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ABSTRACT: Highly tractable 1-aryl-1-propynes, which are readily
accessible via Sonogashira coupling, serve as chiral allylmetal
pronucleophiles in ruthenium-JOSIPHOS-catalyzed anti-diastereo-
and enantioselective aldehyde (α-aryl)allylations with primary
aliphatic or benzylic alcohol proelectrophiles. This method enables
convergent construction of homoallylic sec-phenethyl alcohols
bearing tertiary benzylic stereocenters. Both steric and electronic
features of aryl sulfonic acid additives were shown to contribute to
the efficiency with which a more selective and productive iodide-
bound ruthenium catalyst is formed. As corroborated by isotopic
labeling studies, a dual catalytic process is operative in which alkyne-
to-allene isomerization is followed by allene-carbonyl reductive
coupling via hydrogen auto-transfer. Crossover of ruthenium hydrides emanating from these two discrete catalytic events is observed.
The utility of this method is illustrated by conversion of selected reaction products to the corresponding phenethylamines and the
first total syntheses of the neolignan natural products (−)-crataegusanoids A−D.

■ INTRODUCTION

Carbonyl addition is the Proteus of metal-mediated C-C
couplings.1 Recent analysis of >9 million patents from the
pharmaceutical industry shows that carbonyl addition (along-
side the Suzuki coupling) persists as one of the most widely
utilized methods for C−C bond formation in process R&D.2

Despite its importance, the majority of methods for carbonyl
addition require preformed carbanions, which can be hazard-
ous and are often generated using multiple sacrificial reagents,
for example, through halogenation-metalation-transmetalation
sequences. Metal-catalyzed carbonyl reductive coupling of
unsaturated pronucleophiles has emerged as an alternative to
stoichiometric carbanions, but many reductants used in such
processes are not ideal for chemical manufacture on scale (e.g.,
Mn, Zn, Et3B, Et2Zn, SiR3).

3,4 We have advanced a broad, new
family of metal-catalyzed carbonyl reductive couplings that
exploit feedstock pronucleophiles in combination with feed-
stock reductants (H2, 2-PrOH, HCO2H), as well as related
hydrogen auto-transfer processes wherein alcohols serve dually
as reductants and carbonyl proelectrophiles.4 These efforts
include processes that exploit alkynes as allylmetal pronucleo-
philes.5−7

Given the tractability of 1-aryl-1-propynes and their wide
availability via Sonogashira coupling (eq 1), we sought to
develop catalytic enantioselective carbonyl (α-aryl)allylations
via transfer hydrogenative couplings of 1-aryl-1-propynes with
primary alcohols (Figure 1). Despite decades of work on

asymmetric carbonyl allylation,7 enantioselective carbonyl (α-
aryl)allylations are largely limited to isolated examples that
embody moderate levels of asymmetric induction and deliver
simple aryl fragments. These methods fall into two categories:
(a) those involving chiral auxiliaries8 and (b) catalytic
enantioselective protocols.9,10 In the former category, one
systematic study involving allylbenzene pronucleophiles was
reported by Gong,8g but this method is restricted to aryl
aldehydes (Figure 1). In the latter category, systematic studies
are limited to activated aldehydes (glyoxamides,9e form-
aldehyde,10a fluoral and difluoroacetaldehyde10b) and a
Nozaki−Hiyama−Kishi (α-aryl)allylation to form quaternary
benzylic stereocenters.9i Catalytic enantioselective carbonyl (α-
aryl)allylations applicable to both aliphatic and aromatic
aldehydes are unknown, and would enable convergent
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construction of tertiary benzylic stereocenters and stereogenic
C−O bonds, which are ubiquitous among natural products and
FDA approved drugs. Here, using a ruthenium catalyst
modified by the JOSIPHOS ligand SL-J009-1, we report that
diverse 1-aryl-1-propynes engage in C-C coupling with primary
aliphatic or benzylic alcohols to furnish products of (α-
aryl)allylation bearing relatively complex aryl moieties in good
yield with complete anti-diastereoselectivity and high levels of
enantioselectivity.

■ RESULTS AND DISCUSSION
In prior work from our laboratory,6c it was found that
protonation of H2Ru(CO)(PPh3)3 by the aryl sulfonic acid
2,4,6-(iPr)3PhSO3H delivers a cationic ruthenium(II) complex

that exists in equilibrium with a ruthenium(0) complex. This
ruthenium(0) species promotes two discrete catalytic events:
(a) alkyne-to-allene isomerization and (b) transfer hydro-
genative allene-carbonyl reductive coupling by way of a
transient oxaruthenacycle. This process converts alkyl-sub-
stituted alkynes and primary alcohols to linear secondary (Z)-
homoallylic alcohols (Scheme 1, eq 2).6c Remarkably, in the
presence of iodide and a chelating phosphine ligand, an
alternate dual catalytic process becomes operative in which
alkyne-to-allene isomerization is followed by hydrometalation
of the transient allene to form an allylruthenium(II) species.
This process converts alkyl-substituted alkynes and primary
alcohols to branched secondary homoallylic alcohols with
excellent control of regio-, diastereo-, and enantioselectivity
(Scheme 1, eq 3).6e As corroborated by deuterium labeling
studies, both processes involve alkyne-to-allene isomerization.
The fate of the resulting allene largely depends on the
intervention of cationic vs neutral ruthenium complexes, which
partition entry into catalytic cycles involving either allene-
carbonyl oxidative coupling or allene hydrometalation,
respectively.6c,e,11

Both catalytic processes are largely restricted to α-branched
alkyl-substituted propynes, such as 4-methyl-2-pentyne. We
speculate that α-branched alkyl groups at the acetylenic
position may facilitate alkyne-to-allene isomerization by
favorably influencing the regioselectivity of alkyne hydro-
metalation. Initial attempts to exploit 1-aryl-1-propynes as
pronucleophiles for asymmetric carbonyl (α-aryl)allylation
were inefficient, and especially low isolated yields were
observed for 1-aryl-1-propynes bearing electron deficient
aromatic rings. To overcome this limitation, efforts to optimize
the carbonyl (α-aryl)allylation of 1-(4-CF3-phenyl)-1-propyne
1a and primary aliphatic alcohol 2a were undertaken (Scheme
2). Under conditions effective for couplings of 4-methyl-2-
pentyne (but without 2-PrOH, which is used to reduce
uncoupled aldehyde so it can reenter the catalytic cycle),6d the
product of carbonyl (α-aryl)allylation 3a was obtained in 17%

Figure 1. Convergent construction of sec-phenethyl alcohols bearing
tertiary benzylic stereocenters via enantioselective carbonyl anti-(α-
aryl)allylation of unactivated aldehydes.

Scheme 1. Alkynes as Latent Allenes in Alcohol-Mediated
Hydrohydroxyalkylation to Form Linear or Branched
Homoallylic Alcohols (Ar = 2,4,6-Triisopropylphenyl)

Scheme 2. Influence of Arylsulfonic Acid in the Reaction of
1-(4-CF3-phenyl)-1-propyne 1a and Alcohol 2a to Form the
Product of Carbonyl (α-Aryl)allylation 3aa

aYields of material isolated by silica gel chromatography.
Enantioselectivities were determined by chiral stationary phase
HPLC analysis. Diastereoselectivities were determined via 1H NMR
analysis of crude reaction mixtures. bConditions described in Scheme
1, eq 3, were applied using H2Ru(CO)(PPh3)3 (5 mol %), SL-J009-1
(5 mol %), Bu4NI (10 mol %). cDIPPF (10 mol %) was used as
ligand.
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yield with only modest levels of enantiomeric enrichment
(Scheme 2, entry 1). When the catalyst loading was doubled, a
proportionate increase in the yield of 3a was observed
(Scheme 2, entry 2). Replacing 2,4,6-(iPr)3PhSO3H with 4-
MePhSO3H and 4-NO2PhSO3H led to successive improve-
ments (Scheme 2, entries 3 and 4, respectively). These data are
significant, as they reveal both steric and electronic features of
the catalyst impact efficiency and enantioselectivity. Using
2,4,6-(iPr)3PhSO3H in DME, slightly higher enantioselectivity
was observed (Scheme 2, entries 2 vs 5), but lower
temperatures limited conversion (Scheme 2, entry 6). The

iodide-bound catalyst is generated through the acid-base
reaction of the ruthenium dihydride with the arylsulfonic
acid, followed by substitution by iodide (eq 4).12 Notably, the

more acidic, less hindered arylsulfonic acid 4-NO2PhSO3H
appears to enhance the efficiency of this process, allowing
temperature to be reduced, augmenting enantioselectivity
without diminishing conversion (Scheme 2, entry 7). Under

Table 1. Ruthenium-Catalyzed Coupling of 1-Aryl-1-propynes 1a−1ff with Primary Alcohols 2a−2ff to Form Enantiomerically
Enriched Phenethyl Alcohols 3a−3ffa

aYields of material isolated by silica gel chromatography. Enantioselectivities were determined by chiral stationary phase HPLC analysis.
Diastereoselectivities were determined via 1H NMR analysis of crude reaction mixtures. For standard conditions, see Scheme 2, entry 7, 0.2 mmol
scale, 48 h. See the Supporting Information for further experimental details. b75 °C. c90 °C. dSL-J009-2. e65 °C.
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these conditions, moving from THF to DME solvent, 3a could
be obtained in 85% yield with >20:1 anti-diastereoselectivity
and high enantioselectivity (88% ee) (Scheme 2, entry 8).
Omission of Bu4NI led to a significant decrease in yield and
selectivity that could not be fully restored through use of
Bu4NCl or Bu4NBr (Scheme 2, entries 9−11). Racemic
product was obtained using the achiral ligand DIPPF in
combination with (+)-camphor sulfonic acid (Scheme 2, entry
12). The collective data suggest both conversion and
enantioselectivity depend on the efficiency with which the
iodide-bound catalyst is formed.13

Under these conditions, the ruthenium-catalyzed coupling of
diverse 1-aryl-1-propynes 1a−1ff with primary alcohols 2a−2ff
to form enantiomerically enriched phenethyl alcohols 3a−3ff
was explored (Table 1). As illustrated by the formation of
phenethyl alcohols 3c, 3x, and iso-3x, ortho-substituted aryl
propynes are competent partners for C-C coupling. Hetero-
aryl-substituted propynes are converted to adducts 3d−3h, 3p,
and 3s, establishing compatibility with Lewis basic sulfur (3d)
and nitrogen (3e−3h, 3p, 3s) functional groups. Additionally,
as demonstrated by the formation of adducts 3g−3o, primary
alcohols bearing a tethered N-Boc amine (3g) or pyrazole
(3h), 2-aminopyridine (3i), oxazole (3j), furan (3k),
thiophene (3l), and indole (3m−3o) moieties are competent
partners for arylpropyne-mediated asymmetric (α-aryl)-
allylation. Notably, adducts 3j and 3n derive from the FDA
approved therapeutic agents oxaprozin and indomethacin,
respectively, highlighting the potential applicability of this
method to drug discovery. Adducts derived from primary
alcohols that incorporate strained saturated ring systems,
including cyclopropanes (3t), difluorocyclobutanes (3u),
azetidines (3r, 3v), and oxetanes (3w), were well tolerated.
Whereas low conversion was associated with the use of acyclic
α-stereogenic primary alcohols, the corresponding β-stereo-
genic primary alcohols were converted to products of (α-
aryl)allylation (3x, iso-3x, 3y, iso-3y) with high levels of
catalyst-directed diastereoselectivity. Finally, primary benzylic
alcohols undergo (α-aryl)allylation as shown by the formation
of adducts 3aa−3ff. Here, compatibility of pinacolboronate
functional groups, as demonstrated by formation of 3bb and
3ff, is significant. In certain cases, minor decreases or increases
in reaction temperature were made to improve enantioselec-
tivity or increase conversion, respectively. The assignment of
absolute stereochemistry for adducts 3a−3ff is made in analogy
to that determined for compound 3r by single crystal X-ray
diffraction analysis. Attempted coupling of the more highly
substituted aryl alkyne, 1-phenyl-1-butyne, results in internal
redox-isomerization to form the terminal π-allyl, delivering
products of carbonyl anti-(α-benzyl)allylation in low yield.
Phenethylamines represent a broad class of psychoactive

substances.14 To further illustrate the potential utility of this

Scheme 3. Conversion of Phenethyl Alcohols 3d, 3j, and 3r to Phenethylamines 5d, 5j, and 5ra

aYields of material isolated by silica gel chromatography. See the Supporting Information for further experimental details.

Scheme 4. Total Syntheses of Neolignan Natural Products
(−)-Crataegusanoids A−Da

aYields of material isolated by silica gel chromatography. See the
Supporting Information for further experimental details.

Scheme 5. Experiments Corroborating Intervention of
Allenes as Reactive Intermediatesa

aYields of material isolated by silica gel chromatography. See the
Supporting Information for further experimental details.
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method to discovery efforts in pharmaceutical research,
representative adducts 3d, 3j, and 3r were transformed to
the corresponding N-Boc-protected phenethylamines (Scheme
3). The phenethyl alcohols 3d, 3j, and 3r were exposed to
diphenylphosphoryl azide in the presence of diisopropyl
azodicarboxylate and triphenylphosphine to furnish the azides
4d, 4j, and 4r with complete inversion of stereochemistry and
only trace quantities of competing elimination to form the
conjugated dienes.15 One-pot Staudinger reduction16 of 4d, 4j,
and 4r, followed by treatment with di-tert-butyl dicarbonate,
provided phenethylamines 5d, 5j, and 5r, respectively, in good
yield.
(−)-Crataegusanoids A−D17 were recently isolated from the

fruit of the Chinese mountain hawthorn tree, Crataegus
pinnatif ida, which are used to make “haw flakes,” a traditional
candy from northern China. In an in vitro evaluation against
two human hepatocellular carcinoma cell lines, HepG2 and
Hep3B, (−)-crataegusanoids A and B displayed moderate
cytotoxicity. To further illustrate the utility of the present
method for asymmetric alkyne-mediated carbonyl (α-aryl)-
allylation, total syntheses of neolignan natural products
(−)-crataegusanoids A−D were undertaken (Scheme 4). To
this end, phenethyl alcohol ent-3aa was subjected to
ozonolysis, followed by treatment with NaBH4, to provide a
1,3-diol. Acetal or ketal formation, followed by concomitant
cleavage of the TIPS silyl ether and phenolic tosylate moieties,
delivered (−)-crataegusanoids A−D.
A series of experiments were performed to probe the

reaction mechanism (Scheme 5). Under standard reaction
conditions, allene iso-1r is converted to the product of carbonyl
(α-aryl)allylation 3r in 45% yield (eq 5). This experiment
demonstrates that allenes are competent partners for carbonyl
(α-aryl)allylation, corroborating their role as reactive inter-
mediates. Notably, the yield of 3r obtained from allene iso-1r is
significantly lower than the yield of 3r obtained from the
corresponding 1-aryl-1-propyne 1r (eq 5). These data highlight
the value of utilizing tractable 1-aryl-1-propynes as reservoirs
for less stable and less abundant aryl-substituted allenes.
Exposure of deuterio-1ee to furfuryl alcohol 2ee under standard
conditions delivers deuterio-3ee-I (eq 6). Deuterium is
transferred to the internal vinylic position (50% 2H at Hc)
and allylic positions (20% 2H at Hd). These data corroborate
alkyne isomerization through successive, reversible alkyne
hydrometalation-β-hydride elimination, and that the ruthenium
hydrides initiating hydrometalation and arising via β-hydride
elimination can emanate f rom either the alkyne or the alcohol.
Additionally, a small, but significant, loss of deuterium is
observed at the olefinic terminus (93.5% 2H at Ha,b), indicating
allene hydrometalation occurs reversibly with incomplete

regioselectivity. In alignment with this interpretation, the
reaction of alkyne 1ee with the deuterated furfuryl alcohol
deuterio-2ee (eq 7) also results in transfer of deuterium to the
internal vinylic position (50% 2H at Hc), and hydrogen-
deuterium exchange occurs at the carbinol position of the
primary alcohol in both reactions (7% 2H at He, eq 6; 90% 2H
at He, eq 7) likely via reversible alcohol dehydrogenation.18 In
eq 6, deuterium content is not completely conserved, which
may be due to exchange with adventitious water.
The collective data are consistent with the indicated catalytic

cycle (Scheme 6). Ruthenium-catalyzed alkyne-to-allene
isomerization is followed by allene hydrometalation to form
fluxional σ-allyl- and π-allylruthenium complexes I.19 Aldehyde
coordination, followed by stereospecific carbonyl addition by
way of the (E)-σ-allyliridium through the chairlike transition
structure II, delivers a homoallylic ruthenium alkoxide III,
which, upon exchange with the primary alcohol, releases the
product of carbonyl (α-aryl)allylation and forms the ruthenium
alkoxide IV. β-Hydride elimination from ruthenium alkoxide
IV delivers the ruthenium hydride V along with aldehyde to
close the catalytic cycle. The π-bound alkene in III prevents β-
hydride elimination at this stage by occupying the adjacent
coordination site. Notably, two discrete catalytic events are
operative: (a) alkyne-to-allene isomerization and (b) transfer
hydrogenative carbonyl addition. Yet, as demonstrated by
deuterium labeling studies (eqs 5 and 6), crossover of
ruthenium hydrides that arise in these two catalytic processes
is observed.

■ CONCLUSIONS

In summary, we report that abundant, tractable 1-aryl-1-
propynes serve as chiral allylmetal pronucleophiles in reactions
with primary alcohol proelectrophiles to form products of
carbonyl (α-aryl)allylation. These hydrogen auto-transfer
processes enable access to homoallylic phenethyl alcohols
with excellent control of diastereo- and enantioselectivity. This
method was successfully applied to the synthesis of psycho-
active phenethylamines, as well as the neolignan natural
products (−)-crataegusanoids A−D. Both steric and electronic
features of the aryl sulfonic acid additive were shown to
contribute to the efficiency with which a more productive and
selective iodide-bound ruthenium catalyst is formed. As
established by deuterium labeling studies, the present
processes contribute to a growing class of enantioselective
metal-catalyzed C-C and C-X coupling reactions in which
alkynes serve as reservoirs for less abundant and less stable
allenes.5,6 Future work will focus on the development of related
catalytic C-C couplings of π-unsaturated feedstocks that occur
in the absence of stoichiometric organometallic reagents.4,20,21

Scheme 6. Proposed Catalytic Cycle for Ruthenium-Catalyzed C-C Coupling of 1-Arylpropynes with Primary Alcohols to
Form Products of Carbonyl (α-Aryl)allylation
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