na 208.0950; found 208.0948. Anal. calcd for C9H15NO3: C, 58.36; H, 8.16; N, 7.56. Found: C, 58.44; H, 8.12; N, 7.86.

(2S,4R)-4-(Hydroxy)-2-(propyl)-N-(methoxycarbonyl)pyrrolidine (29). Obtained from compound 10 (82.5 mg, 0.3 mmol) according to the general method A. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 30:70), yielding 29 as a viscous oil (45 mg, 80%, $R_{\rm f} = 0.24$): $[\alpha]_{\rm D}^2$ +39 (c 0.16, CHCl₃). IR (CHCl₃) ν_{max} : 3610, 3448, 1683, 1455, 1392 cm^{-1.} ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 4.43–4.37 (m, 1H), 3.89– 3.84 (m, 1H), 3.76 (dd, J = 12.0, 6.0 Hz, 1H), 3.69 (s, 3H), 3.27 (dd, *J* = 12.0, 4.0 Hz, 1H), 2.20 (ddd, *J* = 14.0, 8.0, 6.0 Hz, 1H), 1.96–1.89 (m, 1H), 1.74 (dt, J = 13.5, 4.0 Hz, 1H), 1.63 (br b, 1H), 1.61-1.54 (m, 1H), 1.41–1.27 (m, 2H), 0.95 (dd, J = 7.5, 7.0 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 155.7 (C), 70.7 (CH), 57.3 (CH), 54.7 (CH₂), 52.0 (CH₃), 39.2 (CH₂), 37.4 (CH₂), 19.5 (CH_2) , 13.9 (CH_3) . MS m/z (rel intensity) 187 $(M^+, <1)$, 144 ([M propyl]⁺, 100). HRMS (EI) m/z: [M]⁺ calcd for C₉H₁₇NO₃ 187.1208; found 187.1212; [M - propyl]⁺ calcd for C₆H₁₀NO₃ 144.0661; found 144.0654. Anal. calcd for C₉H₁₇NO₃: C, 57.73; H, 9.15; N, 7.48. Found: C, 57.70; H, 9.21; N, 7.30.

(2R,4R)-4-(Hydroxy)-2-(2-oxo-2-phenylethyl)-N-(methoxycarbonyl)pyrrolidine (30). Obtained from silyl ether 24 (113 mg, 0.3 mmol) according to the general method B. After workup and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 30:70), yielding alcohol 30 (69.5 mg, 88%, $R_f = 0.23$) as a viscous oil. This product was also obtained (67 mg, 85%) from compound 12 (106 mg, 0.3 mmol) according to method A: $[\alpha]_D^{20}$ +12 (c 0.58, CHCl₃). IR (CHCl₃) ν_{max} : 3431, 1684, 1455, 1391 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.99 (d, J = 7.5 Hz, 2H), 7.54 (dd, J = 7.0, 6.5 Hz, 1H), 7.44 (dd, J = 8.0, 7.5 Hz, 2H), 4.49-4.41 (m, 2H), 3.68 (s, 3H), 3.68-3.65 (m, 2H), 3.48 (d, J = 12.0 Hz, 1H), 3.42 (dd, J = 16.0, 10.0 Hz, 1H), 2.30 (ddd, J = 14.0, 8.5, 5.3 Hz, 1H), 2.08 (br s, 1H), 1.93 (br d, J = 13.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 199.3 (C), 155.5 (C), 137.5 (C), 133.0 (CH), 128.6 (2 × CH), 128.2 (2 × CH), 70.7 (CH), 55.3 (CH₂), 54.3 (CH), 52.2 (CH₃), 43.8 (CH₂), 39.6 (CH₂). HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{14}H_{17}NO_4Na$ 286.1055; found 286.1051. Anal. calcd for C14H17NO4: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.78; H, 6.68; N, 5.32.

(25,4*R*)-2-Allyl-4-hydroxy-1-(methoxycarbonyl)pyrrolidine (**31**). Obtained from silyl ether **23** (90 mg, 0.3 mmol) according to the general method B. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 30:70), yielding product **31** (49 mg, 89%, $R_f = 0.25$) as a viscous oil: $[\alpha]_D^{20}$ +43 (*c* 0.73, CHCl₃). IR (CHCl₃) ν_{max} : 3611, 3441, 1685, 1455, 1392 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two

sets of signals at 26 °C, one set at 70 °C: δ 5.82–5.74 (m, 1H), 5.12– 5.05 (m, 2H), 4.41–4.37 (m, 1H), 3.95–3.90 (m, 1H), 3.72 (dd, J = 11.7, 5.7 Hz, 1H), 3.69 (s, 3H), 3.30 (dd, J = 11.8, 3.6 Hz, 1H), 2.70– 2.63 (m, 1H), 2.43 (ddd, J = 13.8, 8.7, 8.0 Hz, 1H), 2.16 (ddd, J = 13.8, 8.3, 6.0 Hz, 1H), 1.87 (br b, 1H), 1.83 (dt, J = 13.6, 3.8 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 155.6 (C), 135.1 (CH), 117.3 (CH₂), 70.5 (CH), 56.8 (CH), 55.1 (CH₂), 52.1 (CH₃), 39.0 (CH₂), 38.5 (CH₂). MS m/z (rel intensity) 185 (M⁺, <1), 144 ([M – ally1]⁺, 100). HRMS (EI) m/z: [M]⁺ calcd for C₉H₁₅NO₃ 185.1052; found 185.1059; [M – ally1]⁺ calcd for C₆H₁₀NO₃ 144.0661; found 144.0654. Anal. calcd for C₉H₁₅NO₃: C, 58.36; H, 8.16; N, 7.56. Found: C, 58.28; H, 8.34; N, 7.52.

N-Methoxycarbonyl-(2S,4R)-[4-(hydroxy)-2-(1,1-dimethyl-2-methoxy-2-oxoethyl)]pyrrolidine (32). Obtained from the silvl ether 25 (108 mg, 0.3 mmol) according to method B. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 50:50), yielding alcohol 32 (65.5 mg, 89%, R_f = 0.27) as a viscous oil: $[\alpha]_{D}^{20}$ +29 (c 0.63, CHCl₃). IR (CHCl₃) $\nu_{\rm max}$: 3445, 1726, 1697, 1450, 1388 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 26 °C): δ 4.26 (dd, J = 8.5, 7.5 Hz, 1H), 4.21 (dddd, J = 7.9, 7.9, 7.9, 7.8 Hz, 1H), 4.07-3.97 (m, 1H), 3.65 (s, 3H), 3.60 (s, 3H), 2.91 (dd, J = 11.3, 8.2 Hz, 1H), 2.76 (br s, 1H), 2.34 (dt, J = 13.5, 8.2 Hz, 1H), 1.63 (ddd, J = 13.2, 7.6, 6.6 Hz, 1H), 1.15 (s, 3H), 1.13 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 26 °C): δ 177.4 (C), 156.4 (C), 68.7 (CH), 62.1 (CH), 54.0 (CH₂), 52.5 (CH₃), 51.9 (CH₃), 46.9 (C), 36.0 (CH₂), 22.2 (CH₃), 21.0 (CH₃). HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₁H₁₉NO₅Na 268.1161; found 268.1165. Anal. calcd for C₁₁H₁₉NO₅: C, 53.87; H, 7.81; N, 5.71. Found: C, 53.68; H, 8.21; N, 5.82.

N-Methoxycarbonyl-(2R,4R)-[4-(hydroxy)-2-(1,1-dimethyl-2-methoxy-2-oxoethyl)]pyrrolidine (33). Obtained from silyl ether 26 (108 mg, 0.3 mmol) according to method B. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 50:50), yielding alcohol 33 (68 mg, 93%, $R_{\rm f}$ = (124) as a viscous oil: $[a]_D^{20} - 26$ (c 1.10, CHCl₃). IR (CHCl₃) ν_{max} : 3439, 1726, 1697, 1449, 1387 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 26 °C): δ 4.47 (dd, J = 8.0, 7.5 Hz, 1H), 4.32–4.30 (m, 1H), 3.85–3.72 (m, 1H), 3.65 (s, 3H), 3.63 (s, 3H), 3.19 (dd, J = 12.3, 3.2 Hz, 1H), 3.02 (br s, 1H), 2.02 (dd, J = 14.0, 8.0 Hz, 1H), 1.86 (ddd, J = 13.5, 7.5, 5.5 Hz, 1H), 1.11 (s, 3H), 1.08 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 26 °C): δ 177.1 (C), 157.5 (C), 70.0 (CH), 61.9 (CH), 56.6 (CH₂), 52.6 (CH₃), 51.9 (CH₃), 46.7 (C), 36.6 (CH₂), 21.7 (CH₃), 21.1 (CH₃). HRMS (ESI) m/z: [M + Na]⁺ calcd for C11H19NO5Na 268.1161; found 268.1162. Anal. calcd for C₁₁H₁₉NO₅: C, 53.87; H, 7.81; N, 5.71. Found: C, 53.64; H, 7.95; N, 5.69.

General Procedure for the Scission of the Pyrrolidine C_4-C_5 Bond. To a solution of the 2-alkyl-2-hydroxypyrrolidine (0.2 mmol) in dry dichloromethane (4 mL) were added iodine (25 mg, 0.1 mmol) and DIB (129 mg, 0.4 mmol). The resulting mixture was stirred for 3 h at 26 °C, under irradiation with visible light (80 W tungstenfilament lamp). Then, the reaction mixture was poured into 10% aqueous Na₂S₂O₃ (10 mL) and extracted with CH₂Cl₂. The organic layer was dried over sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by chromatography on silica gel (hexanes/ethyl acetate) to give the scission products.

N-(*Acetoxymethyl*)-*N*-(*methoxycarbonyl*)-(*3R*)-*aminohexanal* (*34*). Obtained from hydroxypyrrolidine 27 (37.5 mg, 0.2 mmol) according to the general pyrrolidine scission procedure. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 80:20), yielding aldehyde 34 (31 mg, 63%, $R_f = 0.30$) as a viscous oil: $[\alpha]_D^{20}$ –16 (*c* 0.10, CHCl₃). IR (CHCl₃) ν_{max} : 1733, 1695, 1454, 1238, 1103, 1046 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 26 °C): δ 9.69 (s, 1H), 5.37 (br d, *J* = 10.0 Hz, 1H), 5.26 (br d, *J* = 10.5 Hz, 1H), 4.48–4.42 (m, 1H), 3.73 (br s, 3H), 2.83–2.67 (m, 1H), 2.58 (dd, *J* = 17.0, 5.5 Hz, 1H), 2.04 (s, 3H), 1.75–1.55 (br b, 1H), 1.55–1.43 (m, 1H), 1.36–1.25 (m, 2H), 0.91 (t, *J* = 7.5 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 100.6 MHz, 26 °C): δ 200.3/199.8 (CH), 170.6 (C), 155.9 (C), 70.2 (CH₂), 53.2 (CH), 52.4/51.6 (CH₃), 48.2/47.7 (CH₂), 35.6/35.1 (CH₂), 21.0 (CH₃), 19.4 (CH₂), 13.7 (CH₃). HRMS (ESI) m/z: [M + Na + MeOH]⁺ calcd for C₁₂H₂₃NO₆Na 300.1423; found 300.1421. Anal. calcd for C₁₁H₁₉NO₅: C, 53.87; H, 7.81; N, 5.71. Found: C, 53.79; H, 7.93; N, 6.03.

N-(Acetoxymethyl)-N-(methoxycarbonyl)-(3S)-aminohexanal (35). Obtained from the 2-propyl-4-hydroxypyrrolidine 29 (37 mg, 0.2 mmol) according to the general pyrrolidine scission procedure. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 80:20), yielding aldehyde 35 (31 mg, 64%, $R_{\rm f} = 0.30$) as a viscous oil: $[\alpha]_{\rm D}^{20} + 20$ (c 0.66, CHCl₃). IR (CHCl₃) ν_{max} : 3027, 1699, 1450, 1273, 1020 cm⁻¹. ¹H NMR $(CDCl_3, 400 \text{ MHz}, 26 \text{ °C}): \delta 9.69 (1H, s), 5.37 (br d, J = 10.8 \text{ Hz},$ 1H), 5.26 (br d, J = 11.2 Hz, 1H), 4.49–4.42 (m, 1H), 3.73 (br s, 3H), 2.81-2.62 (m, 1H), 2.59 (dd, J = 16.8, 7.0 Hz, 1H), 2.04 (s, 3H), 1.72-1.55 (m, 1H), 1.55-1.40 (m, 1H), 1.25-1.38 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 26 °C): δ 200.8 (CH), 172.1 (C), 158.1 (C), 70.9 (CH₂), 55.2 (CH), 53.6 (CH₃), 41.6 (CH₂), 36.7 (CH₂), 20.9 (CH₃), 20.4 (CH₂), 14.1 (CH₃). HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₁H₁₉NO₅Na 268.1161; found 268.1167. Anal. calcd for C11H19NO5: C, 53.87; H, 7.81; N, 5.71. Found: C, 53.75; H, 7.76; N, 6.00.

(3R)-[N-(Acetoxymethyl)-N-(methoxycarbonyl)amino]-5-(oxo)-5-(phenyl)pentanal (36). Obtained from compound 30 (53 mg, 0.2 mmol) according to the general pyrrolidine scission procedure. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 80:20), yielding aldehyde 36 (47 mg, 73%, $R_f = 0.24$) as a viscous oil: $[\alpha]_D^{20} + 14$ (c 0.33, CHCl₃). IR $(CHCl_3) \nu_{max}$: 1705, 1686, 1449, 1274, 1145 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 9.77 (t, J = 2.0 Hz, 1H), 7.93 (d, J = 7.0 Hz, 2H), 7.56 (dd, J = 7.9, 7.5 Hz, 1H), 7.46 (dd, J = 8.0, 7.5 Hz, 2H), 5.43 (d, *J* = 13.0 Hz, 1H), 5.41 (d, *J* = 12.0 Hz, 1H), 4.85–4.76 (m, 1H), 3.73 (s, 3H), 3.63-3.52 (m, 1H), 3.33 (dd, J = 17.5, 6.0 Hz, 1H), 3.09-3.01 (m, 1H), 2.90 (dd, J = 17.2, 5.5 Hz, 1H), 1.97 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 199.3 (C), 197.2 (C), 170.3 (C), 155.7 (C), 137.0 (C), 133.4 (CH), 128.7 (2 × CH), 128.1 (2 × CH), 73.3 (CH₂), 53.0 (CH₃), 50.9 (CH), 47.5 (CH₂), 42.0 (CH₂), 20.7 (CH₃). HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₆H₁₉NO₆Na 344.1110; found 344.1109. Anal. calcd for C16H19NO6: C, 59.81; H, 5.96; N, 4.36. Found: C, 59.87; H, 6.27; N, 4.75.

Methyl (3R)-[N-(Acetoxymethyl)-N-(methoxycarbonyl)amino]-2,2-dimethyl-5-oxopentanoate (37). Obtained from compound 32 (49 mg, 0.2 mmol) according to the general pyrrolidine scission procedure. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 80:20), yielding aldehyde 37 (38 mg, 63%, $R_f = 0.10$) as a viscous oil: $[\alpha]_D^{20} + 15$ (c 0.54, CHCl₃). IR (CHCl₃) ν_{max} : 1725, 1572, 1444, 1345, 1015 cm⁻ ¹H NMR (CDCl₃, 500 MHz, 26 °C): δ 9.67 (s, 1H), 5.48–5.32 (br b, 1H), 5.26 (br d, J = 11.5 Hz, 1H), 5.00-4.60 (br b, 1H), 3.75 (br s, 3H), 3.69 (s, 3H), 3.05–2.85 (m, 1H), 2.71 (br d, J = 13.6 Hz, 1H), 2.00 (s, 3H), 1.24 (s, 3H), 1.22 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 26 °C): δ 199.6 (CH), 176.0 (C), 170.3 (C), 156.7 (C), 70.2 (CH₂), 57.6 (CH), 53.5 (CH₃), 52.2 (CH₃), 46.7 (C), 42.6 (CH₂), 24.4 (CH₃), 22.2 (CH₃), 20.8 (CH₃). HRMS (ESI) *m*/*z*: [M + Na + MeOH]⁺ calcd for $C_{14}H_{25}NO_8Na$ 358.1478; found 358.1468. Anal. calcd for C13H21NO7: C, 51.48; H, 6.98; N, 4.62. Found: C, 51.59; H, 6.88; N, 4.35.

Methyl (35)-[*N*-(*Acetoxymethyl*)-*N*-(*methoxycarbonyl*)*amino*]-2,2-*dimethyl*-5-oxopentanoate (**38**). Obtained from compound **33** (49 mg, 0.2 mmol) according to the general pyrrolidine scission procedure. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 70:30), yielding aldehyde **38** (37 mg, 61%, $R_f = 0.10$) as a viscous oil: $[\alpha]_D^{20} - 17$ (*c* 0.56, CHCl₃). IR (CHCl₃) ν_{max} : 3022, 1726, 1445 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz, 26 °C): δ 9.67 (br s, 1H), 5.48–5.32 (br b, 1H), 5.25 (br d, J = 11.4 Hz, 1H), 5.00–4.60 (m, 1H), 3.76 (br s, 3H), 3.70 (s, 3H), 3.05–2.85 (m, 1H), 2.71 (br d, J = 13.6 Hz, 1H), 2.02 (s, 3H), 1.23 (s, 3H), 1.22 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 26 °C): δ 199.7 (CH), 176.0 (C), 170.4 (C), 156.7 (C), 70.5 (CH₂), 57.8 (CH), 53.5 (CH₃), 52.2 (CH₃), 46.6 (C), 42.6 (CH₂),

24.4 (CH₃), 22.1 (CH₃), 20.8 (CH₃). HRMS (ESI) m/z: [M + Na + MeOH]⁺ calcd for C₁₄H₂₅NO₈Na 358.1478; found 358.1466. Anal. calcd for C₁₃H₂₁NO₇: C, 51.48; H, 6.98; N, 4.62. Found: C, 51.26; H, 7.05; N, 4.47.

General Reductive Amination Procedure. A solution of the aldehyde (0.15 mmol) in dry dichloroethane (3 mL) was treated with the corresponding amine (0.17 mmol) and Et_3N (28 μ L, 0.2 mmol). The resulting mixture was stirred for 30 min and then NaBH(OAc)₃ (95 mg, 0.45 mmol) was added. The stirring continued until the disappearance of the starting material (4–16 h). Then, the mixture was poured into saturated aqueous NaHCO₃, and extracted with CH₂Cl₂. The organic layer was dried over sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by chromatography on silica gel (hexanes/ethyl acetate) to give the reductive amination products.

(3R)-[N-(Acetoxymethyl)-N-(methoxycarbonyl)amino]-5-(dibenzylamino)-1-(phenyl)-1-pentanone (39). Obtained from aldehyde 36 (48 mg, 0.15 mmol) according to the general reductive amination procedure using dibenzylamine (33 µL, 34 mg, 0.17 mmol). After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 90:10), yielding diamine 39 (51 mg, 68%) as a viscous oil: $[\alpha]_D^{-20} + 6$ (c 0.85, CHCl₃). IR (CHCl₃) $\nu_{\rm max}$: 3091, 3067, 1707, 1449, 1237 cm⁻¹. ¹H NMR (CD₃OD, 500 MHz, 26 °C) rotamer equilibrium. Two sets of signals at 26 °C: δ 7.87 (d, J = 7.0 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.32 (d, J = 7.5 Hz, 4H), 7.22 (dd, J = 8.0, 7.0 Hz, 4H), 7.12 (dd, J = 7.6, 7.4 Hz, 2H), 5.35/5.28 (d, J = 10.1 Hz/d, J = 8.0 Hz,1H), 5.12 (d, J = 11.0 Hz, 1H), 4.65–4.54 (m, 1H), 3.63 (s, 3H), 3.63-3.55 (m, 2H), 3.42-3.37 (m, 2H), 3.40-3.20 (br b, 2H), 2.46-2.40 (m, 2H), 2.05-1.75 (m, 2H), 1.65/1.57 (s/s, 3H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 26 °C): δ 200.0 (C), 172.0 (C), 158.3/ 157.4 (C), 140.7 (2 × C), 138.2 (C), 134.4 (CH), 130.2 (2 × CH), 129.7 (4 × CH), 129.3 (4 × CH), 129.2 (2 × CH), 128.1 (2 × CH), 73.1/72.1 (CH₂), 59.3 (2 × CH₂), 53.7/53.5 (CH), 52.7 (CH₃), 50.6 (CH₂), 41.9/41.6 (CH₂), 31.6/30.9 (CH₂), 20.6 (CH₃). HRMS (ESI) m/z: $[M + H - CO_2Me]^+$ calcd for $C_{28}H_{31}N_2O_3$ 443.2335; found 443.2327. Anal. calcd for C₃₀H₃₄N₂O₅: C, 71.69; H, 6.82; N, 5.57. Found: C, 71.78; H, 7.08; N, 5.92.

Methyl (3S)-Buten-1-yl(5-(dibenzylamino)-1-oxo-1-phenylpentan-3-yl)carbamate (40). A solution of substrate 39 (45 mg, 0.09 mmol) in dry acetonitrile (2 mL) was treated at 0 °C with allyltrimethylsilane (40 µL, 29 mg, 0.25 mmol) and trimethylsilyl triflate (30 μ L, 37 mg, 0.17 mmol). The resulting mixture was stirred for 1.5 h, then poured into satured aqueous NaHCO₃, and extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated under vacuum, and the residue was purified by chromatography on silica gel (hexanes/ethyl 80:20) to give compound 40 (31 mg, 71%, $R_f = 0.29$) as a viscous oil: $[\alpha]_D$ +2 $(c \ 0.21, \ CHCl_3)$. IR $(CHCl_3) \nu_{max}$: 1691, 1573, 1449, 1366, 1003 cm⁻¹. ¹H NMR (CD₃OD, 500 MHz, 70 °C): δ 7.87 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.46 (dd, J = 8.0, 7.5 Hz, 2H), 7.31 (d, J = 7.6 Hz, 4H), 7.24 (t, *J* = 7.6 Hz, 4H), 7.16 (dd, *J* = 7.5, 7.0 Hz, 2H), 5.69-5.61 (m, 1H), 4.94-4.91 (m, 2H), 4.15-4.00 (br b, 3H), 3.61 (d, J = 13.5 Hz, 2H), 3.55 (s, 3H), 3.50 (d, J = 13.5 Hz, 2H), 3.11-2.98 (m, 2H), 2.47 (t, J = 6.8 Hz, 2H), 2.09 (q, J = 7.4 Hz, 2H), 1.95–1.80 (br s, 2H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 26 °C): δ 200.5 (C), 158.3 (C), 140.4/140.3 (2 × C), 138.3/138.2 (C), 136.6 (CH), 134.4 (CH), 130.4 (2 × CH), 130.3 (2 × CH), 129.8 (2 × CH), 129.3 (4 \times CH), 129.2 (2 \times CH), 128.2 (2 \times CH), 116.8 (CH_2) , 59.4 (2 × CH₂), 54.5 (CH), 53.1 (CH₂), 52.9 (CH₃), 51.0 (CH₂), 47.5/46.1 (CH₂), 35.0/34.3 (CH₂), 31.9/30.9 (CH₂). HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{31}H_{36}N_2O_3Na$ 507.2624; found 507.2626. Anal. calcd for $C_{31}H_{36}N_2O_3$: C, 76.83; H, 7.49; N, 5.78. Found: C, 77.05; H, 7.69; N, 5.71.

Methyl (3R)-[N-(Acetoxymethyl)-N-(methoxycarbonyl)amino]-2,2-(dimethyl)-5-dibenzylaminopentanoate (41). Obtained from aldehyde 38 (37 mg, 0.15 mmol) according to the general procedure for the reductive amination (16 h) using dibenzylamine as a reagent (33 μ L, 34 mg, 0.17 mmol). After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc,

40:60), yielding diamine **41** (49 mg, 67%) as a viscous oil: $[\alpha]_D^{20} - 27$ (*c* 1.01, CHCl₃). IR (CHCl₃) ν_{max} : 1716, 1446, 1251, 1131 cm⁻¹. ¹H NMR (CD₃OD, 500 MHz, 26 °C): δ 7.36–7.34 (m, 4H), 7.29 (t, *J* = 7.5 Hz, 4H), 7.21 (dd, *J* = 7.5, 6.5 Hz, 2H), 5.20–5.10 (br b, 2H), 4.67–4.51 (m, 1H), 3.68 (s, 3H), 3.64 (br d, *J* = 13.5 Hz, 2H), 3.54 (s, 3H), 3.33 (br d, *J* = 12.0 Hz, 2H), 2.55–2.45 (m, 1H), 2.34–2.23 (m, 1H), 1.82 (s, 3H), 1.78–1.65 (m, 2H), 1.13 (s, 3H), 1.11 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 26 °C): δ 178.2 (C), 171.8 (C), 158.9 (C), 140.7 (2 × C), 130.0 (4 × CH), 129.3 (4 × CH), 128.0 (2 × CH), 70.4 (CH₂), 60.1 (CH), 59.6 (2 × CH₂), 53.9 (CH₃), 52.5 (CH₃), 51.5 (CH₂), 48.6 (C), 26.8 (CH₂), 24.4 (CH₃), 21.7 (CH₃), 20.8 (CH₃). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₇H₃₇N₂O₆ 485.2652; found 485.2644. Anal. calcd for C₂₇H₃₆N₂O₆: C, 66.92; H, 7.49; N, 5.78. Found: C, 67.00; H, 7.22; N, 6.03.

Methyl (R)-5-(Dibenzylamino)-3-[(methoxycarbonyl)(methyl)amino]-2,2-dimethylpentanoate (42). A solution of substrate 41 (58 mg, 0.12 mmol) in dry acetonitrile (3 mL) was treated at 0 °C with triethylsilane (96 μ L, 70 mg, 0.6 mmol) and trimethylsilyl triflate (43 µL, 53 mg, 0.24 mmol). The resulting mixture was stirred for 3 h, then poured into satured aqueous NaHCO3, and extracted with EtOAc. The organic layer was dried over sodium sulfate and concentrated under vacuum, and the residue was purified by chromatography on silica gel (hexanes/EtOAc 80:20) to give compound 42 (37 mg, 73%, $R_{\rm f} = 0.20$) as a viscous oil: $[\alpha]_{\rm D}^{20}$ -7 (c 0.10, CHCl₃). IR (CHCl₃) ν_{max} : 1730, 1697, 1455, 1232, 1046 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C): δ 7.38 (d, J = 7.5 Hz, 4H), 7.34 (t, J = 7.5 Hz, 4H), 7.26 (t, J = 7.0 Hz, 2H), 4.38-4.24 (m, 1H), 3.69 (s, 3H), 3.65 (s, 3H), 3.62 (br s, 4H), 2.64/2.55 (s/s, 3H), 2.51-2.33 (m, 2H), 1.84-1.67 (m, 2H), 1.20 (br s, 3H), 1.18 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 26 °C): δ 176.9 (C), 157.9 (C), 139.7 (C), 139.6 (C), 128.9 (4 × CH), 128.2 (4 × CH), 126.9 $(2 \times CH)$, 60.0 (CH), 59.0 (CH₂), 58.9 (CH₂), 52.5 (CH₃), 51.6 (CH₃), 51.4 (CH₂), 47.4 (C), 30.0 (CH₃), 25.2 (CH₂), 24.1 (CH₃), 22.2 (CH₃). HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₅H₃₄N₂O₄Na 449.2416; found 449.2415. Anal. calcd for C25H34N2O4: C, 70.40; H, 8.03; N, 6.57. Found: C, 70.31; H, 7.82; N, 6.47.

Methyl (3S)-[N-(Acetoxymethyl)-N-(methoxycarbonyl)amino]-2,2-(dimethyl)-5-morpholinyl-pentanoate (43). Obtained from aldehyde 37 (45 mg, 0.15 mmol) according to the reductive amination procedure using morpholine (15 μ L, 15 mg, 0.17 mmol). After usual work-up and solvent removal, the residue was purified by radial chromatography (hexanes/EtOAc, 40:60), yielding diamine 43 (41 mg, 73%, $R_{\rm f} = 0.15$) as a viscous oil: $[\alpha]_{\rm D}^{20}$ +18 (c 0.78, CHCl₃). IR (CHCl₃) ν_{max} : 1720, 1570, 1450, 1274, 1138 cm⁻¹. ¹H NMR $(CD_3OD, 400 \text{ MHz}, 70 \text{ °C}): \delta 5.41 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H}), 5.29 \text{ (d, } J =$ 10.8 Hz, 1H), 4.60-4.36 (br b, 1H), 3.80-3.67 (m, 4H), 3.67 (s, 6H), 2.46–2.33 (m, 6H), 2.02 (s, 3H), 1.80–1.74 (m, 2H), 1.22 (s, 3H), 1.20 (s, 3H). $^{13}C\{^{1}H\}$ NMR (CD₃OD, 125.7 MHz, 70 °C): δ 179.7 (C), 177.7 (C), 157.7 (C), 69.2 (CH₂), 61.9 (CH₂), 61.7 (CH₂), 60.1 (CH), 58.9 (CH₂), 58.7 (CH₂), 58.4 (CH₂), 54.7 (CH₃), 52.8 (CH₃), 48.2 (C), 24.2 (CH₂), 22.6 (2 × CH₃), 20.3 (CH₃). HRMS (ESI) m/z: [M - CO₂Me]⁺ calcd for C₁₅H₂₇N₂O₅ 315.1920; found 315.1915. Anal. calcd for C17H30N2O7: C, 54.53; H, 8.08; N, 7.48. Found: C, 54.26; H, 8.44; N, 7.41.

Methyl (3R)-[N-(Acetoxymethyl)-N-(methoxycarbonyl)amino]-2,2-(dimethyl)-5-morpholinyl-pentanoate (44). Obtained from aldehyde 38 (45 mg, 0.15 mmol) according to the general procedure for the reductive amination, using morpholine (15 μ L, 15 mg, 0.17 mmol). After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 40:60), yielding diamine 44 (38 mg, 68%, $R_{\rm f}$ = 0.15) as a viscous oil: $[\alpha]_{\rm D}^{20}$ -16 (c 1.06, CHCl₃). IR (CHCl₃) ν_{max} : 1720, 1573, 1450 cm⁻¹. ¹H NMR (CD₃OD, 400 MHz, 26 °C): δ 5.41 (d, J = 11.2 Hz, 1H), 5.29 (d, J = 10.4 Hz, 1H), 4.63-4.35 (br b, 1H), 3.73 (m, 3H), 3.80-3.50 (m, 4H), 3.66 (s, 3H), 2.55-2.30 (m, 6H), 2.02 (s, 3H), 1.98-1.68 (m, 2H), 1.22 (s, 3H), 1.19 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 70 °C): δ 179.7 (C), 177.7 (C), 157.7 (C), 69.2 (CH₂), 61.9 (CH₂), 61.7 (CH₂), 60.1 (CH), 58.9 (CH₂), 58.5 (CH₂), 58.4 (CH₂), 54.7 (CH₃), 52.8 (CH₃), 48.2 (C), 24.2 (CH₂), 22.6 (2 \times CH₃), 20.3 (CH₃). HRMS (ESI) m/z: [M - CO₂Me]⁺ calcd for

 $C_{15}H_{27}N_2O_5$ 315.1920; found 315.1914. Anal. calcd for $C_{17}H_{30}N_2O_7{:}$ C, 54.53; H, 8.08; N, 7.48. Found: C, 54.63; H, 8.04; N, 7.18.

Methyl (2S,4R)-1-[(R)-3-[(Acetoxymethyl)(methoxycarbonyl)amino]-5-methoxy-4,4-dimethyl-5-oxopentyl]-4-hydroxypyrrolidine-2-carboxylate (45). Obtained from aldehyde 37 (45.5 mg, 0.15 mmol) according to the reductive amination procedure (16 h) using 4-trans-hydroxyproline methyl ester hydrochloride as reagent (31 mg, 0.17 mmol). After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 30:70), yielding diamine 45 (33 mg, 51%, $\tilde{R}_{\rm f} = 0.18$) as a viscous oil: $[\alpha]_{\rm D}^{20}$ +40 (c 0.21, CHCl₃). IR (CHCl₃) ν_{max} : 3356, 1722, 1568, 1260, 1159 cm⁻¹ ¹H NMR (CD₃OD, 400 MHz, 26 °C): δ 5.37–5.25 (m, 2H), 4.70– 4.38 (br b, 1H), 4.40-4.30 (m, 1H), 3.73 (s, 3H), 3.70 (s, 3H), 3.67 (s, 3H), 3.47 (t, J = 7.6 Hz, 1H), 3.35-3.30 (m, 1H), 2.78-2.68 (m, 1H), 2.46-2.36 (m, 2H), 2.04 (s, 3H), 2.15-1.90 (m, 2H), 1.80-1.69 (m, 1H), 1.21 (s, 3H), 1.18 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 26 °C) δ 178.1 (C), 175.4 (C), 171.9 (C), 159.9 (C), 70.6 (CH₂), 70.5 (CH), 65.9 (CH), 62.3 (CH₂), 60.6 (CH), 53.9 (CH₃), 53.6/53.2 (CH₂), 52.5 (CH₃), 52.4 (CH₃), 39.9 (C), 38.9/ 38.8 (CH₂), 28.2 (CH₂), 24.5/24.4 (CH₃), 22.3/21.9 (CH₃), 20.9 (CH₃). HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₃₂N₂O₉Na 455.2006; found 455.2002. Anal. calcd for C19H32N2O9: C, 52.77; H, 7.46; N, 6.48. Found: C, 52.81; H, 7.60; N, 6.47.

Methyl (2S,4R)-1-[(S)-3-[(Acetoxymethyl)(methoxycarbonyl)amino]-5-methoxy-4,4-dimethyl-5-oxopentyl]-4-hydroxypyrrolidine-2-carboxylate (46). Obtained from aldehyde 38 (45.5 mg, 0.15 mmol) according to the reductive amination procedure (16 h) using 4-trans-hydroxyproline methyl ester hydrochloride as a reagent (31 mg, 0.17 mmol). After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 30:70), yielding diamine 46 (42 mg, 65%, $R_{\rm f}$ = 0.18) as a viscous oil: $[\alpha]_{\rm D}$ -47 (c 0.17, CHCl₃). IR (CHCl₃) ν_{max} : 3347, 1722, 1573, 1260, 1157 cm⁻¹. ¹H NMR (CD₃OD, 400 MHz, 26 °C): δ 5.38 (d, J = 11.0 Hz, 1H), 5.29 (d, J = 10.5 Hz, 1H), 4.50 (br b, 1H), 4.37–4.31 (m, 1H), 3.73 (s, 3H), 3.70 (s, 3H), 3.67 (s, 3H), 3.48-3.30 (m, 2H), 2.75-2.64 (m, 1H), 2.47-2.37 (m, 1H), 2.33-2.24 (m, 1H), 2.15-2.05 (m, 1H), 2.03 (s, 3H), 2.04-1.94 (m, 1H), 1.90-1.65 (m, 2H), 1.22 (s, 3H), 1.18 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 125.7 MHz, 26 °C): δ 178.1 (C), 175.4 (C), 172.0 (C), 159.3 (C), 70.6 (CH₂), 70.5 (CH), 65.9 (CH), 62.3 (CH₂), 60.6 (CH), 53.9 (CH₃), 53.6 (CH₂), 52.6 (CH₃), 52.4 (CH₃), 39.94 (CH₂), 39.90 (C), 28.2 (CH₂), 24.5 (CH₃), 21.9 (CH₃), 20.9 (CH₃). HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C19H32N2O9Na 455.2006; found 455.1991. Anal. calcd for $C_{19}H_{32}N_2O_9$: C, 52.77; H, 7.46; N, 6.48. Found: C, 52.51; H, 7.52; N, 6.20.

General Procedure for the Horner–Wadsworth–Emmons Reaction for the Synthesis of Peptides with Dehydroamino Acid Units. To a solution of the α -phosphonate (0.05 mmol) in dry CH₂Cl₂ (2 mL) was added a solution of tetramethylguanidine (16 μ L, 14.5 mg, 0.125 mmol) in dry CH₂Cl₂ (0.5 mL). The reaction mixture was stirred for 10 min, and then, the aldehyde (0.1 mmol) in dry CH₂Cl₂ (0.5 mL) was added. After stirring for 16 h, the solution was poured into saturated aqueous NaHCO₃ and extracted with CH₂Cl₂. The organic layer was dried over sodium sulfate, filtered, and evaporated under vacuum. The residue was purified by chromatography on silica gel (hexanes/EtOAc) affording the peptides with dehydroamino acid units **49–51**.

(Z,R)-*N*-[5-((Acetoxymethyl)(methoxycarbonyl)amino)-2-(*N*-benzoyl-*O*-benzyl-*L*-seryl)amino-2-octenoyl]-*L*-leucine Methyl Ester (49). Obtained using aldehyde 34 (24.5 mg, 0.1 mmol) and phosphonate 47 (31 mg, 0.05 mmol)^{1a} according to the general procedure for the Horner–Wadsworth–Emmons reaction. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 50:50), yielding peptide 49 (30 mg, 85%, $R_f = 0.10$) as a viscous oil: $[\alpha]_D^{20} -23$ (*c* 0.52, CHCl₃). IR (CHCl₃) ν_{max} : 3413, 3337, 1734, 1705, 1655, 1508, 1481, 1241, 1015 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.88 (br s, 1H), 7.81 (d, J = 7.0 Hz, 2H), 7.38–7.28 (m, 5H), 7.07 (d, J = 6.0 Hz, 1H), 6.676 (d, J = 7.5 Hz, 1H), 6.52 (t, J = 7.5 Hz, 1H), 5.27 (s, 2H), 4.82 (ddd, J = 6.0,

6.0, 5.0 Hz, 1H), 4.70 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.66-4.61 (m, 1H), 4.10 (dd, J = 9.7, 4.7 Hz, 1H), 3.98-3.92 (m, 1H), 3.84 (dd, J = 9.5, 6.5 Hz, 1H), 3.72 (s, 3H), 3.67 (s, 3H), 2.50-2.40 (m, 1H), 2.30 (ddd, J = 15.5, 6.6, 6.5 Hz, 1H), 2.00 (s, 3H), 1.63-1.69 (m, 2H), 1.62-1.54 (m, 2H), 1.50-1.39 (m, 1H), 1.35-1.20 (m, 2H), 0.92 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 6.0 Hz, 3H), 0.87 (dd, J = 7.5, 7.0 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C): δ 173.2 (C), 170.6 (C), 169.1 (C), 167.7 (C), 163.6 (C), 156.8 (C), 139.3 (C), 137.5 (C), 133.6 (C), 132.0 (CH), 131.4 (CH), 128.7 (2 × CH), 128.6 (2 × CH), 128.2 (CH), 127.9 (2 × CH), 127.3 $(2 \times CH)$, 73.8 (CH_2) , 70.2 (CH_2) , 69.4 (CH_2) , 57.2 (CH), 54.2 (CH), 53.0 (CH₃), 52.0 (CH₃), 51.4 (CH), 41.6 (CH₂), 35.6 (CH₂), 32.5 (CH₂), 24.9 (CH), 22.7 (CH₃), 22.0 (CH₃), 20.9 (CH₃), 19.6 (CH₂), 13.7 (CH₃). HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C37H50N4O10Na 733.3425; found 733.3433. Anal. calcd for C₃₇H₅₀N₄O₁₀: C, 62.52; H, 7.09; N, 7.88. Found: C, 62.67; H, 7.11; N, 8.01.

(Z,S)-N-[5-((Acetoxymethyl)(methoxycarbonyl)amino)-2-(N-benzoyl-O-benzyl-L-seryl)amino-2-octenoyl]-L-leucine Methyl Ester (50). Obtained from aldehyde 35 (24.5 mg, 0.1 mmol) and phosphonate 47 (31 mg, 0.05 mmol)^{1a} according to the general procedure for the Horner-Wadsworth-Emmons reaction. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 50:50), yielding peptide **50** (31 mg, 87%, $R_{\rm f}$ = 0.10) as a viscous oil: $[\alpha]_{\rm D}^{20}$ -28 (*c* 0.68, CHCl₃). IR (CHCl₃) $\nu_{\rm max}$: 3410, 3336, 1735, 1705, 1653, 1515, 1481, 1241, 1015 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 7.90 (br s, 1H), 7.80 (d, J = 7.5 Hz, 2H), 7.51 (dd, J = 7.5, 7.0 Hz, 1H), 7.42 (dd, J = 8.0, 7.5 Hz, 2H), 7.40–7.27 (m, 5H), 7.05 (d, I = 6.0 Hz, 1H), 6.78 (d, I =8.0 Hz, 1H), 6.52 (t, J = 7.3 Hz, 1H), 5.26 (d, J = 11.0 Hz, 1H), 5.24 (d, J = 11.5 Hz, 1H), 4.79 (dt, J = 6.0, 5.5 Hz, 1H), 4.69 (d, J = 12.5 Hz, 1H), 4.65–4.61 (m, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.07 (dd, J = 9.5, 5.0 Hz, 1H), 4.00–3.93 (m, 1H), 3.85 (dd, J = 9.7, 6.2 Hz, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 2.51-2.41 (m, 1H), 2.30 (dt, J = 15.5, 6.5 Hz, 1H), 1.99 (s, 3H), 1.72–1.62 (m, 2H), 1.61–1.50 (m, 2H), 1.50–1.38 (m, 1H), 1.35–1.20 (m, 2H), 0.90 (d, J = 6.0 Hz, 3H), 0.87 (dd, J = 8.0, 7.0 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 70 °C) δ 173.3 (C), 170.6 (C), 169.0 (C), 167.8 (C), 163.6 (C), 156.7 (C), 139.3 (C), 137.4 (C), 133.4 (C), 132.1 (CH), 131.7 (CH), 128.7 (2 × CH), 128.6 (2 × CH), 128.1 (CH), 127.9 (2 × CH), 127.3 (2 × CH), 73.7 (CH₂), 70.2 (CH₂), 69.2 (CH₂), 57.1 (CH), 54.3 (CH), 53.0 (CH₃), 52.1 (CH₃), 51.2 (CH), 41.5 (CH₂), 35.5 (CH₂), 32.3 (CH₂), 24.8 (CH), 22.7 (CH₃), 21.9 (CH₃), 20.9 (CH₃), 19.6 (CH₂), 13.7 (CH₃). HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{37}H_{50}N_4O_{10}Na$ 733.3425; found 733.3428. Anal. calcd for C37H50N4O10: C, 62.52; H, 7.09; N, 7.88. Found: C, 62.83; H, 7.20; N, 7.65.

(Z,R)-5-[(Acetoxymethyl)(methoxycarbonyl)amino]-2-(N-benzoyl-O-benzyl-L-seryl)amino-7-oxo-7-phenyl-hept-2-enoate Methyl Ester (51). Obtained using aldehyde 36 (32 mg, 0.1 mmol) and phosphonate 48 (25 mg, 0.05 mmol)^{1a} according to the general procedure for the Horner-Wadsworth-Emmons reaction. After work-up and solvent evaporation, the residue was purified by radial chromatography (hexanes/EtOAc, 50:50), yielding peptide 51 (28 mg, 83%, $R_{\rm f} = 0.08$) as a viscous oil: $[\alpha]_{\rm D}^{20} + 13$ (c 0.73, CHCl₃). IR $(CHCl_3) \nu_{max}$: 3412, 3314, 1715, 1660, 1481, 1258, 1017 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz, 70 °C) rotamer equilibrium. Two sets of signals at 26 °C, one set at 70 °C: δ 8.11 (s, 1H), 7.88 (d, J = 7.0 Hz, 2H), 7.84 (d, J = 7.0 Hz, 2H), 7.54 (dd, J = 7.5, 7.0 Hz, 1H), 7.50 (dd, J = 7.5, 7.0 Hz, 1H), 7.42 (dd, J = 8.0, 7.5 Hz, 4H), 7.35-7.24 (m, 5H), 7.14 (d, J = 6.5 Hz, 1H), 6.67 (t, J = 7.4 Hz, 1H), 5.44 (d, J = 11.0 Hz, 1H), 5.31 (d, J = 11.0 Hz, 1H), 4.93 (dt, J = 6.7, 4.3 Hz, 1H), 4.69 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.56–4.40 (m, 1H), 4.10 (dd, J = 9.5, 4.0 Hz, 1H), 3.79 (dd, J = 9.5, 7.0 Hz, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 3.63-3.48 (m, 1H), 3.10 (dd, J = 17.5, 6.0 Hz, 1H), 2.86–2.67 (m, 1H), 2.53 (ddd, J = 15.5, 7.5, 6.1 Hz, 1H), 1.92 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz, 26 °C): δc 197.5 (C), 170.6 (C), 168.9 (C), 167.4 (C), 164.2 (C), 155.5 (C), 137.6 (C), 136.5 (C), 133.7 (C), 133.6 (C), 133.4 (CH), 131.9

pubs.acs.org/joc

(CH), 128.64 (2 × CH), 128.59 (CH), 128.5 (4 × CH), 128.0 (2 × CH), 127.9 (CH), 127.8 (2 × CH), 127.2 (2 × CH), 73.6 (CH₂), 73.1 (CH₂), 69.3 (CH₂), 58.8 (CH), 55.0 (CH), 53.1 (CH₃), 52.4 (CH₃), 41.8 (CH₂), 31.8 (CH₂), 20.8 (CH₃). HRMS (ESI) *m/z*: [M + Na]⁺ calcd for $C_{36}H_{39}N_{3}O_{10}Na$ 696.2533; found 696.2532. Anal. calcd for $C_{36}H_{39}N_{3}O_{10}$: C, 64.18; H, 5.84; N, 6.24. Found: C, 64.36; H, 5.78; N, 6.57.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.0c02751.

Procedures for the preparation of new substrates 8, 16, 18, 19, 22, and 27–33 and products 10–14, 20, 21, 23–26, and 34–51; their reproduction of ¹H and ¹³C NMR spectra; and NOESY and heteronuclear single quantum coherence (HSQC) experiments of compounds 49-51 (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Dacil Hernández Instituto de Productos Naturales y Agrobiología del CSIC, 38206 La Laguna, Tenerife, Spain; Email: dacil@ipna.csic.es
- Alicia Boto Instituto de Productos Naturales y Agrobiología del CSIC, 38206 La Laguna, Tenerife, Spain; o orcid.org/ 0000-0002-7120-679X; Phone: +34-922-260112.; Email: alicia@ipna.csic.es

Author

Carmen Carro – Instituto de Productos Naturales y Agrobiología del CSIC, 38206 La Laguna, Tenerife, Spain; BIOSIGMA, 38003 Santa Cruz de Tenerife, Tenerife, Spain

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.0c02751

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partly financed by project APOGEO (Cooperation Program INTERREG-MAC 2014–2020, with European Funds for Regional Development-FEDER) and by project SAF-2013-48399-R, Plan Estatal I+D-RETOS (MINE-CO-MCIU)-European Social Funds (ESF). D.H. also acknowledges her current contract (TRANSALUDAGRO) financed by Cabildo de Tenerife, Program TF INNOVA 2016-21 (with MEDI & FDCAN Funds). C.C. was granted a contract from the Doctorados Industriales Programme (DI-14-06736) by MINECO/Min. Science and Innovation, cofinanced by BIOSIGMA SL. C.C. carried out her work as a Ph.D. student of the program "Química e Ingeniería Química" of the University of La Laguna (ULL).

ABBREVIATIONS

DIB, (diacetoxyiodo)benzene; DCM, dichloromethane; Hyp, hydroxyproline; MeOH, methanol; EtOAc, ethyl acetate

REFERENCES

(1) (a) For previous articles summarizing customizable units, see: Saavedra, C. J.; Hernández, D.; Boto, A. Metal-Free, Site-Selective Peptide Modification by Conversion of "Customizable" Units into β -Substituted Dehydroamino Acids. *Chem. – Eur. J.* **2018**, *24*, 599–607.

(b) Romero-Estudillo, I.; Saavedra, C. J.; Boto, A.; Alvarez, E. Siteselective modification of peptides: From "customizable units" to novel α -aryl and α -alkyl glycine derivatives, and components of branched peptides. *Biopolymers* **2015**, *104*, 650–662. (c) Saavedra, C. J.; Boto, A.; Hernández, R. Synthesis of α , γ -Peptide Hybrids by Selective Conversion of Glutamic Acid Units. *Org. Lett.* **2012**, *14*, 3542–3545 and references cited therein.

(2) (a) For other articles on customizable units, see: Bloom, S.; Liu, C.; Kölmel, D. K.; Qiao, J. X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. C. Decarboxylative Alkylation: An Approach to Site-Selective Bioconjugation of Native Proteins via Oxidation Potentials. Nat. Chem. 2018, 10, 205-211. (b) Osberger, T. J.; Rogness, D. C.; Kohrt, J. T.; Stepan, A. F.; White, M. C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 2016, 537, 214-219. (c) Kazmaier, U.; Bayer, A.; Deska, J. Palladium-Catalyzed Allylic Alkylations as Versatile Tool for Amino Acid and Peptide Modifications. Synthesis 2013, 45, 1462-1468. (d) Mazo, N.; García-González, I.; Navo, C. D.; Corzana, F.; Jiménez-Osés, G.; Avenoza, A.; Busto, J. H.; Peregrina, J. M. Synthesis of Mixed α/β 2,2-Peptides by Site-Selective Ring-Opening of Cyclic Quaternary Sulfamidates. Org. Lett. 2015, 17, 5804-5807. (e) Dyer, F. B.; Park, C. M.; Joseph, R.; Garner, P. Aziridine-Mediated Ligation and Site-Specific Modification of Unprotected Peptides. J. Am. Chem. Soc. 2011, 133, 20033-20035. (f) Galonić, D. P.; Ide, N. D.; van der Donk, W. A.; Gin, D. Y. Aziridine-2-carboxylic Acid-Containing Peptides: Application to Solution- and Solid-Phase Convergent Site-Selective Peptide Modification. J. Am. Chem. Soc. 2005, 127, 7359-7369. (g) Chapman, C. J.; Hargrave, J. D.; Bish, G.; Frost, C. G. Peptide modification through site-selective residue interconversion: application of the rhodium-catalysed 1,4-addition of aryl siloxanes and boronates. Tetrahedron 2008, 64, 9528–9539. (h) Ebran, J. P.; Jensen, C. M.; Johannesen, S. A.; Karaffa, J.; Lindsay, K. B.; Taaning, R.; Skrydstrup, T. Creating carbon-carbon bonds with samarium diiodide for the synthesis of modified amino acids and peptides. Org. Biomol. Chem. 2006, 4, 3553-3564 and references cited therein.. (3) (a) deGruyter, J. N.; Malins, L. R.; Baran, P. S. Residue-Specific Peptide Modification: A Chemist's Guide. Biochemistry 2017, 56, 3863-3873. (b) See also: Shadish, J. A.; DeForest, C. A. Site-Selective Protein Modification: From Functionalized Proteins to Functional Biomaterials. Matter 2020, 2, 50-77. (c) Hoyt, E. A.; Cal, P. M. S. D.; Oliveira, B. L.; Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 2019, 3, 147-171. (d) Isenegger, P. G.; Davis, B. G. Concepts of Catalysis in Site-Selective Protein Modifications. J. Am. Chem. Soc. 2019, 141, 8005-8013. (e) Xuan, W.; Collins, D.; Koh, M.; Shao, S.;

Yao, A.; Xiao, H.; Garner, P.; Schultz, P. G. Site-Specific Incorporation of a Thioester Containing Amino Acid into Proteins. *ACS Chem. Biol.* **2018**, *13*, 578–581. (f) Krall, N.; da Cruz, F. P.; Boutureira, O.; Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. *Nat. Chem.* **2016**, *8*, 103–113. (g) Boutureira, O.; Bernardes, G. J. L. Advances in Chemical Protein Modification. *Chem. Rev.* **2015**, *115*, 2174–2195 and references cited therein.

(4) (a) Saavedra, C. J.; Cuevas, F.; Romero-Estudillo, I.; Boto, A. Synthesis of Diketopiperazine Scaffolds with Tailored N- and α -Chains by Selective Modification of Customizable Units. *Adv. Synth. Catal.* **2020**, *362*, 3158–3169. (b) Saavedra, C. J.; Carro, C.; Hernández, D.; Boto, A. Conversion of "Customizable Units" into N-Alkyl Amino Acids and Generation of N-Alkyl Peptides. *J. Org. Chem.* **2019**, *84*, 8392–8410. (c) Romero-Estudillo, I.; Boto, A. Domino Process Achieves Site-Selective Peptide Modification with High Optical Purity. Applications to Chain Diversification and Peptide Ligation. *J. Org. Chem.* **2015**, *80*, 9379–9391.

(5) (a) Compounds 7 and 9 were previousy described: Barrett, A. G.; Pilipauskas, D. Electrochemical oxidation of proline derivatives: total syntheses of Bulgecinine and Bulgecin C. J. Org. Chem. 1991, 56, 2787–2800. (b) Boto, A.; Hernandez, D.; Hernandez, R. One-Pot Synthesis of Azanucleosides from Proline Derivatives-Stereoselectivity in Sequential Processes. Eur. J. Org. Chem. 2010, 3847–3857.

(6) (a) Boto, A.; Gallardo, J. A.; Hernández, D.; Hernández, R. Synthesis of Unnatural Amino Acids from Serine Derivatives by β -Fragmentation of Primary Alkoxyl Radicals. *J. Org. Chem.* 2007, 72, 7260–7269. (b) Carro, C.; Romero, I.; Boto, A. Microwave versus Conventional Light Activation of O-Radical Scission Processes. *Eur. J. Org. Chem.* 2017, 373–380 and references cited therein.

(7) Hernández, D.; Boto, A.; Guzmán, D.; Alvarez, E. Metal-free, direct conversion of α -amino acids into α -keto γ -amino esters for the synthesis of α,γ -peptides. *Org. Biomol. Chem.* **2017**, *15*, 7736–7742 and references cited therein.

(8) (a) Smith, D.; Woerpel, K. A. Electrostatic interactions in cations and their importance in biology and chemistry. Org. Biomol. Chem. 2006, 4, 1195-1201. (b) Bonger, K. M.; Wennekes, T.; Filippov, D. V.; Lodder, G.; van der Marel, G. A.; Overkleeft, H. S. The Effect of Lewis Acids on the Stereochemistry in the Ugi Three-Component Reaction with D-lyxo-Pyrroline. Eur. J. Org. Chem. 2008, 3678-3688. (c) The 2,4-cis compound 23 (closely related to the allyl analogs 10 and 11) and the ketone 24 have been previously reported: Renaud, P.; Seebach, D. Enantiomerenreine Pyrrolidin-Derivate aus trans-4-Hydroxy-L-prolin durch elektrochemische oxidative Decarboxylierung und Titantetrachlorid-vermittelte Umsetzung mit Nukleophilen. Helv. Chim. Acta 1986, 69, 1704-1710. (d) Compound 12 is known: Boto, A.; Hernández, D.; Hernández, R. Enantiopure alkaloid analogues and iminosugars from proline derivatives: stereocontrol in sequential processes. Tetrahedron Lett. 2009, 50, 3974-3977. (e) Compound 12 has similar coupling constants in the ¹H NMR spectrum and optical activity ($[\alpha]_D^{20}$ +14) as compound 13 ($[\alpha]_D^{20}$ +17), while compound 14 has different optical activity ($[\alpha]_D^{20}$ -17). (f) The coupling constants and optical activities of compounds 13 and 14 also match related 2,4-cis- and 2,4-trans 2-alkyl-4-acyloxypyrrolidines commented in: Boto, A.; Hernández, R.; Suárez, E. Tandem Radical Decarboxylation-Oxidation of Amino Acids: A Mild and Efficient Method for the Generation of N-Acyliminium Ions and Their Nucleophilic Trapping. J. Org. Chem. 2000, 65, 4930-4937.

(9) (a) Arenas, I.; Ferrali, A.; Rodríguez-Escrich, C.; Bravo, F.; Pericàs, M. A. cis-4-Alkoxydialkyl- and cis-4-Alkoxydiarylprolinol Organocatalysts: High Throughput Experimentation (HTE)-Based and Design of Experiments (DoE)-Guided Development of a Highly Enantioselective aza-Michael Addition of Cyclic Imides to α,β -Unsaturated Aldehydes. *Adv. Synth. Catal.* **2017**, 359, 2414–2424. (b) He, C.; Ren, X.; Feng, Y.; Chai, Y.; Zhang, S.; Chen, W. Diphenylprolinol silyl ether-derived thioureas as highly efficient catalysts for the asymmetric Michael addition of aldehydes to nitroalkenes. *Tetrahedron Lett.* **2015**, 56, 4036–4038. (c) Bowers-Nemia, M. M.; Joullie, M. M. A Short Improved Synthesis of N-Substituted 5-Aza-2-oxa-3-oxo-bicyclo[2.2.1]heptanes. *Heterocycles* **1983**, 20, 817–828.

(10) Acids **18** and **19** were not described, but acid **22** was reported in ref **5a** and also: Thaning, M.; Wistrand, L. G. Intermolecular Stereoselective Alkenylation of Chiral N-Acylpyrrolidinium Ions. *Acta Chem. Scand.* **1992**, *46*, 194–199.

(11) (a) Aguilar, M. I.; Purcell, A. W.; Devi, R.; Lew, R.; Rossjohn, J.; Smith, A. I.; Perlmutter, P. β -Amino acid-containing hybrid peptides—new opportunities in peptidomimetics. Org. Biomol. Chem. **2007**, 5, 2884–2890. (b) Godballe, T.; Nilsson, L. L.; Petersen, P. D.; Jenssen, H. Antimicrobial β -peptides and α -peptoids. Chem. Biol. Drug Des. **2011**, 77, 107–116. (c) Horne, W. S. Peptide and peptoid foldamers in medicinal chemistry. Expert Opin. Drug Discovery **2011**, 6, 1247–1262. (d) Cabrele, C.; Martinek, T. A.; Reiser, O.; Berlicki, L. Peptides Containing β -Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J. Med. Chem. **2014**, 57, 9718–9739. (e) For a recent work on sitagliptin synthesis with more references, see: Ravn, A. K.; Vilstrup, M. B. T.; Noerby, P.; Nielsen, D. U.; Daasbjerg, K.; Skrydstrup, T. Carbon Isotope Labeling Strategy for β -Amino Acid Derivatives via Carbonylation of Azanickellacycles. J. Am. Chem. Soc. **2019**, 141, 11821–11826.

(12) (a) For reviews, see: Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. β -Peptides: From Structure to Function. *Chem. Rev.* **2001**, *101*, 3219–3232. (b) Goodman, C. M.; Choi, S.; Shandler, S.; DeGrado,

W. F. Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol. 2007, 3, 252–262. (c) Seebach, D.; Gardiner, J. β -Peptidic Peptidomimetics. Acc. Chem. Res. 2008, 41, 1366–1375. (d) Horne, W. S.; Gellman, S. H. Foldamers with heterogeneous backbones. Acc. Chem. Res. 2008, 41, 1399–1408. (e) Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical Polymers: Synthesis, Structures, and Functions. Chem. Rev. 2009, 109, 6102–6211. (f) Kiss, L.; Fülöp, F. Synthesis of Carbocyclic and Heterocyclic β -Aminocarboxylic Acids. Chem. Rev. 2014, 114, 1116– 1169. (g) See also: Nekka, I.; Bogdán, D.; Gáti, T.; Béni, S.; Juhász, T.; Palkó, M.; Paragi, G.; Tóth, G. K.; Fülöp, F.; Mándity, I. M. Flowchemistry enabled efficient synthesis of β -peptides: backbone topology vs. helix formation. Chem. Commun. 2019, 55, 3061–3064 and references cited therein.

(13) For the oxidation with aqueous NaClO₂ and K₂HPO₄ see: Booker, J. E. M.; Boto, A.; Churchill, G. H.; Green, C. P.; Ling, M.; Meek, G.; Prabhakaran, J.; Sinclair, D.; Blake, A. J.; Pattenden, G. Approaches to the quaternary stereocentre and to the heterocyclic core in diazonamide A using the Heck reaction and related coupling reactions. Org. Biomol. Chem. **2006**, *4*, 4193–4205.

(14) (a) Messina, M. S.; Maynard, H. D. Modification of proteins using olefin metathesis. *Mater. Chem. Front.* 2020, *4*, 1040–1051.
(b) Lin, Y. A.; Chalker, J. M.; Davis, B. G. Olefin metathesis for site-selective protein modification. *ChemBioChem* 2009, *10*, 959–969.

(15) De Clercq, E. The Acyclic Nucleoside Phosphonates (ANPs): Holý's Legacy. Med. Res. Rev. 2013, 33, 1278-1303.

(16) (a) For a review, see: Brunetti, J.; Falciani, C.; Bracci, L.; Pini, A. Branched peptides as bioactive molecules for drug design. *Pept. Sci.* **2018**, *110*, No. e24089. (b) See also: Saavedra, C. J.; Boto, A.; Hernández, R.; Miranda, J. I.; Aizpurua, J. M. Conformation and Chiral Effects in α,β,α -Tripeptides. *J. Org. Chem.* **2012**, *77*, 5907– 5913 and references cited therein.

(17) (a) For a seminal contribution to HWE in the formation of didehydroamino acids, see: Schmidt, U.; Griesser, H.; Leitenberger, V.; Lieberknecht, A.; Mangold, R.; Meyer, R.; Riedl, B. Diastereoselective Formation of (Z)-Didehydroamino Acid Esters. Synthesis 1992, 487-490. (b) See also: Ghosh, A. K.; Liu, W. Total Synthesis of (+)-Sinefungin. J. Org. Chem. 1996, 61, 6175-6182. (c) Fuchs, T.; Schmidt, R. R. Synthesis of Nojirimycinyl C-(1)-Serine. Synthesis 2000, 259-264. (d) Artale, E.; Banfi, G.; Belvisi, L.; Colombo, L.; Colombo, M.; Manzoni, L.; Scolastico, C. Synthesis of substituted conformationally constrained 6,5- and 7,5-fused bicyclic lactams as dipeptide mimics. Tetrahedron 2003, 59, 6241-6250. (e) Miyazaki, M.; Ando, N.; Sugai, K.; Seito, Y.; Fukuoka, H.; Kanemitsu, T.; Nagata, K.; Odanaka, Y.; Nakamura, K. T.; Itoh, T. Catalytic Asymmetric Allylation of 3,4-Dihydroisoquinolines and Its Application to the Synthesis of Isoquinoline Alkaloids. J. Org. Chem. 2011, 76, 534-542. (f) See also: Mathur, P.; Ramakumar, S.; Chauhan, V. S. Peptide design using α_{β} -dehydro amino acids: From β -turns to helical hairpins. Biopolymers 2004, 76, 150-161. (g) Singh, T. P.; Kaur, P. Conformation and design of peptides with α,β -dehydro amino acid residues. Prog. Biophys. Mol. Biol. 1996, 66, 141-165 and references cited therein.

(18) (a) Mulzer, J.; Schülzchen, F.; Bats, J.-W. Rigid Dipeptide Mimetics. Stereocontrolled Synthesis of All Eight Stereoisomers of 2-Oxo-3-(N-Cbz-amino)-1-azabicyclo[4.3.0]nonane-9-carboxylic Acid Ester. Tetrahedron 2000, 56, 4289-4298. (b) Angiolini, M.; Araneo, S.; Belvisi, L.; Cesarotti, E.; Checchia, A.; Crippa, L.; Manzoni, L.; Scolastico, C. Synthesis of Azabicycloalkane Amino Acid Scaffolds as Reverse-Turn Inducer Dipeptide Mimics. Eur. J. Org. Chem. 2000, 2571-2581. (c) Wang, W.; Yang, J.; Ying, J.; Xiong, C.; Zhang, J.; Cai, C.; Hruby, V. J. Stereoselective Synthesis of Dipeptide β -Turn Mimetics: 7-Benzyl and 8-Phenyl Substituted Azabicyclo[4.3.0]nonane Amino Acid Esters. J. Org. Chem. 2002, 67, 6353-6360. (d) Zhang, J.; Xiong, C.; Ying, J.; Wang, W.; Hruby, V. J. Stereoselective Synthesis of Novel Dipeptide β -Turn Mimetics Targeting Melanocortin Peptide Receptors. Org. Lett. 2003, 5, 3115-3118. (e) Yonezawa, Y.; Konn, A.; Shin, C-g. Useful Synthesis of 2,3,6-Tri- and 2,3,5,6-Tetrasubstituted Pyridine Derivatives from

pubs.acs.org/joc

Aspartic Acid. *Heterocycles* **2004**, *63*, 2735–2746. (f) Ndungu, J. M.; Cain, J. P.; Davis, P.; Ma, S.-W.; Vanderah, T. W.; Lai, J.; Porreca, F.; Hruby, V. J. Synthesis of constrained analogues of cholecystokinin/ opioid chimeric peptides. *Tetrahedron Lett.* **2006**, *47*, 2233–2236. (g) Aillard, B.; Kilburn, J. D.; Blaydes, J. P.; Tizzard, G. J.; Findlow, S.; Werner, J. M.; Bloodworth, S. Synthesis and evaluation of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-trans-Pro in poly-L-proline type II helix conformation. *Org. Biomol. Chem.* **2015**, *13*, 4562–4569.

(19) Jung, D.; Rozek, A.; Okon, M.; Hancock, R. E. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. *Chem. Biol.* **2004**, *11*, 949–957.

(20) (a) Nitz, M.; Mezo, A. R.; Ali, M. H.; Imperiali, B. Enantioselective synthesis and application of the highly fluorescent and environment-sensitive amino acid 6-(2-dimethylaminonaphthoyl) alanine (DANA). Chem. Commun. 2002, 1912-1913. (b) Abbyad, P.; Shi, X.; Childs, W.; McAnaney, T. B.; Cohen, B. E.; Boxer, S. G. Measurement of Solvation Responses at Multiple Sites in a Globular Protein. J. Phys. Chem. B 2007, 111, 8269-8276. (c) Kim, J.; Seo, M.-H.; Lee, S.; Cho, K.; Yang, A.; Woo, K.; Kim, H.-S.; Park, H.-S. Simple and Efficient Strategy for Site-Specific Dual Labeling of Proteins for Single-Molecule Fluorescence Resonance Energy Transfer Analysis. Anal. Chem. 2013, 85, 1468-1474. (d) Katritzky, A. R.; Narindoshvili, T. Fluorescent amino acids: advances in protein-extrinsic fluorophores. Org. Biomol. Chem. 2009, 7, 627-634. (e) Krueger, A. T.; Imperiali, B. Fluorescent amino acids: modular building blocks for the assembly of new tools for chemical biology. ChemBioChem 2013, 14, 788-799. (f) Cheng, Z.; Kuru, E.; Sachdeva, A.; Vendrell, M. Fluorescent amino acids as versatile building blocks for chemical biology. Nat. Rev. Chem. 2020, 4, 275-290.

(21) (a) Boto, A.; Pérez de la Lastra, J. M.; González, C. C. The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs. *Molecules* **2018**, *23*, 311–337. (b) Kastin, A. J., Ed. *Handbook of Biologically Active Peptides*; Academic Press: San Diego, 2006; Chapters 10–12 and 45–46.

(22) Compound 17: (a) Sigmund, A. E.; Hong, W.; Shapiro, R.; DiCosimo, R. Chemoenzymatic Synthesis of cis-4-hydroxy-D-proline. *Adv. Synth. Catal.* 2001, 343, 587–590. (b) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T. Electroorganic chemistry. 60. Electroorganic synthesis of enamides and enecarbamates and their utilization in organic synthesis. *J. Am. Chem. Soc.* 1982, 104, 6697–6703.

(23) Compound **52**, precursor of compound **8**: Uria, U.; Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E.; Pesquera, A. On Water' Iminium/Enamine Catalysis: Organocatalytic Enantioselective Cyclopropanation of α , β -Unsaturated Aldehydes. *Synthesis* **2010**, 701–713.