Letter

Downloaded by: University of Connecticut. Copyrighted material.

Photochemical Synthesis of 4*H*-Thieno[3,2-c]chromene and Their Optical Properties

790

Evgeny B. Ulyankin^a Yulia P. Bogza^b Anastasia S. Kostyuchenko^{a,b} Sergey A. Chernenko^a Anna L. Samsonenko^b Anton L. Shatsauskas^b Vyacheslav L. Yurpalov^c Alexander S. Fisyuk^{*a}

^a Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Ave, 644050, Omsk, Russian Federation fisvuk@chemomsu.ru

^b Department of Organic Chemistry, Omsk F.M. Dostoevsky State University, 55a Mira Ave, 644077, Omsk,

Russian Federation

^c Center of New Chemical Technologies BIC,

54 Neftezavodskaya St., 644040 Omsk, Russian Federation

Received: 16.01.2021 Accepted after revision: 16.02.2021 Published online: 16.02.2021 DOI: 10.1055/a-1392-2209; Art ID: st-2021-v0017-I

Abstract 4-[[(2-lodoaryl)oxy]methyl]thiophene-2-carbaldehydes and 5-iodo-4-(aryloxymethyl)thiophene-2-carbaldehydes were obtained by the reaction of phenols with 4-(chloromethyl)thiophene-2carbaldehyde or its 5-iodo analogue, respectively. These products underwent ring closure upon irradiation with UV light (254 nm) to form the corresponding 4H-thieno[3,2-c]chromene-2-carbaldehydes in high yield. The formation of intermediate radical species was detected by EPR spectroscopy. Comparative analysis of ring-closure methods showed that photochemical cyclization of 5-iodo-4-(aryloxymethyl)thiophene-2-carbaldehyde is superior to Pd-catalyzed intramolecular arylation. A series of substituted 4H-thieno[3,2-c]chromene-2-carbaldehydes were synthesized by the photochemical cyclization of the corresponding precursors, and the photophysical properties of the products were studied. The 4H-thieno[3,2-c]chromene-2-carbaldehydes can be used as covert marking pigments.

Key words photochemistry, cyclization, thienochromenes, luminescence, arylation, pigments

4*H*-Thieno[3,2-*c*]chromene derivatives are of interest as biologically active compounds. Among them are substances that exhibit analgesic,¹ mucoregulating,² antiosteoporotic,³ antiinflammatory, anti-Parkinsonian,⁴ or antiulcer effects.⁵ Some are also used to treat diabetes, hyperlipidemia,⁶ or cancer.⁷ Substituted 4*H*-thieno[3,2-*c*]chromenes are luminophores, and their luminescent properties permit their localization and transformation within cells. Consequently, luminescent probes for medical and biological use,⁸ as well as materials for organic electronics,⁹ have been developed.

Currently, several approaches are used to synthesize 4*H*-thieno[3,2-*c*]chromenes. These are based on annulation reactions of benzopyrans with a thiophene core¹⁰ or on the formation of a pyran ring.¹¹⁻¹³ In the latter case, cross-cou-

pling reactions catalyzed by transition metals are most often used to form the C–C bond between the benzene and thiophene rings. Despite its effectiveness, this approach has disadvantages associated with the toxicity and high cost of the catalyst, the use of ligands, and the laborious purification of the reaction products. Therefore, the development of an ecofriendly photochemical method for the preparation of 4*H*-thieno[3,2-*c*]chromenes is an urgent task.

Previously, we have developed two methods for the synthesis of 4*H*-thieno[3,2-*c*]chromenes based on palladiumcatalyzed intramolecular arylation of compounds **5a** (Method B)¹¹ or compounds **6a–o** (Method D),¹² differing in the position of iodine in the molecule (Table 1); the yields of compounds **7a–i** obtained by these methods were in the ranges 20–69% and 44–85%, respectively.

The starting compounds **5a–c** were synthesized by treating¹⁴ *o*-iodophenols **3a–c** with 4-(chloromethyl)thiophene-2-carbaldehyde (**1**), prepared by chloromethylation of thiophene-2-carbaldehyde.¹⁵ Compounds **6a–o** were synthesized by the reaction of the appropriate phenol **4a–o** with 5-iodo-4-(chloromethyl)thiophene-2-carbaldehyde (**2**), obtained by iodination of aldehyde **1**.¹² Note that the latter approach is preferable because of the ready availability of phenols **4a–o**.

UV light-initiated arylation of 2-iodothiophenes has been known for a long time;¹⁶ however, this approach has not been used to obtain 4*H*-thieno[3,2-*c*]chromenes. Therefore, it was of interest to study the possibility of intramolecular photocyclization of model compounds **5a** (Method A) and **6a** (Method C). To select the optimal irradiation wavelength, the absorption spectra of solutions of compounds **5a** and **6a** in acetonitrile were recorded (Figure 1). The absorption maxima of compounds **5a** and **6a** are in the range 250–330 nm, so a mercury lamp was chosen as a light

Synlett

source. Irradiation with UV radiation (254 nm, 32 W) of 10 mM solutions of compounds 5a and 6a in acetonitrile both gave 4H-thieno[3,2-c]chromene-2-carbaldehyde (7a) in 90% yield (Table 1, entries 1 and 2). The changes in the concentrations of the reaction product 7a and the reactant 5a or 6a were recorded by HPLC.

E. B. Ulyankin et al.

We found that photocyclization of 6a proceeded completely in five hours, whereas the conversion of aldehyde 5a into thienochromene 7a occurred twice as slowly, requiring irradiation for ten hours (Figure 2).¹⁷

Table 1 Synthesis of 4H-Thieno[3,2-c]chromene-2-carbaldehydes 7a-p

NIS, H

2

сно

сно

(CH₂O)_n

AICI₃

CHCI3

сно

3a-c

K₂CO₃, DMF, KI

K₂CO₃, DMF, KI

^c According to the literature data.¹¹

	R ¹	Method A/C: <i>h</i> v 254 nm, 32 W, 10 mM in MeCN, 33–90% Method B: Pd(OAc) ₂ , P(Ph) ₃ , C ₁₆ H ₃₃ NMe ₃ Br, K ₂ CO ₃ , DMF, 110 °C, 5–6 h, 44–85% Method D: Pd(OAc) ₂ , P(Ph) ₃ , C ₁₆ H ₃₃ NMe ₃ Br, K ₂ CO ₃ , MeCN, 80 °C, 5 h, 20–69%									
Entry		R ²	R ³	R ⁴	Ether 5 or 6	Yield (%) of 6 (5)	Time (h)	Product	Yield (%) of 7 [Method A/C]	Yield (%) of 7 [Method D ¹² or (B) ¹¹	
1	Н	Н	Н	Н	5a	47	10	7a	90	– (85) ^c	
2	Н	Н	Н	Н	6a	65	5	7a	90	63 ^b	
3	Н	Me	Н	Н	6b	67	7	7b	50	62 ^b (69) ^c	
4	Н	Cl	Н	Н	6c	72	5	7c	67	75 [⊾] (20) ^с	
5	Н	Н	Н	Cl	6d	76	7	7d	84	74 ^b	
6	Н	Н	Cl	Н	6e	87	7	7e	20ª	44 ^b	
7	Н	OMe	Н	Н	6f	64	14	7f	57	82 ^b	
8	Н	O(CH₂)₅Me	Н	Н	6g	73	20	7g	87	83 ^b	
9	Н	Н	Н	CO ₂ Me	6h	81	30	7h	74	17	
10	Н	NO ₂	Н	Н	6i	83	26	7i	75	33	
11	Н	Н	Н	NO ₂	6j	87	10	7j	67	-	
12	Н	I	Н	Н	6k	65	7	7k	65	-	
13	Н	F	Н	Н	61	82	11	71	64	-	
14	Н	Н	N(Me) ₂	Н	6m	54	5	7m	33	-	
15	Н	Н	N(Bu) ₂	Н	6n	47	4	7n	35	-	
16	I6 –CH=CH–CH=CH–		Н	Н	60	92	5	7o	51	-	
17	Cl	Н	Н	Н	6e	-	7	7р	51ª	-	

The rate-limiting stage of the reaction is probably the formation of a radical, which proceeds faster in the case of compound 6a. No signals were observed in the EPR spectrum upon UV irradiation of acetonitrile solutions of substrate 5a or 6a (mercury lamp, 100 W) at room temperature. This absence of EPR signals might be associated with a low concentration or a short lifetime (less than 10⁻⁸ s) of the radical species that is formed. However, irradiation of compounds 5a and 6a as glass solutions in acetonitrile at 77 K led to the appearance of signals in the EPR spectra (Figure

Method A or B

Method C or D

HO

сно 5a-c

сно 6a-o

791

Letter

792

Syn lett

E. B. Ulyankin et al.

3). This indicated the formation of radical species during the photochemical reaction. Analyses of the solutions after irradiation showed the progress of cyclization. A blank experiment with UV irradiation of acetonitrile at 77 K in the absence of substrates did not reveal the formation of any significant amounts of any radical species. The spectra of compounds **5a** and **6a** contain broadened multiplet signals due to the coupling of the ¹H and ¹³C nuclei. The higher value of the g-factor for substrate **6a** (2.0050) compared with that of compound **5a** (2.0032) indicates the localization of the unpaired electron in the thiophene ring. Such an increase in the *g*-factor value of an unpaired electron in a sulfur-containing heterocycle is explained by the higher spinorbit coupling constant of the S atom compared with that of the C atom.¹⁸

Figure 2 Plot of $ln(C/C_0)$ against the exposure time for compounds **5a** and **6a**

Letter

Because the photochemical cyclization of 5-iodo-4-(phenoxymethyl)thiophene-2-carbaldehyde (**6a**) proceeded faster than that of **5a**, compounds **6a–o** were used to synthesize thienochromenes **7a–p**. The cyclization was performed under the same conditions as those used for compound **6a**, and the reaction progress was monitored by TLC. Complete cyclization of compounds **6b–o** required irradiation for 4–30 hours and the yields of thienochromenes **7b– p** were in the range 33–90% (Table 1, entries 3–17).

A comparative analysis of Methods A-D shows that the use of the more accessible 5-iodo-4-(phenoxymethyl)thiophene-2-carbaldehyde (6a) as a starting compound is more rational. The yields of compounds 7b and 7f with electrondonor substituents in the benzene ring obtained by palladium-catalyzed cyclization of **6b** and **6f**, respectively, were slightly higher than those of the photochemical reaction (Table 1, entries 3 and 7), whereas photochemical cyclization of compounds **6h** and **6i** bearing electron-withdrawing substituents proceeds with significantly higher yields of thienochromenes **7h** and **7i**, respectively (entries 9 and 10). The photochemical cyclization of **6m–o** gave compounds 7m-o, respectively, as the sole reaction products (entries 14-16). Only in the case of **6e** were the isomeric 4H-thieno[3,2-*c*]chromene-2-carbaldehydes **7e** (entry 6) and **7p** (entry 17) obtained in a 2:5 ratio according to NMR data. However, compound 7e was the main product in the case of Pd-catalyzed cyclization 6e using method D.12

The UV spectra of 4*H*-thieno[3,2-*c*]chromene-2-carbaldehydes have been reported only for compounds **7a–f**.¹⁹ The main emission band in the luminescence spectra of

E. B. Ulyankin et al.

0.00

Downloaded by: University of Connecticut. Copyrighted material

	UV absorption	Luminescence			
	λ_{max} (nm)	λ_{ex} (nm)	λ_{em} (nm)	Stokes shift ^b (nm) (eV)	$\Phi_{\rm fl}$
7e	241, 259, 291, 311, 368	360, 370	454	86 (0.64)	0.33 ^c
7g	215, 257, 289, 321, 389	380, 390	522	133 (0.81)	0.45 ^c
7h	262, 290, 318, 360	350, 360	453	93 (0.70)	0.18 ^c
7i	229, 295, 357	355	-	-	0.00
7j	231, 276, 367	365	-	-	0.00
7k	218, 263, 293, 317, 372	365, 375	467	95 (0.68)	0.35 ^d
71	236, 254, 291, 311, 371	360, 370	468	97 (0.69)	0.65 ^d
7m	211, 264, 296, 427	420, 430	535	108 (0.58)	0.55 ^c
7n	212, 268, 438	425, 435	538	100 (0.53)	0.62 ^c
7o	218, 238, 272, 337, 398	390, 400	484	86 (0.56)	0.57 ^d

430

Table 2 UV and Luminescence Spectral Parameters of Acetonitrile Solutions of 4*H*-Thieno[3,2-*c*]chromene-2-carbaldehydes **7e–o** and [(8-Fluoro-4*H*-thieno[3,2-*c*]chromene-2-yl)methylene]malononitrile (**8**)^a

793

 $a c = 2.4 \times 10^{-5} \text{ mol/L}.$

8

^b Minimum Stokes shift.

^c Quantum yield relative to that of a solution of coumarin in EtOH ($\Phi_f = 0.38$).

211, 262, 311, 340, 432

^d Quantum yield relative to that of a solution of perylene in EtOH ($\Phi_f = 0.92$).

these compounds is known to be due to intramolecular charge transfer, which should be influenced by substituents on the benzene ring (Scheme 1).

Scheme 1 Intramolecular charge transfer in 4*H*-thieno[3,2c]chromene-2-carbaldehyde (**7a**)

The parameters of the UV and luminescence spectra of compounds **7g-o** are presented in Table 2. The introduction of an electron-accepting substituent such as a methoxycarbonyl (**7h**) or nitro group (**7i** and **7g**) onto the benzene ring, which hinders charge transfer, led to a significant decrease in or complete quenching of luminescence, whereas the presence of an electron-donating substituent such as an alkoxy (**7f**) or dialkylamino group (**7m**, **7n**) led to an increase in luminescence. Note that some compounds have an abnormally large Stokes shift in excess of 100 nm. Moreover, their absorption bands are outside the visible region, making these compounds colorless in daylight. Such luminophores are used in preventing counterfeiting of banknotes, securities, or other important documents.

To demonstrate a practical application of our synthesized compounds, Figure 4 shows photographs of paper treated with a solution of compound **71** in ethanol before and after development by visible light or UV radiation (Figure 4).

Figure 4 Photographs (a) in UV light and (b) in daylight of strips of raw paper (1), strips of paper moistened with a solution of compound **7I** in ethanol and then dried (2), and strips of paper treated with compound **7I** and a developer (1% malonodinitrile with a catalytic amount of Et_3N in ethanol) after drying.

Compound **71** and malonodinitrile in the presence of a base undergo a Knoevenagel condensation to form the conjugated structure **8**, which has a deeper color (Scheme 2). The optical properties of condensation product **8** are presented in Table 2. The absorption bands of compound **71** lie outside the visible region (236–371 nm), in contrast to the emission band (468 nm). This makes the strips of paper treated with compound **71** colorless in daylight (2b), but colored in UV light (2a) (Figure 4). The authenticity of the luminophore is checked using a developer. A strip of paper (2) turned yellow after treatment with 1% alcohol solution of malonodinitrile (3).

In summary, a method has been developed for the preparation of 4*H*-thieno[3,2-*c*]chromene-2-carbaldehydes through photochemical cyclization of 5-iodo-4-(aryl-oxymethyl)thiophene-2-carbaldehydes. The optical properties of the synthesized compounds were studied. A possibility of their use as covert marking pigments was shown.

Synlett

E. B. Ulyankin et al.

Scheme 2 Reaction of compound 7l with malonodinitrile

Conflict of Interest

The authors declare no conflict of interest.

Funding Information

This work was supported by the Russian Science Foundation (Grant No. 20-73-10043).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/a-1392-2209.

References and Notes

- (1) (a) Makisumi, Y. JP Pat. Appl 48-000596, **1973**; Chem. Abstr. 1973, 78, 72096u (b) Makisumi, Y. JP Pat. Appl 49-075599, ; Chem. Abstr. **1975**, 83, 164152r
- (2) (a) Rimbault, C. G. Eur. Pat. Appl 0193493, **1986**. (b) Webber, S. E.; Widdicombe, J. G. Agents Actions **1988**, 24, 65. (c) Rogers, D. E.; Godfrey, R. W. A.; Castro, K.; Majumdar, S.; Jeffery, P. K. Agents Actions **1991**, 33, 359.
- (3) Han, Q.; Pabba, P. K.; Barbosa, J.; Mabon, R.; Healy, J. P.; Gardyan, M. W.; Terranova, K. M.; Brommage, R.; Thompson, A. Y.; Schmidt, J. M.; Wilson, A. G. E.; Xu, X.; Tarver, J. E. Jr.; Carson, K. G. Bioorg. Med. Chem. Lett. **2016**, *26*, 1184.
- (4) Hegab, M. I.; Abdulla, M. M. Arch. Pharm. (Weinheim, Ger.) 2006, 339, 41.
- (5) (a) Bogza, Y. P.; Katsiel', A. L.; Sharypova, A. N.; Tolstikova, T. G.; Fisyuk, A. S. *Chem. Heterocycl. Compd.* **2015**, *50*, 1712. (b) Fisyuk, A. S.; Bogza, Y. P.; Tolstikova, T. G. RU 2571094, **2015**.
- (6) Taguchi, M.; Suzuki, R.; Mikami, A. WO 2006080439, 2006.
- (7) (a) Staben, S. T.; Siu, M.; Goldsmith, R.; Olivero, A. G.; Do, S.; Burdick, D. J.; Heffron, T. P.; Dotson, J.; Sutherlin, D. P.; Zhu, B.-Y.; Tsui, V.; Le, H.; Lee, L.; Lesnick, J.; Lewis, C.; Murray, J. M.; Nonomiy, J.; Pang, J.; Prior, W. W.; Salphati, L.; Rouge, L.; Sampath, D.; Sideris, S.; Wiesmann, C.; Wue, P. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 4054. (b) Peng, W.; Paulson, J. C. J. Am. *Chem. Soc.* **2017**, *139*, 12450. (c) Xu, Y.; Han, X.; Wang, X. WO 2019072045, **2019**. (d) Xu, Y.; Zhu, L. WO 2019154306, **2019**. (e) Smith, A. L.; Brennan, P. E.; Demorin, F. F.; Liu, G.; Paras, N. A.; Retz, D. M. WO 2006066172, **2006**.
- (8) Zhu, Z.; Zhou, X.; Wang, Y.; Chi, L.; Ruan, D.; Xuan, Y.; Cong, W.; Jin, L. Analyst 2014, 139, 2764.
- (9) (a) Li, X.; Huang, H.; Peng, Z.; Sun, C.; Yang, D.; Zhou, J.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.-G.; Zhang, Z.; Xie, Z.; Ade, H.; Li, Y. J. Mater. Chem. A 2018, 6, 15933. (b) Wen, S.; Wu, Y.; Wang, Y.; Li, Y.; Liu, L.; Jiang, H.; Liu, Z.; Yang, R. ChemSusChem 2018, 11, 360.

(c) Wu, H.; Fan, H.; Xu, S.; Ye, L.; Guo, Y.; Yi, Y.; Ade, H.; Zhu, X. *Small* **2019**, *15*, 1. (d) Xiao, Z.; Yang, S.; Yang, Z.; Yang, J.; Yip, H. L.; Zhang, F.; He, F.; Wang, T.; Wang, J.; Yuan, Y.; Yang, H.; Wang, M.; Ding, L. *Adv. Mater.* **2019**, *31*, 1.

- (10) (a) He, X.-K.; Cai, B.-G.; Yang, Q.-Q.; Wang, L.; Xuan, J. *Chem. Asian J.* **2019**, *14*, 3269. (b) Sperança, A.; Godoi, B.; Costa, M. D.; Menezes, P. H.; Zeni, G. *Tetrahedron Lett.* **2019**, *52*, 388. (c) Barbosa, J.; Carson, K. G.; Gardyan, M. W.; Healy, P.; Han, Q.; Mabon, R.; Pabba, P.; Tarver, J. Jr.; Terranova, K. M.; Tunoori, A.; Xu, X. US 20120302562, **2012**.
- (11) Katsiel, A. L.; Sharipova, A. N.; Fisyuk, A. S. *Mendeleev Commun.* **2008**, *18*, 169.
- (12) Fisyuk, A. S.; Bogza, Y. P.; Belyaeva, L. V.; Belyaev, V. B. Chem. Heterocycl. Compd. 2012, 48, 1078.
- (13) (a) Kunz, T.; Knochel, P. Angew. Chem. Int. Ed. 2012, 51, 1958.
 (b) Mori, A.; Arai, N.; Hatta, T.; Monguchi, D. Heterocycles 2010, 80, 103. (c) Reddy, C. R.; Valleti, R. R.; Reddy, M. D. J. Org. Chem. 2013, 78, 6495. (d) Do, S.; Goldsmith, R.; Heffron, T.; Kolesnikov, A.; Staben, S.; Olivero, A. G.; Siu, M.; Sutherlin, D. P.; Zhu, B.-Y.; Goldsmith, P.; Bayliss, T.; Folkes, A.; Pegg, N. US 20090247567, 2009. (e) Lipshutz, B. H.; Kayser, F.; Maullin, N. Tetrahedron Lett. 1994, 35, 815.
- (14) **5-Iodo-4-(aryloxymethyl)thiophene-2-carbaldehydes 6a–o**; General Procedure

 K_2CO_3 (138 mg, 1 mmol) and KI (17 mg, 0.1 mmol) were added to a solution of the appropriate phenol **4a–o** (1.1 mmol) and aldehyde **2** (287 mg, 1 mmol) in anhyd DMF (3 mL) under an inert atmosphere, and the mixture was stirred for 60 h. The resulting mixture was poured into cold H₂O and extracted with Et₂O (3 × 5 mL). The organic layer was washed sequentially with H₂O and brine, dried (MgSO₄), and concentrated in vacuum. Crystalline products were purified by recrystallization from EtOH whereas liquid products were purified by column chromatography.

- (15) Gol'dfarb, Y. L.; Karmanova, I. B.; Vol'kenshtein, Y. B.; Belen'kii, L. I. *Chem. Heterocycl. Compd.* **1978**, *11*, 1196.
- (16) (a) Wolf, W.; Kharasch, N. J. Org. Chem. 1965, 30, 2493.
 (b) Martelli, G.; Spagnolo, P.; Tiecco, M. J. Chem. Soc. B 1968, 901. (c) D'Auria, M.; De Mico, A.; D'Onofrio, F.; Piancatelli, G. J. Chem. Soc., Perkin Trans. 1 1987, 1777.
- (17) Thieno[3,2-c]chromene-2-carbaldehydes 7a-p; General Procedure

The appropriate ether **5a** or **6a–o** (1 mmol) was dissolved in anhyd MeCN (100 mL) and the solution was added to a 2.5 cmdiameter quartz tube with a volume of 150 mL. The stirred solution was irradiated by four low-pressure Hg lamps (Philips TUV G8 T5, $\lambda_{max} = 254$ nm; 32W in total) while it was cooled by a fan. The solvent was then evaporated in vacuum, and the residue was purified by column chromatography.

8-Fluoro-4H-thieno[3,2-c]chromene-2-carbaldehyde (7I) Yellow solid; yield: 150 mg (64%); mp 170–171 °C (EtOH). IR (KBr): 1656 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 5.27 (s, 2 H, CH₂). 6.91–7.01 (m, 2 H, H-6,7), 7.10 (dd, ${}^{3}J$ = 8.12, ${}^{4}J$ = 2.64, 1 H, H-9), 7.55 (s, H-3, 1 H), 9.88 (s, 1 H, CHO). ¹³C NMR (101 MHz, CDCl₃): δ = 65.50, 110.28, 117.60, 118.30, 119.80, 132.69, 133.38, 141.28, 142.05, 148.82, 157.43, 182.86.

- (18) Buchachenko, A. L.; Wasserman, A. M. In Khimija, 1st ed. Moscow, 1973; 409.
- (19) Bogza, Y. P.; Rastrepin, A. A.; Nider, V. V.; Zheleznova, T. Y.; Stasyuk, A. J.; Kurowska, A.; Laba, K.; Ulyankin, E. B.; Domagala, W.; Fisyuk, A. S. *Dyes Pigm.* **2018**, *159*, 419.