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ABSTRACT: A mild transition-metal- and photosensitizer-free
photoredox system based on the combination of NaI and PPh3 was
found to enable highly selective reduction of nitroarenes. This
protocol tolerates a broad range of reducible functional groups
such as halogen (Cl, Br, and even I), aldehyde, ketone, carboxyl,
and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type
reductive amination when o-nitrobiarenes were used.

Anilines play fundamentally substantial roles in both
academia and industry, which therefore has triggered

wide method development of nitroarene reduction.1 While
noncatalytic reduction of nitroarenes using stoichiometric
reducing agents provides currently main commercial access to
functionalized anilines, these methods suffer from poor
selectivity and serious ecological issues.2 Recent progress on
catalytic reduction of nitroarenes mainly depends on
transition-metal (TM) catalysis via direct hydrogenation or
hydrogen transfer,3 electrocatalysis along with water oxida-
tion,4 and sustainable visible-light-induced photocatalysis
(Scheme 1a).5 Of them, the mild photocatalytic process via
hole-driven hydrogen transfer with hydrogen donors or hole
scavenger is an attractive strategy for reduction of nitroarenes.6

Hence, three kinds of photocatalytic systems based on photon
absorber including plasmonic,7 semiconductor,8 and dye-
sensitized photocatalyst9 have been exploited. In most cases,
however, the use of transition metals such as copper,10 silver,11

and palladium6b also lead to the issues of functional group
tolerance with respect to, for example, dehalogen12 and
addition upon unsaturated bonds.13 Recently, Wu and co-
workers14 reported a facile but efficient visible-light-driven
photochemical homogeneous nitroarene reduction using eosin
Y as photocatalyst and triethanolamine (TEOA) as electron
donor. In this system, the aqueous conditions resulted in
complete hydrolysis of cyano group and highly excessive
amounts of TEOA are required, which may restrict its broader
application.
On the other hand, intramolecular reductive amination of 2-

nitrobiarenes, the so-called Cadogan reaction (Scheme 1b), are
traditionally achieved under thermal conditions with stoichio-
metric triphenylphosphine,15 with recent development of mild
process using Grignard reagents16 and catalytic protocols based
on transition-metal catalysts17 or phosphacycloalkane cata-
lyst.18 Recently, we discovered mild photocatalytic reductive
couplings19 including the Cadogan amination employing
4CzIPN as the photosensitizor.19a Further studies on this
project reveal that the photocatalytic reduction of nitroarenes
could proceed in the absence of photocatalyst. Herein, we
report on these findings to disclose a divergent NaI/PPh3-
mediated photochemical reduction and amination of nitro-
arenes20 (Scheme 1c). Salient features of the present reduction
protocol include no need for transition-metal catalysts, mild
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Scheme 1. Catalytic Nitroarene Reduction and
Intramolecular Amination (Cadogan Reaction)
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reaction conditions, ample substrate scope with broad
functional group tolerance, high chemoselectivities, and key
mechanistic insights in the combinational electron-donor−
acceptor (EDA) formation21 and phosphine catalysis.22

To commence our study, 2-nitrobiphenyl (1a) was selected
as model substrate to evaluate the reaction conditions of
divergent reduction upon hydrogenation and amination (Table
1). The synergistic NaI/PPh3 catalytic system combined with

PhSiH3 as hydrogen donor was found to be effective for the
reductive hydrogenation. Hence, the 2-aminobiphenyl product
(2a) was produced with yields ranging from 45% to 98% when
performing in different media including DCM, Et2O, EtOAc,
and CHCl3. While the sustainable EtOAc gave excellent yield,
CHCl3 was the best solvent (Table 1, entries 1−4). Among
other phosphines (Table 1, entries 5−7), while tri-o-
tolylphosphine did not work, tris(4-fluorophenyl)phosphine
and tris(4-methoxyphenyl)phosphine afforded 2a in good
yields. Aliphatic tricyclohexylphosphine also completely
prohibited the reduction (Table 1, entry 8). Then some
other reductants including TEOA, triethylamine (TEA), and
Et3SiH, dramatically reduced the yields (Table 1, entries 9−
11). We also tested other halides instead of NaI, where NaCl,
NaBr, KI, and NH4I were all inferior (Table 1, entry 12). The
results of control experiments suggested that NaI, PPh3, and
light stimulation are all critical for the reductive hydrogenation
(Table 1, entries 13−15). In comparison, the nitro reduction
also proceeded when stoichiometric PPh3 was utilized in the

absence of PhSiH3. To our delight, however, the carbazole
product (3a) via intramolecular Cadogan amination was
formed as the major product (Table 1, entry 16). In this
respect, a series of optimizations of reaction conditions were
performed for the reductive amination of 2-nitrobiarenes [see
the Supporting Information (SI) for details (Table S1)]. The
formation of 3a was obviously improved when the reaction was
conducted in 1,4-dioxane, with 2a further suppressed (Table 1,
entry 17). Control experiments reveal that the reaction in the
absence of NaI afforded 3a in only 14% yield (Table 1, entry
18).
With the established reductive reactivities by the visible-

light-induced NaI/PPh3 catalytic system, we first extended it to
aniline formation from substituted nitroarenes especially with
reducible functional groups (Scheme 2). The substrates

bearing either electron-withdrawing or electron-donating
groups worked well to exclusively afford the corresponding
aniline products. The reducible carbon−halogen bonds other
than nitro remained without any detectable collapse with Cl
(2c, 2s, 2u), Br (2h, 2l), or even I (2d, 2i, 2m). Among others
including aldehyde (2f), ketone (2j, 2o, 2v), carboxyl (2g, 2u),
and cyano (2e, 2k, 2n), the reduction also occurred only in the
nitro group. In other words, 100% nitro reductive selectivities
were observed in all examples of competitive reduction.
Incomplete conversion of some nitroarenes was observed to
result in lower than 90% yield (2i, 2k, 2q−2t). Notably,
nitropyridines bearing chloro and bromo also proceeded
through exclusive nitro reduction (2w, 2x). Finally, 8-
nitroquinoline worked with moderate conversion (2y).
However, other nitro heterocycles, such as those containing
thiazole, imidazole, indazole, etc., failed to give the
corresponding reduction products in this system.
Subsequently, the generality and substrate scope of the NaI/

PPh3-mediated reductive aminations of o-nitrobiarenes were
probed (Scheme 3). Moderate to good yields were obtained

Table 1. Optimization of Reaction Conditionsa

yieldb (%)

entry PR3 reductant solvent 2a 3a

1 PPh3 PhSiH3 DCM 60 trace
2 PPh3 PhSiH3 Et2O 45 trace
3 PPh3 PhSiH3 EtOAc 90 nd
4 PPh3 PhSiH3 CHCl3 98 nd
5 P(o-tol)3 PhSiH3 CHCl3 trace trace
6 P(p-FPh)3 PhSiH3 CHCl3 80 trace
7 P(PMP)3 PhSiH3 CHCl3 75 trace
8 PCy3 PhSiH3 CHCl3 trace trace
9 PPh3 TEOA CHCl3 12 trace
10 PPh3 TEA CHCl3 trace trace
11 PPh3 Et3SiH CHCl3 10 trace
12c PPh3 PhSiH3 CHCl3 <20 nd
13d PPh3 PhSiH3 CHCl3 nd nd
14 PhSiH3 CHCl3 24 nd
15e PPh3 PhSiH3 CHCl3 trace nd
16f PPh3 CHCl3 16 52
17f PPh3 dioxane 8 82 (78)
18e,f PPh3 dioxane trace 14

aReaction conditions: 1a (0.2 mmol), NaI (40 mol %), PPh3 (20 mol
%), reductant (2 equiv), solvent (2.0 mL), irradiation with a 35 W
blue LEDs at 60 °C for 72 h under argon atmosphere; bYield
determined by GC analysis of the crude reaction mixture using 1,3,5-
trimethylbenzene as the internal standard, and yield in parentheses
indicates isolated yield. cNaCl, NaBr, KI, or NH4I instead of NaI.
dReaction in dark. eWithout NaI. f2.5 equiv of PPh3.

Scheme 2. NaI/PPh3-Mediated Photochemical Reduction of
Nitroarenes

aIsolated yield of 10 mmol scale reaction.
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when substituted o-nitrobiarenes were employed, with a range
of compatible functionalities including chloro, cyano, ester,
amide, and formyl (3a−3h). The C−F amination did not
occur when o-fluorophenyl was attached (3i). Then 11H-
benzo[a]carbazoles were generated in moderate to excellent
yields when the reactants bore a naphthyl moiety (3j−3m).
Notably, 2-(5-chloro-2-nitrophenyl)naphthalene afforded the
corresponding benzo[a]carbazole (3k) in almost quantitative
yield (96%). Among others, aza-carbazoles (3n and 3o) were
smoothly delivered from the starting 3-nitro-2-phenylpyridines,
albeit in relatively low yield. Moreover, aza-benzo[a]carbazole
3p produced in 35% yield. While o-nitrostilbenes did not work,
o-nitrochalcone could proceed through reductive amination to
afford the 2-benzoylindole product 3q. Finally, pyrido[1,2-
b]indazole products were generally formed in modest yields
when 2-(2-nitrophenyl)pyridines were employed (3r−3u).
Notably, majority of starting materials was recovered in the
cases of those with low yields such as 3c and 3n−3u. The
aniline side products were generally formed in trace amounts.
We also tried to modify the reaction conditions to improve the
reactivity of these reactants, but we failed.
With the established reactivities of our mild visible-light-

driven nitroarene reduction mediated by NaI/PPh3, we were
attracted to depict its photoactivating action models. First, we
performed UV−vis spectroscopic absorption experiments on
various combinations of 1a, PPh3, and NaI in a solution of the
same concentration as the real reaction mixture (Figure 1a).
The results reveal that the combination of PPh3 and NaI
features the same absorption with PPh3, only in the UV (<360
nm). With the participation of o-nitrobiphenyl, either single
component or combinations display an absorption in the
visible region with an onset around 440 nm. Further, we did
density functional theory (DFT) calculations to support the
proposed photoactivating action models (Figure 1b). Without
the iodide additive, the electron-poor nitroarene 1a and the
electron-rich PPh3 interact via a Coulombic attraction with a
P−O distance of 3.57 Å and a π−π interaction with a shortest
π-stacking distance of approximately 3.44 Å. This assembly

leads to the formation of the atom transfer complex Int-1. It is
calculated to be endergonic by 2.2 kcal/mol, which is much
lower than the generation of dioxazaphosphetane intermediate
from trialkyl phosphines including Radosevich’s phospha-
cycle.15,22 On the other hand, the additional NaI seems to
affect the interaction of 1a and PPh3 slightly, but the
Coulombic interaction of it with both 1a and PPh3 forms a
new atom transfer complex (Int-2) (endergonic by 1.7 kcal/
mol). The complex Int-2 is expected to absorb photons to
initiate the first deoxygenation process.23 Moreover, the time-
dependent DFT (TD-DFT) calculation on the excited state of
Int-2 assigned a S0-to-S4 excitation, which was predicted to be
558 nm. This peak has almost exclusively charge-transfer
excitation characteristic (98%) from I-PPh3 fragment to
PhNO2 fragment (HOMO-3 to LUMO).
To obtain more mechanistic information on the NaI/PPh3-

mediated reduction of nitroarenes, some control experiments
were carried out. First, aniline (2z) was found to be the only
reduction product within 12 h with major nitrobenzene (1z)
recovered, while potential intermediate products such as
nitrosobenzene (4), azoxybenzene (5), and azobenzene (6)
were not observed (Scheme 4a). Moreover, when these
compounds instead of 1z were subjected to the standard
conditions, the target aniline was not formed in all cases with
or without light stimulation (Scheme 4b−d). These results
suggest that the presence of nitroarenes could probably be a
critical factor for the late-stage reduction of intermediate
products. Hence, compounds 4−6 were treated with additional
1-bromo-4-nitrobenzene in catalytic amounts (Scheme 4e−g).
Aniline was indeed generated as the major product in those
reactions. We speculate that the combination of nitrobenzene,
NaI, and PPh3 forms a EDA complex20a that absorbs photons
to not only decompose into nitrosobenzene or the Ph-N(OH)
intermediate but also transfer energy to enable late-stage
reduction of intermediate products.4a

In summary, the combination of nitroarenes with NaI and
PPh3 was found to generate an EDA complex that absorbs
photons to enable reductive hydrogenation of nitroarenes. This
mild photoredox catalytic system has been demonstrated to be
highly selective for nitro reduction because a pad of reducible
functional groups are accommodated in it. With stoichiometric

Scheme 3. NaI/PPh3-Mediated Photochemically Reductive
Amination of 2-Nitrobiarenes

Figure 1. (a) UV−vis absorption spectra of reactant mixtures, (b)
Predicted excited states molecular orbital diagrams of Int-2.
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amounts of PPh3 playing dual roles of initiator for energy
transfer and electron donor, the photocatalyst-free NaI/PPh3-
based photocatalysis has also been used as an efficient method
for Cadogan-type reductive amination of o-nitrobiarenes.
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