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ABSTRACT
A new and efficient B(C6F5)3 catalyzed domino strategy has been
developed for the synthesis of 2-substituted quinazolinones. The
reaction utilizes 2-aminobenzamide and aldehydes for a one-pot
protocol. A wide range of substrate scope, functional group toler-
ance, and operational simplicity with excellent yield are synthetically
useful features.
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Introduction

Quinazolin-4-(3H)-one is a main structural unit found in several natural products and
biologically potent compounds. Quinazolinones are considered as privileged structures
due to their immanent nature and their function as pharmacophores in drugs.[1]

Quinazolinones are known for their several pharmacological and biological activities
including antimalarial,[2] anticancer,[3] anti-inflammatory,[4] antihypertensive,[5] and
antituberculosis activities.[6] Owing to their notable significance, huge efforts have been
made toward efficient and convenient strategies for the construction of the quinazoline
skeleton from 2-aminobenzamide and aldehydes.[7–12] However, these strategies suffer
from certain drawbacks including use of coupling agents/bases, use of heavy and expen-
sive metal catalysts, harsh reaction conditions, use additives, low yields, stoichiometric
or large excess amounts of toxic oxidants. Therefore, search for a simple and efficient
cascade protocol to access quinazolinones from 2-aminobenzamide and aldehydes is
highly desirable.
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Moderate Lewis acidic nature of Tris(pentafluorophenyl)Borane (BCF) facilitates its
usage in organic synthesis. In recent times, BCF has evolved as a mild, nontoxic, envir-
onmentally benign, moisture-tolerant, air-stable, heat-stable, inherently electrophilic,
moderate and versatile Lewis acid imparting high chemo-, region- and stereoselectivity
in many organic transformation.[13] Low catalytic loading and moisture-tolerance,
makes BCF superior acid catalyst than traditional Lewis acids. Herein, we report one-
pot B(C6F5)3 catalyzed convenient synthetic protocol for the synthesis of 2-substituted-
quinazolin-4-(3H)-ones from cost-effective and easily available 2-aminobenzamide and
aldehydes in DMSO as a solvent.

Results and discussion

To demonstrate our methodology, we purchased BCF, substituted aromatic/hetero-
aromatic aldehydes and 2-aminobenzamide commercially and used without any
purification. Synthesis of quinazolin-4-(3H)-ones (3a–j) has been achieved from 2-ami-
nobenzamide (1), and aldehyde (2a–j) in the presence of B(C6F5)3 as a solid acid cata-
lyst at 110–120 �C. The structure of products (3a–j) was confirmed by comparing
spectroscopic data with literature values. To optimize reaction conditions, we initially
examined the role of catalyst and screened several solid acid catalysts. 2-aminobenza-
mide (1), and benzaldehyde (2a) were selected as model starting materials and the reac-
tion was carried out in DMSO at 100–120 �C using 20mol % of B(C6F5)3 as a catalyst.
The progress of the reaction was checked by TLC and after 20 h the product 3a was
obtained in 80% yield (Table 1, entry 6). The formation of compound 3a was confirmed
by comparing 1H, 13C-NMR and mass spectroscopic data with literature data.
To know the effectiveness of BCF, we repeated the same reaction with 1, 5, 10, 15,

20, and 25mol % of BCF and we got product 3a in 80% yield after 20 h when 20mol %
of BCF was used as catalyst (Table 1, entry 6). To realize the efficiency of BCF, same
reaction was repeated with different solid acid catalysts such as Fe3O4, ZnCl2, FeCl3,

Table 1. Screening of catalyst for the synthesis of 3a.

Entry Catalyst (mol%) Temp (�C) Yielda (%)

1 – 100 00
2 B(C6F5)3 (1) 100 20
3 B(C6F5)3 (5) 100 25
4 B(C6F5)3 (10) 100 45
5 B(C6F5)3 (15) 100 60
6 B(C6F5)3 (20) 100 80
7 B(C6F5)3 (25) 100 80
8 Fe2O3 (20) 100 40
9 ZnCl2 (20) 100 49
10 BiCl3 (20) 100 58
11 FeCl3 (20) 100 62
aYield refers to an isolated yield after column chromatography.
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BiCl3, and B(C6F5)3. Among these tested solid acid catalysts, BCF was found as excellent
catalysts in terms of reaction time and chemical yield (Table 1, entry 6). To know the
effect of solvent on chemical yield of this reaction, we performed same reaction with
different solvents such as tetrahydrofuran, toluene, DMSO, acetonitrile, chloroform,
ethanol, and water and found that DMSO provides the best results (Table 2, entry 1).
Therefore, the use of 20mol% of B(C6F5)3 in DMSO is superior for this conversion.
Under the optimized reaction conditions, we synthesized several quinazolin-4-(3H)-

ones (3a–j) in 62–92% yield. All mentioned reactions proceeded smoothly to give corre-
sponding product in excellent yields and accommodated multifunctional aldehydes also.
However, sterically hindered aldehyde (Table 3, entry 3e) gave poor yields in longer
reaction times than those of unhindered aldehydes.
Based on the above results and literature reports,[14] a plausible mechanism for the

synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones is illustrated in Scheme 1.
B(C6F5)3 coordinates with the carbonyl oxygen of aldehyde and makes it more suscep-
tible towards the nucleophilic attack by amino group of 2-aminobenzamide giving
imine. Imine cyclizes in the presence of B(C6F5)3 to give the final product (3a–j).

Antioxidant and antibacterial activity

Above prepared 2-substituted-2,3-dihydroquinazolin-4(1H)-ones (3a–j) were evaluated
for their antioxidant (DPPH and hydroxy radical scavenging assay) and antibacterial
potency against Escherichia coli and Staphylococcus aureus and the results are shown in
Table 4. Among these compounds, 3i and 3j depicted excellent antioxidant activity
while compounds 3c and 3h effectively inhibited S. Aureus and E. coli respectively.

Experimental

General procedure for the synthesis of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one
(3a): A mixture of 2-aminobenzamide (1) (0.136mg, 1mmol), B(C6H5)3 (20mol %),
and benzaldehyde (2a) (0.60mg, 5mmol) in DMSO (2� 4mL) was heated at

Table 2. Screening of solvent for synthesis of 3a.

Entry Solvent Temp (�C) Yielda (%)

1 DMSO 100 80
2 THF 66 40
3 Toluene 110 28
4 CH3CN 82 50
5 CHCl3 50 35
6 EtOH 80 39
7 H2O 100 n.d.
8 – 100 30
aYield refers to an isolated yield after column chromatography.
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Table 3. Synthesis of 2-substituted quinazolin-4-(3H)-ones (3a–j) under
B(C6F5)3 catalysis.

Entry Aldehyde Product Time (h) Yielda (%)

3a
20 80

3b
18 85

3c
19 82

3d
17 90

3e
24 62

3f
22 72

3g
16 92

3h
21 76

3i
23 70

3j
21 75

aYield refers to an isolated yield after column chromatography.
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100� 120 �C for 16� 24 h in a sealed tube. After cooling, the reaction mixture was
poured into water and extracted with EtOAc. The organic layer was washed with brine,
dried over MgSO4, and concentrated in vacuum. The residue was purified by flash col-
umn chromatography (silica gel, hexanes/EtOAc) to give desired product. The Rf value
for this compound is 0.5. White solid (90mg (80%) yield), m.p. 100–102 �C TLC Rf ¼
0.5 (EtOAc:Hexane ¼ 2:8); IR �max (KBr, cm

�1): 1620, 1662, 2990, 3165, 3190, 3320; 1H
NMR (400MHz, CDCl3 and DMSO-d6): d 5.77 (1H, s), 6.74 (2H, t), 7.12 (1H, s),
7.25–7.40 (4H, t), 7.50–7.64 (3H, dd), 8.30 (1H, s); 13CMR (100MHz, CDCl3 and
DMSO-d6): d 67.06, 114.89, 115.44, 117.60, 127.35,127.84, 128.81, 128.94, 133.79,
142.11, 148.35; MS (ESI): m/z 225 [MþH]þ; Anal. Calcd for C14H12N2O: C, 74.98%, H,
5.39%, N, 12.49%; Found: C, 74.87%, H, 5.26%, N, 12.34% (Supplementary material).
2-(4-Methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3c): White solid (93mg

(82%) yield), m.p. 125–127 �C, TLC Rf ¼ 0.6 (EtOAc: Hexane ¼ 2:8); IR �max (KBr,
cm�1): 1059, 1475, 1600, 1680, 2925, 3190, 3310, 3445; 1H NMR (400MHz, CDCl3 and
DMSO-d6): d 3.76 (3H, s), 5.71 (1H, s), 6.64–6.92 (5H, m) , 7.19–7.22 (1H, t), 7.42–7.45
(2H, d) , 7.63–7.65 (1H, d), 8.06 (1H, s); 13CNMR (100MHz, CDCl3 and DMSO-d6): d
55.48, 67.10, 113.91, 114.79, 114.82, 117.57, 127.75,128.67, 133.47, 133.57,148.45, 159.98,

Screening of catalyst for synthesis of 3a. 

Screening of solvent for synthesis of 3a.

Synthesis of 2-substitutedquinazolin-4-(3H)-ones (3a-j) under B(C6F5)3 catalysis

Scheme 1. Plausible mechanism for formation of 3a–j.
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164.36; MS (ESI): m/z 255 [MþH]þ; Anal. Calcd for C15H14N2O2: C, 70.85%, H,
5.55%, N, 11.02%; Found: C, 70.62%, H, 5.44%, N, 10.94%.

Conclusion

In conclusion, we have developed an BCF catalyzed direct one pot, simple, efficient,
synthetic protocol for the synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones
from 2-aminobenzamide and aldehyde in good to excellent yields. High yields, easy
workup, high atom-economy, low cost and easy handling of the catalyst are important
highlights of this protocol.
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