Synthesis of Thio-lignan Analogues, Bioequivalent Salvinal without Unfavored Aldehyde

Yohei Saito, Yukiko Kobayashi, Nanami Yoshida, Masuo Goto, and Kyoko Nakagawa-Goto*

related thio-lignans, 5 and 6, showed much weaker antiproliferative effects than 4 and were less potent than the parent natural benzofuran lignans 2 and 3. Newly synthesized thio-lignan 33 affected cell cycle progression at 24 and 48 h in the G2/M transition and S phase, respectively, as well as promoted sub-G1 induction by stimulating microtubule depolymerization and nuclear fragmentation. Since a highly reactive aldehyde in salvinal is generally not appropriate for drug development, we have successfully found nonaldehyde derivative 33 showing biological activity similar to salvinal by replacing BF with BT and an aldehyde with 1,3-dioxolane.

■ INTRODUCTION

Lignans, which are biosynthesized by the oxidative coupling of two phenylpropanoids formed through the shikimate pathway, are distributed abundantly in plants. Various skeletons, including diphenylfurofuran, dibenzocyclooctadiene, arylnaphthalene, alkyl aryl ether, benzodioxane, and benzofuran (BF), can be formed depending on the coupling pattern. Salvinal (1) isolated from Salvia miltiorrhiza Burge (Danshen),¹ ovovaten (2) isolated from Persea obovatifolia,² and 2-[7-methoxy-2-(4methoxyphenyl)-3-methylbenzofuran-5-yl]ethanol (3) isolated from Lavandula angustifolia³ are bioactive lignans containing BF, a bicyclic heteroaromatic unit with a 10π -electron system. The above three BF lignans show significant antiproliferative activity against several human tumor cell lines (HTCLs) with half-maximal inhibitory concentration (IC_{50}) values of 5.0-10.0,⁴ 0.7–2.2,² and 2.2–5.5³ μ M, respectively. The mechanism of action of antiproliferative salvinal was wellinvestigated;^{4,5} however, an aldehyde in the structure is not a drug-like functional group because it binds randomly with nucleophiles in biomolecules such as proteins and nucleotides⁶ and is likely metabolized by metabolic enzymes in vivo, such as aldehyde dehydrogenase, aldehyde oxidase, and P450.

for the HER2 negative breast cancer cell line MCF-7. This thiolignan was 6.5-9.4 times more potent than parent 1. However, the

Like BF, benzothiophene (BT) is a bicyclic 10π -heteroaromatic compound. The structures differ only by the heteroatom in the five-membered ring, sulfur in BT and oxygen in BF, which could affect the biological profile of compounds containing these privileged skeletons due to the differences in electronegativities and atomic/ionic radii. Abundant BT-based drug discovery has been conducted in diverse fields of bioactivity, such as antitumor, antimicrobial, anti-human immunodeficiency virus (anti-HIV), antitubercular, anti-inflammatory, antioxidant, antidiabetic, anticonvulsant, and others.⁷ Raloxifene, a clinically used selective estrogen receptor modulator contains BT as a core skeleton, and several BT compounds, such as sertaconazole, mobam, zileuton, and benocyclidine, are marketed.⁷ We also found that TEDB-TB, a BT analogue of triethyldesmosdumotin, dramatically increased the antiproliferative activity against human tumor cell lines (IC₅₀ 0.06–0.16 μ M) acting to inhibit tubulin assembly.⁸ Thus, BT now attracts special attention in the field of medicinal chemistry.

Our recent unpublished study showed that the replacement of BF by BT on a specific flavonoid skeleton clearly increased the antiproliferative activity, which prompted us to further

Received: February 12, 2021 Published: May 12, 2021

The Journal of Organic Chemistry pubs.acs.org/joc OMe СНО HO HO ОΗ 'nн ÓMe ÓМе ОМе ÓMe 3: X = O X = O: Obovaten (2) X = O: Salvinal (1) 6: X = S X = S: Thio-obovaten (5) X = S: Thio-salvinal (4)

Figure 1. Cytotoxic natural benzofuran lignans 1-3 and their thio-derivatives 4-6.

^aReagents and conditions: (a) **25**, 1.0 M aq KOH, tetrahydrofuran (THF), 0 °C, 3 h, 86%; (b) 240 °C, 30 min, 77% or PhOPh, microwave, 220 °C, 15 min, 97%; (c) 5 M aq KOH, MeOH, reflux, 1 h, 99%; (d) propargyl bromide, tetrabutylammonium bromide (TBAB), 2 M aq NaOH, PhH, 0 °C, 1 h, 97%; (e) H_2O_2 , HCO_2H , 0 °C, to room temperature (rt), 3 h, 68%; (f) dioxane, reflux, 1 h, then *p*-TsOH, H_2O , reflux, 2 h, 74%; (g) *N*,N-diisopropylethylamine (DIPEA), MOMCl, CH_2Cl_2 , 0–40 °C, 1.5 h, 75%; (h) $Ph_3P = CHCO_2Et$, K_2CO_3 , CH_2Cl_2 , reflux, 3.5 h, 96%; (i) Pd/ C, H_2 , EtOAc, rt, 8 h, 89%; (j) LiBH₄, THF, 60 °C, 3 h, 97%; (k) Ac₂O, 4-dimethylaminopyridine (DMAP), Py, CH_2Cl_2 , rt, 3 h, 100%; (l) 1.0 M HCl in diethyl ether, isopropanol, 55 °C, Ac₂O, 4 h, 68%; (m) 2-iodoxybenzoic acid (IBX), dimethyl sulfoxide (DMSO), rt, 2 h, 100%; (n) (except for **21**) **26a**–**c**, $Pd(OAc)_2$, PCy_3 , PivOH, K_2CO_3 , toluene, reflux, 13 h, 65% for **18**, 56% for **19**, 85% for **20**; (n) (for **21**) **26d**, $Pd(OAc)_2$, KOAc, dimethylacetamide (DMA), 150 °C, 8 h, 33%; and (o) K_2CO_3 , MeOH, rt, 1 h, 95% for **4**, 99% for **22**, 78% for **23**, 100% for **24**.

investigate BT to BF conversions. We report here the synthesis, antiproliferative activity, and structure-activity relationship (SAR) correlations of thio-lignans 4-6, in which the oxygen in the BF lignans 1-3 was replaced by sulfur, as well as their derivatives (Figure 1). Furthermore, we finally succeeded in synthesizing an analogue with bioactivity similar to salvinal without an aldehyde group by replacement of BF to BT as well as aldehyde to dioxolane.

RESULTS AND DISCUSSION

Synthesis of Thio-lignans. Thio-salvinal 4 was prepared from vanillin (7) as shown in Scheme 1. The treatment of vanillin (7) with dimethylcarbamothioic chloride, followed by Newman–Kwart rearrangement of the resulting *O*-thiocarbamate to an *S*-thiocarbamate under microwave conditions, and hydrolysis gave thiophenol $9.^9$ Propargylation, oxidation, and cyclization under an acidic condition produced 3-hydrox-

ymethyl-BT 11,¹⁰ which was converted to the methoxymethyl (MOM) ether 12. The side chain at C-5 was inserted using the conventional methods of a Wittig reaction and reduction¹¹ to give alcohol 14. After protection of the terminal alcohol as an acetate, the resulting 15 was treated with 1 M HCl/Et₂O in isopropanol to yield alcohol 16, which was oxidized to the related aldehyde 17. The direct arylation¹² of 17 with aryl bromide 26a followed by hydrolysis generated the desired thiosalvinal (4). The related derivatives 19, 20, and 21 were also prepared similarly from 17 using other aryl bromides, 26b, 26c, and 26d, respectively. The hydrolysis of 19, 20, and 21 generated 22, 23, and 24, respectively.

Thio-obovaten (5) and thio-lignan 6 were obtained using the following reaction procedure (Scheme 2). Phenol 27 was converted to thiophenol 28 through the same reaction sequence for the preparation of 9. Allylation of 28 using the Mizoroki-Heck reaction gave 3-methyl BT 29, which was

Article

OMe

Scheme 2. Preparation of Thio-lignans 5 and 6^a

^{*a*}Reagents and conditions: (a) **25**, 1.0 M aq KOH, THF, 0 °C, 2 h, 92%; (b) PhOPh, microwave, 220 °C, 15 min, 70%; (c) 5.0 M aq KOH, MeOH, reflux, 3 h, 36%, 60% brms; (d) allyl bromide, TBAB, 2 M aq NaOH, PhH, 0 °C, 1 h, 79%; (e) NEt₃, Pd(PPh₃)₄, MeCN, 140 °C, 22 h, 42%; (f) 5-iodo-1-methoxy-2,3-bis(methoxymethoxy)benzene, Pd(OAc)₂, Ag₂O, NaOAc, hexafluoro-2-propanol (HFIP), 35 °C, 18 h, 51% (100% brsm); (g) EtPPh₃Br, PhLi, -78 °C to rt, 1 h, 80%; (h) 1.0 M HCl, MeOH, rt, 48 h, 93%; (i) MePPh₃Br, *n*-BuLi, THF, 0 °C, 45%; (j) 9-borabicyclo[3.3.1]nonane (9-BBN), THF, reflux, 1 h, then 0 °C, EtOH, 7 M NaOH, H₂O₂, 50 °C, 60%; and (k) 4-iodoanisole, Pd(OAc)₂, Ag₂O, NaOAc, HFIP, 35 °C, 18 h, 57% (61% brsm).

reacted with 5-iodo-1-methoxy-2,3-bis(methoxymethoxy)benzene under direct arylation conditions.¹³ The resulting 2aryl BT **30** was treated with EtPPh₃Br to obtain **32** as cis– trans isomers (E/Z = 2:1). Deprotection with 1 M HCl followed by separation with chiral chromatography gave thioobovaten (**5**(E) and **5**(Z)). In addition, 3-methyl BT **29** was converted to **31** through vinylation, hydroboration, and oxidation. Then, direct arylation with 4-iodoanisole produced thio-lignan **6**.

As mentioned earlier, an aldehyde is a highly reactive functional group that is generally not appropriate for drug development because it binds randomly with nucleophiles in biomolecules such as proteins and nucleotides.⁶ To find a suitable functional group at C-3, various 3-substituted derivatives were synthesized (Scheme 3). The acetal 33 was prepared from 18 by the protection of the aldehyde with ethylene glycol. Acetylation of 16 followed by direct arylation with 26a provided 3-acetoxymethyl-BT 34. Reduction of the aldehyde in 18 with NaBH₄ and hydrolysis of the acetate in 34 with aq NaOH gave 3-hydroxymethyl-BTs 35 and 36, respectively. Oxidation of 18 with KMnO₄ produced a 3carboxylic acid as well as unexpected deacetylation of the phenolic acetate to give guaiacol; reprotection with Ac₂O gave 37. Separate esterification with MeI and amidation with MeNH₂ of 37 provided 3-methylcarboxylate-BT 38 and 3-(Nmethyl)-carboxamide-BT 39, respectively. The reaction of 4 with MeMgBr generated 3-(1-hydroxyethyl)-BT 40. Wittig reactions of 4 and 3-carbaldehyde-BT 23 with methyl (triphenylphosphoranylidene)acetate provided methyl acrylates 41 and 42, respectively.

Deprotection of the MOM group on 13, followed by IBX oxidation of the resultant alcohol provided 3-carbaldehyde-BT 43 (Scheme 4). Direct arylation of 43 with 26a gave 44 with ethyl propionate as the C-5 side chain rather than propanol or propyl acetate as found in 4 and 18, respectively. The dimeric compound (45) was also prepared through direct arylation.

Synthesis of Salvinal. The parent molecule, salvinal (1), was also prepared for comparison. The synthesis was achieved by modifying the reported method.¹⁴ Briefly, methyl ferulate 46 was dimerized in the presence of Ag_2O to give 47, which

was converted to **48** through acetylation and 2,3-dichloro-5,6dicyano-1,4-benzoquinone (DDQ) oxidation (Scheme 5). Hydrogenation of a double bond on **48** under acidic conditions, followed by the treatment of filtrate with sat. NaHCO₃ provided a phenol intermediate, which was protected to yield benzyl ether **49**. Reduction of methyl esters by LiAlH₄ and selective oxidation of benzyl alcohol by activated MnO₂ afforded **50**. Deprotection of the benzyl group gave salvinal (1). Acetylation of the hydroxy group on **1** followed by the protection of aldehyde on resultant **51** with ethylene glycol provided **52**, which is an oxygen analogue of compound **33**.

Evaluation of Antiproliferative Activities against Human Tumor Cell Lines. All synthesized thio-lignans were evaluated for antiproliferative activities against five human tumor cell lines (HTCLs), including lung carcinoma (A549), triple-negative breast cancer (MDA-MB-231), estrogen receptor-positive and HER2 negative breast cancer (MCF-7), cervical cancer cell line HeLa derivative (KB), and its multidrug-resistant (MDR) subline with P-glycoprotein (Pgp) overexpression (KB-VIN) (Table 1).

Antiproliferative activity of our newly synthesized salvinal (1) showed a profile similar to that previously reported.⁴ As anticipated, thio-salvinal (4) showed significant antiproliferative effects with IC₅₀ values of $0.57-0.95 \ \mu$ M against all tested HTCLs, except for the HER2 negative breast cancer cell line MCF-7, and was 6.5-9.4 times more potent than parent compound 1. This result indicates that, compared to BF, BT is preferred for the activity of the salvinal skeleton, although a similar effect was not observed with 2 and 3 (compare 2 vs 5 and 3 vs 6). Thus, we decided to study SAR correlations based on the thio-salvinal structure.

The synthesized compounds were divided roughly into four groups based on their antiproliferative activity. Group-I (4 and 18) exhibited submicromolar IC₅₀ values. Group-II (19, 22, 23, 33, 41, and 44), group-III (5(*E*), 21, and 24), and group-IV (5(*Z*), 6, 34–40, 42, and 45) displayed values of 1–10, 10–20, and over 20 μ M, respectively (Figure 2). Compounds 4 and 18 in group-I exhibited an interesting antiproliferative activity profile, i.e., they were over 10-fold less potent against MCF-7 (IC₅₀: 11.9 μ M) than the other four cell lines (IC₅₀:

pubs.acs.org/joc

Article

Scheme 3. Preparation of Thio-lignan Derivatives $33-42^{a}$

"Reagents and conditions: (a) ethylene glycol, *p*-TsOH, molecular sieves (MS) 4 Å, PhH, reflux, 100%; (b) Ac_2O , Py, DMAP, CH_2Cl_2 , rt, 100%; (c) **26a**, Pd(OAc)₂, PCy₃, PivOH, K₂CO₃, toluene, reflux, 49%; (d) NaBH₄, THF, 0 °C, 85%; (e) 2.0 M NaOH, MeOH/THF (1:1, v/v), rt, 73%; (f) 0.4 M aq KMnO₄, acetone, 40 °C, then (b), 30%; (g) MeI, K₂CO₃, dimethylformamide (DMF), rt, 45%; (h) DIPEA, 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), MeCN, then MeNH₂, 78%; (i) MeMgBr, THF, 0 °C, 37%; (j) Ph₃PCH₂CO₂Me, *t*-BuOK, CH₂Cl₂, 60 °C, 78%; and (k) Ph₃PCH₂CO₂Me, K₂CO₃, CH₂Cl₂, 60 °C, 93%.

0.57–0.95 μ M). Although the reason is unclear at this stage, compounds 4 and 18 might be metabolized quickly intracellularly or MCF-7 cells might have a low expression level of the molecular target of the thio-lignans. Also, the activities of acetates 18, 19, and 24 were much like those of the corresponding alcohols, 4, 22, and 21, respectively, suggesting immediate hydrolysis by an intracellular esterase.

In the overall comparisons, the substituent at C-3 was a key factor to the antiproliferative activity; the aldehyde (4) was the most preferred functional group, followed by the related acetal (33) and methyl acrylate (41) in group-II. Regarding the

substitution pattern on the pendant phenyl at C-2, the combination of 3-methoxy and 4-hydroxy or 4-acetoxy groups (4 and 18) on the pendant phenyl ring was more beneficial to activity than 3,4-dimethoxy (19 and 22), 3,4,5-trimethoxy (23), or 3-nitro groups (21 and 24). Based on the limited investigations, electron-donating groups (4, 18, 19, 22, and 23) might be more suitable than an electron-withdrawing group (21 and 24). Comparison of 4 and 44 disclosed that a terminal aliphatic alcohol (4) was more effective than an aliphatic ester (44) in the C-5 side chain. Meanwhile, the BT dimer (45) was much less active than the monomeric thio-

Scheme 4. Preparation of Thio-lignan Derivatives 44 and 45^a

"Reagents and conditions: (a) 1.0 M HCl in diethyl ether, isopropanol, 55 °C, 88%; (b) IBX, DMSO, rt, 100%; and (c) ArBr, $Pd(OAc)_2$, PCy_3BF_4 for 44 or PCy_3 for 45, PivOH, K_2CO_3 , toluene, reflux, 80% for 44, 26% for 45.

Scheme 5. Preparation of Salvinal $(1)^{a}$

^{*a*}Reagents and conditions: (a) Ag₂O, benzene/acetone = 2:1, rt, 48%; (b) Ac₂O, DMAP, pyridine, rt; (c) DDQ, benzene, reflux, 50% in two steps; (d) *p*-TsOH, H₂, Pd-C, rt; (e) BnBr, K₂CO₃, 2-butanone, reflux, 87% in two steps; (f) LiAlH₄, THF, -5 °C to rt; (g) MnO₂, EtOAc, rt, 88% in two steps; (h) TiCl₄, CH₂Cl₂, rt, 90%; (i) Ac₂O, DMAP, pyridine, CH₂Cl₂ 98%; and (j) ethylene glycol, *p*-TsOH, toluene, reflux, 75%.

lignan 44, which indicates that the combination of BT and an appropriately substituted phenyl was significant for the antiproliferative activity.

Excluding the thio-lignans with a C-3 aldehyde, compound 33 with a 1,3-dioxolane, an aldehyde equivalent, was the most potent with IC₅₀ values of 4.94–8.78 μ M, comparable to salvinal (1), against all tested HTCLs. The compound 33 was also more effective than compound 52, oxygen analogue of compound 33, suggesting that BT is preferred for the activity. In the comparison of C-3 methyl acrylates 41 and 42, trimethoxy substitution on the phenyl ring decreased the potency, which was consistent with the above-mentioned comparison (4 and 23).

Importantly, most tested compounds, including **33**, exhibited similar or greater antiproliferative activity against drug transporter P-gp overexpressing MDR subline KB-VIN cells compared to that against the parent chemosensitive cell line KB, suggesting that all compounds were not the substrates of P-gp.

Mechanism of Action Study of Thio-lignan 33. Based on the previous report, the parent natural product 1 inhibits tubulin polymerization and induced G2/M accumulation weakly about 20 or 30% of cells at 12 ($3 \times IC_{50}$) or 20 μ M

 $(5 \times IC_{50})$ concentration, respectively.⁴ The reason for the mild effect of 1 on G2/M accumulation was probably due to its weak specificity or affinity for tubulin caused by an aldehyde moiety. We have obtained 33, which contained no aldehyde group and showed the same antiproliferative activity as 1 with the aldehyde group. However, a slightly different functional group can affect the activity or even change the target protein. For example, while the well-known lignan podophyllotoxin inhibits tubulin, its derivative etoposide inhibits topoisomerase-II. We also reported that a slight change in the functional group caused big differences in the activity of desmosdumotin derivatives.⁸ Therefore, we needed to confirm the mechanism of action of the active thio-lignan derivatives. The most active compound, BT-salvinal (4), contains a reactive aldehyde, which might interact with numerous cellular proteins nonspecifically and cause false positives. Therefore, we selected the most active compound 33 with an aldehyde equivalent for further investigation. Flow cytometric analysis of 1, 4, and 33 in MDA-MB-231 and KB-VIN showed G2/M accumulation at 24 h in both cell lines and dose-dependent G2/M cell cycle arrest in KB-VIN. Sub-G1 accumulation, which is a typical pattern of apoptosis, was obvious in cells treated for 48 h (Figure 3). Overall, the effects of compounds 1, 4, and 33 on Table 1. Antiproliferative Activity of Synthesized Thiolignans

	cell lines/IC ₅₀ $(\mu M)^{a}$				
compound	A549	MDA-MB- 231	MCF-7	KB	KB- VIN
1 (synthesized)	6.84	7.49	8.47	6.14	5.37
1 ⁴			9.2	5.0	3.7
2 ²	1.1			2.3 (KB16)	
3 ³	3.5		5.0		
4	0.81	0.95	11.9	0.95	0.57
5(E)	8.74	11.3	10.5	10.7	14.1
5(Z)	21.4	20.7	22.1	20.3	21.0
6	27.9	>40	31.1	30.5	31.2
18	0.94	0.94	11.9	0.89	0.56
19	6.13	7.42	7.97	5.98	4.58
21	5.07	21.1	13.7	10.3	7.70
22	7.28	8.82	9.51	7.88	5.58
23	5.13	6.56	6.66	4.53	1.00
24	5.34	23.1	21.0	15.4	14.4
33	7.05	8.50	8.78	5.69	4.94
34	>40	>40	39.3	>40	>40
35	19.1	22.3	21.5	23.3	17.7
36	22.4	30.8	25.4	28.1	22.8
37	>40	>40	>40	>40	>40
38	23.0	36.2	34.1	26.5	21.9
39	>40	>40	>40	>40	>40
40	>40	>40	>40	>40	>40
41	7.18	12.9	12.1	9.67	6.24
42	20.6	18.7	20.2	27.5	22.0
44	5.52	7.69	9.67	4.52	3.89
45	23.0	36.2	34.1	26.5	21.9
52	22.3	16.9	21.5	21.5	7.88
paclitaxel (nM)	6.34	9.96	11.4	5.64	1902
^a Antiproliferative activity expressed as IC., values for each cell line					

"Antiproliferative activity expressed as IC_{50} values for each cell line, the concentration of the compound that caused 50% reduction relative to untreated cells determined by the SRB assay (n = 6).

the cell cycle progression in both MDA-MB-231 and KB-VIN, especially on G2/M phase accumulation, were almost the same. However, the effect of compounds 1 and 4 at low concentrations on KB-VIN cells was dramatically weaker than that of compound 33. These results suggested that, like salvinal (1), the new thio-lignan probably targets tubulin and subsequently induces apoptosis. Accordingly, we can say that the bioactivity of compound 33 on the cell cycle was improved compared with 1. However, the cell cycle distribution pattern was distinguishable from that in cells treated with combretastatin A-4 (CA-4). Because CA-4 is a standard microtubuledestabilizing agent that binds to the colchicine site, we presume that 33 might bind to another site on tubulin. In addition, S phase accumulation was observed in MDA-MB-231 cells after 48 h treatment with low dose, suggesting that 1, 4, and 33 potentially affect DNA replication.

To see if 1 or 33 functions as a tubulin inhibitor in MDA-MB-231 cells, an immunocytochemical approach was employed. The cells were treated with 1 or 33 for 24 h at a concentration of 3-fold of the IC_{50} value, which was subjected to double labeling with monoclonal antibody to α -tubulin and 4',6-diamidino-2-phenylindole (DAPI) for nuclei (Figure 4). It was clearly observed that the majority of microtubules were depolymerized by 33 like colchicine site agent CA-4 treated cells. In cells treated with 33, a limited number of partially

polymerized microtubules could be observed; comparing 1 and 33, the effect of microtubule depolymerization was stronger in 33. In addition, the cells with mitotic spindles were undetectable, suggesting that both 1 and 33 induced cell cycle arrest at the interphase by inhibiting tubulin polymerization. In addition, 1 or 33 treated cells were not stained with antibody to serine 10-phosphorylated histone H3 (p-H3), a marker for mitotic chromosome condensation (data not shown), which demonstrated that the cells were arrested in the G2 phase. Furthermore, nuclear fragmentation was often observed in cells treated with these compounds. These results supported that bioactivity of 33 was the same as that of salvinal (1), while the effect of 1 on tubulin depolymerization was significantly improved by 33.

Herein, we have achieved to synthesize a bioequivalent salvinal analogue without an aldehyde group.

CONCLUSIONS

We applied the medicinal chemistry concept of bioisosteres to convert natural products containing BF (lignans) to new synthetic derivatives containing BT (thio-lignans). The synthetic routes using Pd-catalyzed cross-coupling reactions are effective for the synthesis of other derivatives with different substituents on BT because of easy handling and high overall yields. Except for 4, the new thio-lignans showed lower antiproliferative activities than the parent lignans against HTCLs. Since the aldehyde found in 4 is not applicable to drug development, we prepared derivatives containing ethylenedioxy, acetoxymethyl, hydroxymethyl, carboxyl, methyl ester, monomethylamide, hydroxyethyl, and methyl acrylate groups. However, almost all compounds without an aldehyde exhibited dramatically decreased antiproliferative activity. Based on our biological evaluation of 1, 4, and 33 side-byside, we presume that both compounds mainly interfere with G2/M transition and DNA replication as well as induces apoptosis time- and dose-dependently. Immunostaining of α tubulin in MDA-MB-231 cells revealed that 33 functioned as a tubulin polymerization inhibitor more evidently than 1. Thus, the biological profile of thio-salvinal analogue 33 without an aldehyde appears to be the same as that of salvinal with aldehyde, while its bioactivity, particularly against tubulin, was improved. The molecular mechanism of 33, especially against DNA replication, will be further investigated. As the antiproliferative activity of the BT derivatives could be improved by differences in substituents, drug discovery studies on compounds possessing a BT ring will also be continued.

EXPERIMENTAL SECTION

General Procedures. All reactions were conducted under an argon atmosphere and monitored by thin-layer chromatography (TLC) silica gel $60F_{254}$ (Merck). All reagents were purchased commercially and used without further purification unless otherwise indicated. Crude materials were purified by column chromatography on silica gel 60N (63–210 μ m, Kanto Chemical). NMR spectra were measured on JEOL JMN-ECA600 and JMN-ECS400 spectrometers with tetramethylsilane as an internal standard, and chemical shifts are stated as δ values. High-resolution mass spectrometer.

Experimental Procedure for Novel Compounds. 3-Methoxy-4-(prop-2-yn-1-ylsulfinyl)benzaldehyde (10). Sodium hydroxide (5.0 mL, 9.5 mmol, 1.9 M in water) and benzaldehyde 9^{15} (934 mg, 5.6 mmol) were stirred for 25 min, after which the reaction mixture was cooled to 0 °C and propargyl bromide (8.7 mL, 8.3 mmol, 8% solution in benzene) was added dropwise. Tetrabutylammonium

pubs.acs.org/joc

Figure 2. Rough classification of the synthesized thio-lignans by IC_{50} values.

bromide (181 mg, 0.56 mmol) was added, and the mixture was stirred vigorously for 1.0 h. The reaction mixture was poured into water and extracted with EtOAc (3 \times 10 mL). The organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (1:1) to give 3-methoxy-4-(prop-2-yn-1-yl-thio)benzaldehyde (1.11 g, 97%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 9.93 (s, 1H), 7.46 (s, 2H), 7.35 (s, 1H), 3.96 (s, 3H), 3.71(d, 2H, J = 2.4 Hz), 2.24 (t, 1H, J = 2.6 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 191.3, 156.5, 135.0, 133.6, 126.5, 125.0, 107.8, 78.7, 71.8, 56.1, 19.4; HRMS-fast atom bombardment (FAB) (m/z): [M + H]⁺ calcd for C₁₁H₁₁O₂S, 207.0480; found, 207.0472. To a solution of 3-methoxy-4-(prop-2-yn-1-ylthio)benzaldehyde (1.83 g, 8.88 mmol) in 50.0 mL of HCO₂H/water (18:1, v/v) was slowly added 30% H_2O_2 (1.52 mL, 13.3 mmol) at 0 °C, and the mixture was allowed to reach rt. After being stirred for 5.0 h, the mixture was poured into water and extracted with EtOAc. The organic layer was washed with saturated NaHCO₃ solution and brine, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (1:1) to give 10 (1.34 g, 68%) as a pale yellow solid. ¹H NMR (600 MHz, \vec{CDCl}_3): δ 10.05 (s, 1H), 8.02 (d, 1H, J = 7.6), 7.70 (dd, 1H, J = 7.6, 1.1 Hz), 7.45 (d, 1H, J = 1.1 Hz), 3.98 (s, 3H), 3.95 (dd, 1H, J = 16.3, 2.6 Hz), 3.75 (dd, 1H, J = 16.3, 2.6 Hz), 2.30 (t, 1H, J = 2.0 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 191.3, 155.5, 139.9, 137.1, 127.5, 124.8, 108.6, 76.2, 72.5, 56.2, 43.9; HRMS-FAB (m/z): $[M + H]^+$ calcd for C₁₁H₁₁O₃S, 223.0429; found, 223.0408.

3-(Hydroxymethyl)-7-methoxybenzo[b]thiophene-5-carbaldehyde (11). A solution of 10 (912 mg, 4.1 mmol) in 13.0 mL of 1,4dioxane was refluxed. After the mixture was stirred for 1.0 h, p-TsOH- H_2O (264 mg, 1.4 mmol) and 1.2 mL of water were added, followed by refluxing for a further 1.0 h. The mixture was cooled to ambient temperature and treated with saturated NaHCO₃ solution and extracted with EtOAc (4 × 10 mL). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane–EtOAc (7:3) to give **11** (675 mg, 74%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 10.05 (s, 1H), 7.97 (d, 1H, *J* = 1.0 Hz), 7.49 (s, 1H), 7.30 (s, 1H), 4.99 (s, 2H), 4.06 (s, 3H), 1.96 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 192.2, 155.2, 139.3, 137.2, 136.2, 135.3, 125.7, 120.8, 101.0, 59.7, 56.0; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₁₁H₁₁O₃S, 223.0429; found, 223.0426.

7-Methoxy-3-[(methoxymethoxy)methyl]benzo[b]thiophene-5carbaldehyde (12). To a solution of 11 (587 mg, 2.6 mmol) in anhydrous CH₂Cl₂ (8.0 mL) was added N,N-diisopropylethylamine (2.3 mL, 13.1 mmol) at 0 °C, and the mixture was stirred for 20 min under N2. MOMCl (1.0 mL, 13.1 mmol) was added, and stirring was continued at 40 °C in an oil bath for 1.5 h. The reaction was quenched with water and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (7:3) to afford 12 (492 mg, 75%) as a pale yellow oil. ¹H NMR (600 MHz, $CDCl_3$): δ 10.07 (s, 1H), 7.96 (d, 1H, J = 1.0 Hz), 7.51 (s, 1H), 7.32 (s, 1H), 4.88 (d, 2H, J = 1.0 Hz, 4.74 (s, 2H), 4.06 (s, 3H), 3.45 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 192.1, 155.2, 139.7, 136.1, 135.4, 134.2, 126.9, 120.9, 100.9, 95.5, 63.1, 56.0, 55.6; HRMS-FAB (m/z): $[M + H]^+$ calcd for C13H15O4S, 267.0686; found, 267.0686.

Ethyl-3-{7-methoxy-3-[(methoxymethoxy)methyl]benzo[b]thiophen-5-yl}propanoate (13). A solution of 12 (365 mg, 1.4 mmol) and (carbethoxymethylene)triphenylphosphorane (734 mg, 2.1 mmol) in CH_2Cl_2 (10 mL) was refluxed for 3.5 h. The reaction mixture was cooled to rt, poured into water, and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane–EtOAc (5:1) to

Figure 3. Effects of salvinal (1), 4, and 33 on cell cycle progression. Triple-negative breast cancer MDA-MB-231 (upper two rows) or MDR subline KB-VIN (lower two rows) cells were treated with 1, 4, or 33 for 24 (upper row) and 48 h (lower row) as indicated. DMSO was used as a vehicle control (CTRL). 1, 4, and 33 were used at $1 \times IC_{50}$ and $3 \times IC_{50}$ concentrations. 5-Fluorouracil (5-FU), an inhibitor for DNA replication (S phase), was used at $1 \times IC_{50}$ and tubulin polymerization inhibitor combretastatin A-4 (CA-4), an inhibitor for mitotic onset (G2/M), was used at $3 \times IC_{50}$. Cell cycle distributions of treated cells were analyzed by flow cytometry after staining with propidium iodide (PI) in the presence of RNase.

Figure 4. Compound **33** inhibited tubulin polymerization. MDA-MB-231 cells were treated with compound **1**, **33**, or CA-4 for 24 h at $3 \times IC_{so}$. DMSO was used as a vehicle control (CTRL). The cells were labeled with monoclonal antibody to α -tubulin (green) and DAPI for DNA (blue), stained cells were observed by a confocal laser-scanning microscope. The represented merged image was a projection of 16–18 optical sections. Bar, 0.025 mm.

give ethyl-3-{7-methoxy-3-[(methoxymethoxy)methyl]benzo[b]thiophen-5-yl}acrylate (440 mg, 96%) as a colorless solid. ¹H NMR (600 MHz, CDCl₃): δ 7.81 (d, 1H, J = 15.8 Hz), 7.60 (s, 1H), 7.43 (s, 1H), 6.96 (s, 1H), 6.49 (d, 1H, J = 15.8 Hz), 4.82 (s, 2H), 4.72 (s, 2H), 4.29 (dd, 2H, J = 14.3, 7.1 Hz), 4.02 (s, 3H), 3.44 (s, 3H), 1.36 (t, 3H, J = 14.3, 7.1 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.0, 154.8, 145.2, 140.0, 133.6, 132.6, 131.8, 126.3, 117.7, 116.4, 102.2, 95.5, 63.1, 60.5, 55.7, 55.5, 14.4; HRMS-FAB (m/z): [M + H]⁺ calcd for C₁₇H₂₁O₅S, 337.1110; found, 337.1079. Ethyl-3-{7-methoxy-3-[(methoxymethoxy)methyl]benzo[b]thiophen-5-yl}acrylate (440 mg, 1.3 mmol) was dissolved in EtOAc (9.0 mL), and 30% Pd/C (137 mg) was added. The mixture was shaken under H₂ for 8.0 h. The mixture was then filtered through a pad of Celite and chromatographed on silica gel, eluting with hexane-EtOAc (4:1) to give 13 (394 mg, 89%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃): δ 7.38 (s, 1H), 7.29 (s, 1H), 6.67 (s, 1H), 4.79 (s, 2H), 4.71 (s, 2H), 4.14 (dd, 2H, J = 14.5, 7.0 Hz), 3.98 (s, 3H), 3.44 (s, 3H), 3.08 (t, 2H, J = 7.9 Hz), 2.69 (t, 2H, J = 7.9 Hz), 1.25 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 172.9, 154.5, 140.0, 138.8, 133.0, 127.5,

125.7, 114.0, 105.3, 95.4, 63.3, 60.5, 55.6, 55.5, 36.4, 31.5, 14.2; HRMS-FAB (m/z): $[M + Na]^+$ calcd for $C_{17}H_{22}O_5SNa$, 361.1086; found, 361.1065.

3-{7-Methoxy-3-[(methoxymethoxy)methyl]benzo[b]thiophen-5-yl]propan-1-ol (14). LiBH₄ (1.5 mL, 3.0 mmol, 2.0 M in THF) was added to a solution of 13 (333 mg, 1.0 mmol) in THF (8.0 mL) under N₂ and stirred for 8.0 h at 60 °C in an oil bath. The mixture was adjusted to pH 6–7 by the addition of saturated NH₄Cl solution and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane–EtOAc (1:1) to give 14 (286 mg, 97%) as a colorless solid. ¹H NMR (600 MHz, CDCl₃): δ 7.39 (s, 1H), 7.29 (s, 1H), 6.67 (s, 1H), 4.86–4.72 (m, 4H), 3.99 (s, 3H), 3.72 (t, 2H, *J* = 6.0 Hz), 3.44 (s, 3H), 2.85 (t, 2H, *J* = 7.7 Hz), 1.20–1.95 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 154.5, 140.0, 132.9, 127.2, 125.6, 114.0, 105.5, 95.3, 63.2, 62.3, 62.2, 55.6, 55.5, 34.6, 32.7; HRMS-FAB (*m*/*z*): [M + Na]⁺ calcd for C₁₅H₂₀O₄SNa, 319.0980; found, 319.0952.

3-{7-Methoxy-3-[(methoxymethoxy)methyl]benzo[b]thiophen-5-yl}propyl Acetate (15). To a solution of 14 (286 mg, 0.96 mmol) in CH_2Cl_2 (10.0 mL) were added pyridine (90.0 μ L, 0.98 mmol), DMAP (12 mg, 0.10 mmol), and Ac₂O (0.11 mL, 1.2 mmol), and the mixture was stirred at rt. After stirring for 2.5 h, DMAP (15 mg, 0.12 mmol) and Ac₂O (45.0 μ L, 0.48 mmol) were added and stirred for 30 min. The reaction mixture was poured into water and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (4:1) to give 15 (324 mg, 100%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃): δ 7.39 (s, 1H), 7.27 (s, 1H), 6.64 (s, 1H), 4.81 (s, 2H), 4.72 (s, 2H), 4.13 (t, 2H, J = 6.6 Hz), 3.99 (s, 3H), 3.44 (s, 3H), 2.82 (t, 2H, J = 7.8 Hz), 2.07 (s, 3H), 2.06–2.01 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.2, 154.5, 140.0, 139.4, 132.9, 127.4, 125.7, 114.0, 105.4, 95.3, 63.9, 63.3, 55.6, 55.5, 32.8, 30.6, 21.0; HRMS-FAB (m/z): $[M + H]^+$ calcd for $C_{17}H_{23}O_5S$, 339.1266; found, 339.1268.

3-[3-(Hydroxymethyl)-7-methoxybenzo[b]thiophen-5-yl]propyl Acetate (16). To a stirred solution of 15 (324 mg, 0.96 mmol) in dry isopropyl alcohol (10.0 mL) was added 0.8 mL of 1.0 M hydrochloric acid/diethyl ether (0.8 mmol), and the mixture was stirred at 55 °C in an oil bath for 4.0 h under N2. The reaction mixture was cooled to rt, adjusted to pH 7-8 by the addition of saturated NaHCO3 solution, and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (3:1) to give 16 (190 mg, 68%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (s, 1H), 7.29 (s, 1H), 6.65 (s, 1H), 4.89 (d, 2H, J = 5.1 Hz), 4.12 (t, 2H, J = 6.4 Hz), 3.99 (s, 3H), 2.82 (t, 2H, J = 7.6 Hz), 2.07–2.01 (m, 5H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.3, 154.6, 139.6, 139.4, 136.2, 127.5, 124.5, 114.0, 105.4, 63.8, 59.9, 55.6, 32.7, 30.6, 21.0; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C15H19O4S, 295.1004; found, 295.0977.

3-(3-Formyl-7-methoxybenzo[b]thiophen-5-yl)propyl Acetate (17). To a solution of 16 (190 mg, 0.65 mmol) in anhydrous DMSO (6.0 mL) was added 2-iodoxybenzoic acid (>39%, 633 mg, 0.88 mmol), and the mixture was stirred at rt under N₂. After being stirred for 2.5 h, the mixture was treated with water and extracted with EtOAc (3 × 10 mL). The organic layer was washed with water, aq NaHCO₃, and brine, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane–EtOAc (3:1) to give 17 (190 mg, 100%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 10.12 (s, 1H), 8.29 (s, 1H), 8.10 (s, 1H), 6.73 (s, 1H), 4.12 (t, 2H, *J* = 6.7 Hz), 4.01 (s, 3H), 2.85 (t, 2H, *J* = 7.8 Hz), 2.09–2.01 (m, 5H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 185.6, 171.2, 154.0, 143.7, 141.7, 137.0, 136.7, 127.4, 116.5, 106.9, 63.8, 55.7, 32.8, 30.6, 21.0; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₁₅H₁₇O₄S, 293.0848; found, 293.0819.

General Synthetic Procedure for Direct Arylation of Aryl Bromide and BT. To a solution of 17 (251 mg, 0.86 mmol) in anhydrous toluene (8.0 mL) were added 4-bromo-2-methoxyphenyl acetate 26a (382 mg, 1.8 mmol), $Pd(OAc)_2$ (37 mg, 0.16 mmol), $PCy_3(65$ mg, 0.23 mmol), PivOH (81 mg, 0.79 mmol), and K₂CO₃ (325 mg, 2.4 mmol), and the mixture was stirred at 110 °C in an oil bath under N₂. After being stirred for 13.0 h, the mixture was treated with water and extracted with CH₂Cl₂ (3 × 10 mL). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane–EtOAc (4:1) to give 18 (175 mg, 65%).

3-[2-(4-Acetoxy-3-methoxyphenyl)-3-formyl-7-methoxybenzo-[b]thiophen-5-yl]propyl Acetate (**18**). A yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 10.07 (s, 1H), 8.20 (d, 1H, *J* = 1.4 Hz), 7.17–7.16 (m, 3H), 6.73 (d, 1H, *J* = 1.4 Hz), 4.13 (t, 2H, *J* = 6.6 Hz), 4.01 (s, 3H), 3.89 (s, 3H), 2.86 (t, 2H, *J* = 7.9 Hz), 2.37 (s, 3H), 2.10 (s, 3H), 2.08–2.03 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 186.9, 171.2, 168.8, 160.3, 153.6, 151.3, 141.9, 141.3, 138.7, 130.5, 130.5, 124.8, 123.3, 123.1, 117.0, 114.4, 106.8, 63.8, 56.1, 55.7, 32.9, 30.6, 21.0, 20.7; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₂₄H₂₅O₇S, 457.1321; found, 457.1307. pubs.acs.org/joc

3-[2-(3,4-Dimethoxyphenyl)-3-formyl-7-methoxybenzo[b]thiophen-5-yl]propyl Acetate (**19**). Compound 17 (15 mg, 0.052 mmol) and **26b** (46 mg, 0.21 mmol) were treated in the same manner as described above to produce **19** (13 mg, 56%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 10.10 (s, 1H), 8.19 (s, 1H), 7.16 (dd, 1H, J = 8.2, 1.8 Hz), 7.09 (d, 1H, J = 1.8 Hz), 6.84 (d, 1H, J = 8.2 Hz), 6.72 (s, 1H), 4.13 (t, 2H, J = 6.7 Hz), 4.01 (s, 3H), 3.97 (s, 3H), 3.94 (s, 3H), 2.86 (t, 2H, J = 7.8 Hz), 2.10–2.02 (m, 5H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 187.3, 171.4, 161.8, 153.7, 150.9, 149.3, 141.9, 139.1, 124.6, 124.5, 123.8, 117.0, 113.4, 111.4, 106.8, 64.0, 56.3, 55.9, 33.0, 30.8, 21.2; HRMS-FAB (m/z): [M + H]+ calcd for C₂₃H₂₅O₆S, 429.1372; found, 429.1382.

3-[3-Formyl-7-methoxy-2-(3,4,5-dimethoxyphenyl)benzo[b]thiophen-5-yl]propyl Acetate (20). Compound 17 (50 mg, 0.17 mmol) and 26c (149 mg, 0.60 mmol) were treated in the same manner as described above to produce 20 (67 mg, 85%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 10.10 (s, 1H), 8.19 (s, 1H), 6.79 (s, 2H), 6.73 (s, 1H), 4.13 (t, 3H, *J* = 6.6 Hz), 4.02 (s, 3H), 3.94 (s, 3H), 3.92 (s, 6H), 2.86 (t, 2H, *J* = 6.6 Hz), 2.10 (s, 3H), 2.08–2.03 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 187.1, 171.4, 161.5, 153.7, 153.6, 142.0, 139.8, 139.0, 130.4, 127.3, 124.7, 117.1, 108.0, 106.9, 63.9, 61.2, 56.5, 55.9, 33.0, 30.8, 21.2; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₂₄H₂₆O₇S, 458.1399; found, 458.1398.

3-[3-Formyl-7-methoxy-2-(3-nitrophenyl)benzo[b]thiophen-5yl]propyl Acetate (21). To dried KOAc were added 26d (70 mg, 0.43 mmol) in DMA (4.0 mL), 17 (82 mg, 0.41 mmol), and Pd(OAc)₂ (0.45 mL, 0.002 mmol, 4.4 mM solution on DMA), and the mixture was stirred at 150 $^\circ$ C in an oil bath for 8 h under N₂. The reaction mixture was quenched with water and adjusted to pH 5 by the addition of saturated NH₄Cl solution and extracted with EtOAc (3 \times 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (6:1) to give 21 (70 mg, 40%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃): δ 10.03 (s, 1H), 8.48 (dd, 1H, J = 1.7 and 1.9 Hz), 8.39 (ddd, 1H, J = 8.1, 1.9, 1.0 Hz), 8.21 (s, 1H), 7.92 (ddd, 1H, J = 7.7, 1.7, 1.0 Hz), 7.73 (dd, 1H, J = 8.1, 7.7 Hz), 6.77 (s, 1H), 4.14 (t, 2H, J = 6.3 Hz), 4.03 (s, 3H), 2.87 (t, 2H, J = 7.7 Hz), 2.10 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 185.7, 171.2, 157.0, 153.6, 148.3, 142.4, 138.5, 136.2, 133.6, 131.2, 130.0, 125.10, 125.07, 124.5, 117.0, 107.2, 63.7, 55.9, 32.9, 30.6, 21.0; HRMS-FAB (m/z): $[M + H]^+$ calcd for C21H20O6SN, 414.1011; found, 414.1009.

General Synthetic Procedure for Deprotection of Acetyl from Alcohol. To a solution of 18 (9.0 mg, 0.02 mmol) in anhydrous MeOH (1.0 mL) and THF (0.5 mL) was added K_2CO_3 (22 mg, 0.16 mmol), and the mixture was stirred at rt under N_2 . After being stirred for 1 h, the mixture was adjusted to pH 7 by the addition of saturated NH₄Cl solution and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane–EtOAc (1:1) to afford 4 (7.2 mg, 95%).

2-(4-Hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7methoxybenzo[b]thiophene-3-carbaldehyde (4). Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 8.19 (s, 1H), 7.12 (dd, 1H, J = 8.3, 2.1 Hz), 7.06 (d, 1H, J = 2.1 Hz), 7.04 (d, 1H, J = 8.3Hz), 6.75 (s, 1H), 5.91 (bs, 1H), 4.00 (s, 3H), 3.96 (s, 3H), 3.73 (t, 2H, J = 6.4 Hz), 2.88 (t, 2H, J = 7.8 Hz), 2.02–1.97 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 187.1, 161.8, 153.5, 147.6, 146.7, 142.5, 138.9, 129.9, 124.3, 124.2, 123.9, 116.8, 114.8, 112.7, 106.8, 62.3, 56.2, 56.7, 34.7, 32.8; HRMS-FAB (m/z): [M + H]⁺ calcd for C₂₀H₂₁O₅S, 373.1110; found, 373.1103.

2-(3,4-Dimethoxyphenyl)-5-(3-hydroxypropyl)-7-methoxybenzo-[b]thiophene-3-carbaldehyde (22). Compound 19 (11.2 mg, 0.026 mmol) was treated in the same manner as described above to produce 22 (10 mg, 99%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 10.06 (s, 1H), 8.20 (s, 1H), 7.16 (dd, 1H, *J* = 8.4, 1.8 Hz), 7.09 (d, 1H, *J* = 1.8 Hz), 6.99 (d, 1H, *J* = 8.4 Hz), 6.75 (s, 1H), 4.01 (s, 3H), 3.97 (s, 3H), 3.94 (s, 3H), 3.73 (dt, 2H, *J* = 6.6, 4.8 Hz), 2.88 (t, 2H, *J* = 7.2 Hz), 2.02–1.97 (m, 2H), 1.36 (t, 1H, *J* = 4.8 Hz); ¹³C{¹H} NMR (100 MHz, $CDCl_3$): δ 187.1, 161.6, 153.5, 150.7, 149.1, 142.5, 138.9, 129.9, 124.4, 124.3, 123.6, 116.8, 113.2, 111.2, 106.8, 62.3, 56.1, 56.1, 55.7, 34.7, 32.8; HRMS-FAB (m/z): $[M + H]^+$ calcd for $C_{21}H_{23}O_5S$, 387.1266; found, 387.1259.

5-(3-Hydroxypropyl)-7-methoxy-2-(3,4,5-trimethoxyphenyl)benzo[b]thiophene-3-carbaldehyde (23). Compound 20 (67 mg, 0.026 mmol) was treated in the same manner as described above to produce 23 (49 mg, 78%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 10.10 (s, 1H), 8.21 (s, 1H), 6.79 (s, 2H), 6.77 (s, 1H), 4.02 (s, 3H), 3.94 (s, 3H), 3.92 (s, 6H), 3.73 (m, 2H), 2.89 (t, 2H, J = 7.8 Hz), 2.03–1.96 (m, 2H), 1.31 (brs, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 187.1, 161.5, 153.7, 153.5, 142.7, 139.8, 138.9, 130.4, 127.3, 124.5, 117.0, 108.0, 107.0, 62.4, 61.2, 56.5, 55.9, 34.8, 33.0; HRMS-FAB (m/z): [M + H]⁺ calcd for C₂₂H₂₅O₆S, 417.1372; found, 417.1376.

5-(3-Hydroxypropyl)-7-methoxy-2-(3-nitrophenyl)benzo[b]thiophen-3-carbaldehyde (24). Compound 21 (10.4 mg, 0.025 mmol) was treated in the same manner as described above to produce 24 (9.9 mg, 100%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃): δ 10.03 (s, 1H), 8.47 (dd, 1H, *J* = 2.1, 1.5 Hz), 8.39 (ddd, 1H, *J* = 8.3, 2.1, 1.0 Hz), 8.21 (s, 1H), 7.91 (ddd, 1H, *J* = 7.8, 1.5, 1.0 Hz), 7.73 (dd, 1H, *J* = 8.3, 7.8 Hz), 6.80 (d, 1H, *J* = 1.0 Hz), 4.02 (s, 3H), 3.74 (t, 2H, *J* = 6.4 Hz), 2.90 (t, 2H, *J* = 7.8 Hz), 2.03–1.98 (m, 2H), 1.41 (s, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 185.7, 157.0, 153.6, 148.3, 143.1, 138.4, 136.2, 133.6, 131.1, 130.0, 125.06, 124.96, 124.5, 116.9, 107.4, 62.3, 55.8, 34.6, 32.8; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₁₉H₁₈NO₅S, 372.0906; found, 372.0922.

3-lodo-4-mercapto-5-methoxybenzaldehyde (28). To a solution of 5-iodovanillin 27 (1.0 g, 3.7 mmol) in water (7.0 mL) was added KOH (4.4 mL, 4.4 mmol, 1.0 M in water) at 0 °C. After stirring for 30 min, dimethylthiocarbamoyl chloride (456 mg, 4.1 mmol) in THF (3.0 mL) was added slowly to the mixture. After stirring for 2 h, the mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (4:1) to give 4-(N,N-dimethylthiocarbamoyloxy)-3-iodo-5-methoxybenzaldehyde (1.24 g, 92%) as a colorless solid. ¹H NMR (600 MHz, CDCl₃): δ 9.89 (s, 1H), 7.89 (d, 1H, J = 1.8 Hz), 8.39 (d, 1H, J = 1.8 Hz), 3.90 (s, 3H), 3.49 (s, 3H), 3.43 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 189.9, 184.9, 153.3, 148.4, 135.9, 134.0, 111.2, 93.9, 56.6, 43.7, 39.3; HRMS-FAB (*m*/*z*): $[M\ +\ H]^{+}$ calcd for $C_{11}H_{13}INO_{3}S,\ 365.9661;$ found, 365.9655. 4-(N,N-dimethylthiocarbamoyloxy)-3-iodo-5-methoxybenzaldehyde (935 mg, 2.6 mmol) was irradiated in a microwave oven for 15.0 min at 220 °C. The solution was cooled and directly chromatographed on silica gel, eluting with hexane-EtOAc (3:1) to give 4-(N,N-dimethylcarbamoylthio)-3-iodo-5-methoxybenzaldehyde (654 mg, 70%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 9.91 (s, 1H), 8.02 (d, 1H, J = 1.2 Hz), 7.42 (d, 1H, J = 1.2 Hz), 3.92 (s, 3H), 3.18 (s, 3H), 3.03 (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 190.3, 163.8, 161.2, 139.2, 134.4, 130.8, 111.5, 109.6, 57.0, 37.4, 37.2; HRMS-FAB (m/z): $[M + H]^+$ calcd for C₁₁H₁₃INO₃S, 365.9661; found, 365.9675. 4-(N,N-dimethyl-carbamoylthio)-3-iodo-5-methoxybenzaldehyde (131 mg, 0.36 mmol) was dissolved in KOH (0.16 mL, 0.79 mmol, 5.0 M in water) and MeOH (5.0 mL). The mixture was heated to reflux for 3.0 h, and the reaction mixture was cooled and the MeOH was evaporated. The mixture and the organic layers were combined, washed with brine, dried with Na2SO4, filtered, and concentrated. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (1:1) to afford 28 (38 mg, 36%, 60% brsm) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.82 (s, 1H), 7.84 (d, 1H, J = 1.6 Hz), 7.33 (d, 1H, J = 1.6 Hz), 5.27 (s, 1H), 3.97 (s, 3H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 189.9, 154.4, 137.8, 135.1, 135.0, 107.4, 96.5, 56.9; HRMS-FAB (m/z): $[M + H]^+$ calcd for C₈H₈IO₂S, 294.9290; found, 294.9284.

7-Methoxy-3-methylbenzo[b]thiophene-5-carbaldehyde (29). Compound 28 (36 mg, 0.12 mmol) was suspended in aq NaOH solution (0.11 mL, 0.21 mmol, 1.9 M) and water (1.0 mL). To the mixture were added allyl bromide (16 μ L, 0.19 mmol) in benzene (1.0 mL) and tetrabutylammonium bromide (4.1 mg, 0.013 mmol). After stirring at rt for 1.0 h, the mixture was poured into water and extracted with EtOAc (3×10 mL). The organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (3:1) to give 4-(allylthio)-3-iodo-5-methoxybenzaldehyde (33 mg, 79%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.87 (s, 1H), 7.97 (d, 1H, J = 1.2 Hz), 7.35 (d, 1H, J = 1.2 Hz), 5.85-5.75 (m, 1H), 4.94-4.92 (m, 1H), 4.90-4.89 (m, 1H), 3.96 (s, 3H), 3.63 (dd, 2H, J = 7.2, 0.8 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.2, 160.2, 137.7, 135.4, 134.8, 133.4, 117.7, 109.0, 108.7, 56.5, 38.3; HRMS-FAB (m/z): $[M + H]^+$ calcd for C11H12O2SI, 334.9603; found, 334.9614. To a solution of 4-(allylthio)-3-iodo-5-methoxybenzaldehyde (250 mg, 0.75 mmol) and Pd(PPh₃)₄ (44 mg, 0.038 mmol) in MeCN (20 mL) was added triethylamine (0.16 mL, 1.1 mmol) at rt. After stirring at 140 °C in an oil bath for 22 h, the mixture was cooled to rt and filtered with Celite. The residue was washed with EtOAc and the filtrate was evaporated. The resultant crude material was purified by column chromatography on silica gel, eluting with hexane-EtOAc (3:1) to give 29 (65 mg, 42%) as a colorless solid. NMR (600 MHz, CDCl₃): δ 10.07 (s, 1H), 7.81 (d, 1H, J = 1.2 Hz), 7.30 (d, 1H, J = 1.2 Hz), 7.17 (q, 1H, J = 1.8 Hz), 4.06 (s, 3H), 2.50 (d, 1H, J = 1.8 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 192.3, 155.3, 141.3, 135.8, 135.2, 133.6, 123.7, 120.5, 100.9, 56.1, 14.1; HRMS-FAB (m/z): M + H]⁺ calcd for $C_{11}H_{11}O_2S$, 207.0480; found, 207.0520.

7-Methoxy-2-[3-methoxy-4,5-bis(methoxymethoxy)pheny]]-3methylbenzo[b]thiophene-5-carbaldehyde (30). Compound 29 (67 mg, 0.32 mmol), 5-iodo-1-methoxy-2,3-bis(methoxymethoxy)benzene (58 mg, 0.16 mmol), silver oxide (38 mg, 0.16 mmol), sodium acetate (6.7 mg, 0.080 mmol), and Pd(OAc)₂ (0.15 mg, 0.4 mol %) were suspended in 1,1,1,3,3,3-hexafluoro-2-propanol (0.2 mL). The mixture was stirred at 35 °C in an oil bath for 18 h and filtered with Celite. The residue was washed with EtOAc and the filtrate was evaporated. The resultant crude material was purified by column chromatography on silica gel, eluting with hexane-EtOAc (4:1) to give 30 (36 mg, 51%, 100% brsm) as a colorless hard oil. ¹H NMR (600 MHz, $CDCl_3$): δ 10.08 (s, 1H), 7.82 (d, 1H, J = 1.2 Hz), 7.31 (d, 1H, J = 1.2 Hz), 7.01 (d, 1H, J = 1.8 Hz), 6.80 (d, 1H, J = 1.8 Hz), 5.25 (s, 2H), 5.21 (s, 2H), 4.07 (s, 3H), 3.90 (s, 3H), 3.66 (s, 3H), 3.53 (s, 3H), 2.54 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 192.3, 154.9, 153.6, 152.2, 142.8, 140.3, 135.8, 135.4, 134.2, 130.1, 128.6, 120.8, 111.2, 108.0, 101.4, 98.5, 95.7, 57.4, 56.5, 56.3, 56.2, 13.1; HRMS-FAB (m/z): $[M + H]^+$ calcd for C₂₂H₂₄O₇S, 433.1321; found, 433.1336.

5-(2-Hydroxyethyl)-7-methoxy-3-methyl-benzo[b]thiophene (31). To a solution of trimethylphosphonium bromide (225 mg, 0.63 mmol) in THF (2.0 mL) was added n-BuLi (0.5 mL, 0.80 mmol, 1.6 M in hexane) at 0 °C. After stirring for 30 min, aldehyde 29 (65 mg, 0.32 mmol) in THF (1.0 mL) was added to the mixture. After stirring at rt for 1 h, the reaction mixture was concentrated and purified by column chromatography on silica gel, eluting with hexane-EtOAc (20:1) to give 7-methoxy-3-methyl-5-vinylbenzo[b]thiophene (29 mg, 45%) as a colorless solid. This intermediate (29 mg, 0.14 mmol) was dissolved in 9-BBN (4 mL, 2.0 mmol, 0.5 M in THF) and the mixture was refluxed at 80 °C in an oil bath for 1 h. After cooling to rt, EtOH (4 mL), aq NaOH solution (4 mL, 7 M), and H₂O₂ (4 mL, 30%) were added to the reaction mixture at 0 °C. After stirring at 50 °C in an oil bath for 1 h, saturated aq NaHCO3 was added to the mixture, which was extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (3:1) to give 31 (19 mg, 60%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.19 (s, 1H), 7.05 (d, 1H, J = 0.8 Hz), 6.67 (s, 1H), 3.99 (s, 3H), 3.93 (t, 2H, J = 6.4 Hz), 3.00 (t, 2H, J = 6.4 Hz), 2.41 (d, 3H, I = 0.8 Hz), 1.52 (brs, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 154.8, 141.8, 136.1, 132.5, 127.4, 122.4, 114.8, 105.6, 64.0, 55.8, 39.8, 14.2; HRMS-FAB (m/z): $[M + H]^+$ calcd for C12H15O2S, 223.0793; found, 223.0813.

5-(2-Hydroxyethyl)-7-methoxy-2-(4-methoxyphenyl)-3-methylbenzo[b]thiophene (6). Compound 31 (19 mg, 0.085 mmol), 4-

iodoanisole (10 mg, 0.043 mmol), silver oxide (10 mg, 0.043 mmol), sodium acetate (1.7 mg, 0.021 mmol), and Pd(OAc)₂ (0.38 mg, 4 mol %) were suspended in 1,1,1,3,3,3-hexafluoro-2-propanol (0.043 mL). The mixture was stirred at 35 °C in an oil bath for 18 h and filtered through Celite. The residue was washed with EtOAc and the filtrate was evaporated. The resultant crude material was purified by column chromatography on silica gel, eluting with hexane—EtOAc (3:1) to give **6** (10 mg, 57%, 61% brsm) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, 2H, *J* = 8.8 Hz), 7.19 (s, 1H), 6.99 (d, 2H, *J* = 8.8 Hz), 6.67 (s, 1H), 4.00 (s, 3H), 3.94 (dt, 2H, *J* = 6.4, 4.8 Hz), 3.86 (s, 3H), 3.01 (t, 2H, *J* = 6.4 Hz), 2.42 (s, 3H), 1.46 (t, 1H, *J* = 4.8 Hz); ¹³C{¹H</sup> NMR (100 MHz, CDCl₃): δ 159.5, 154.4, 143.4, 139.0, 136.3, 131.0, 127.4, 127.1, 115.1, 114.2, 105.7, 64.1, 55.9, 55.5, 39.9, 29.8, 13.0; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₁₉H₂₁O₃S, 329.1211: found. 329.1210.

7-Methoxy-2-[3-methoxy-4,5-bis(methoxymethoxy)phenyl]-3methyl-5-(1-propenyl)-benzo[b]thiophene (32). To a solution of ethylphosphonium bromide (113 mg, 0.31 mmol) in THF (2.0 mL) was added PhLi (0.15 mL, 0.31 mmol, 2.0 M in dibutyl ether) at -78 °C. After stirring at rt for 15 min, aldehyde **30** (30 mg, 0.069 mmol) in THF (0.5 mL) was added to the mixture at -78 °C. After stirring for 15 min, the mixture was warmed to rt and then stirred for 30 min. To the reaction mixture were added conc. HCl (6.4 μ L, 0.076 mmol) and KOt-Bu (9.3 mg, 0.083 mmol) at -78 °C, the mixture was warmed to rt and stirred for 15 min. To the mixture were added H₂O₂ (35 µL), water, and EtOAc, the organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The residue was concentrated and purified by column chromatography on silica gel, eluting with hexane-EtOAc (3:1) to give 32 (25 mg, 80%, E/Z = 2:1) as a colorless solid. 32(E): ¹H NMR (400 MHz, CDCl₂): δ 7.23 (s, 1H), 7.00 (d, 1H, J = 1.6 Hz), 6.84 (s, 1H), 6.80 (d, 1H, J = 1.6 Hz), 6.55 (dd, 1H, J = 15.6, 1.2 Hz), 6.31 (dq, 1H, J = 15.6, 6.4 Hz), 5.24 (s, 2H), 5.19 (s, 2H), 4.012 (s, 3H), 3.88 (s, 3H), 3.65 (s, 3H), 3.52 (s, 3H), 2.45 (s, 3H), 1.93 (dd, 3H, J = 6.4, 1.6 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.3, 153.5, 151.0, 143.2, 138.7, 136.2, 135.4, 131.8, 130.9, 128.0, 126.2, 125.3, 113.0, 111.2, 108.0, 102.2, 98.5, 95.7, 57.3, 56.4, 56.2, 55.8, 18.6, 13.1; **32**(Z): ¹H NMR (400 MHz, $CDCl_3$): δ 7.26 (s, 1H), 7.01 (d, 1H, J = 2.0 Hz), 6.81 (d, 1H, J = 2.0 Hz) Hz), 6.74 (s, 1H), 6.59 (dd, 1H, J = 11.6, 2.0 Hz), 5.84 (dq, 1H, J = 11.6, 6.8 Hz), 5.24 (s, 2H), 5.19 (s, 2H), 4.005 (s, 3H), 3.88 (s, 3H), 3.65 (s, 3H), 3.52 (s, 3H), 2.46 (s, 3H), 1.97 (dd, 3H, J = 6.8, 2.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃). As many peaks overlapped with 32(E), different peaks are shown below. δ 153.9, 142.9, 135.6, 130.6, 126.6, 115.3, 105.8, 55.8, 14.9; HRMS-FAB (m/z): $[M + H]^{-1}$ calcd for C24H29O6S, 445.1685; found, 445.1724.

7-Methoxy-2-[3-methoxy-4,5-bis(hydroxy)phenyl]-3-methyl-5-(1-propenyl)-benzo[b]thiophene (5). To a solution of compound 32 (25 mg, 0.056 mmol, E/Z = 2:1) was added 1 M HCl (0.11 mL, 0.11mmol), and the mixture was stirred at rt for 48 h. The reaction mixture was neutralized with saturated NaHCO3 solution and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was concentrated and purified by preparative thin-layer chromatography on silica gel, eluting with hexane-EtOAc (3:1) to give 5 (20 mg. 100%, E/Z = 2:1) as a colorless solid. Cis-trans isomers were separated using recycle high-performance liquid chromatography (HPLC) (CHRAL ART Cellulose-SC, YMC: 250 mm long × 10 mm inner diameter, OD: 254 nm) and eluted with hexane-isopropanol (80:20) (flow rate: 4.0 mL/min) to give 5(E) (13 mg) and 5(Z) (6.0 mg). 5(E): ¹H NMR (600 MHz, CDCl₃): δ 7.23 (s, 1H), 6.83 (s, 1H), 6.81 (d, 1H, J = 1.8 Hz), 6.66 (d, 1H, J = 1.8 Hz), 6.53 (dd, 1H, J = 15.6, 1.8 Hz), 6.31 (dq, 1H, J = 15.6, 6.6 Hz), 5.52 (s, 1H), 5.44 (s, 1H), 4.01 (s, 3H), 3.91 (s, 3H), 3.65 (s, 3H), 2.43 (s, 3H), 1.93 (dd, 3H, J = 6.6, 1.8 Hz); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 154.3, 146.9, 143.9, 143.3, 138.9, 136.2, 132.5, 131.8, 127.6, 126.8, 126.1, 125.2, 113.0, 110.5, 105.1, 102.1, 56.4, 55.8, 18.6, 13.1; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₂₀H₂₁O₄S, 357.1161; found, 357.1177. 5(Z): ¹H NMR (600 MHz, CDCl₃): δ 7.25 (s, 1H), 6.82 (d, 1H, J = 1.8 Hz), 6.73 (s, 1H), 6.67 (d, 1H, J = 1.8 Hz), 6.59 (dd, 1H, J = 11.4, 1.8 Hz), 5.84 (dq, 1H, J = 11.4, 7.2 Hz), 5.51 (s, 1H), 5.42 (s, 1H), 4.00 (s, 3H),

3.92 (s, 3H), 2.44 (s, 3H), 1.98 (dd, 3H, J = 7.2, 1.8 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 153.9, 147.0, 143.9, 143.0, 138.9, 135.6, 132.5, 130.6, 127.6, 126.8, 126.6, 125.6, 115.3, 110.5, 105.8, 105.1, 56.4, 55.8, 14.9, 13.1; HRMS-FAB (m/z): [M + H]⁺ calcd for C₂₀H₂₁O₄S, 357.1161; found, 357.1177.

3-(2-(4-Acetoxy-3-methoxyphenyl)-3-(1,3-dioxolan-2-yl)-7methoxybenzo[b]thiophen-5-yl)propyl Acetate (33). To a solution of 18 (23 mg, 0.053 mmol) in anhydrous benzene (1.5 mL) were added p-TsOH·H₂O (1.0 mg, 5.3×10^{-3} mmol), MS 4 Å (31 mg), and ethylene glycol (44 μ L, 0.79 mmol), and the mixture was refluxed under N2. After being stirred for 1.0 h, the reaction mixture was diluted with EtOAc. The mixture was washed with water and brine, dried over Na2SO4, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (2:1) to afford 33 (27 mg, 100%) as a colorless oil. ¹H NMR (600 MHz, $CDCl_3$: δ 7.46 (s, 1H), 7.17 (d, 1H, J = 1.8 Hz), 7.14 (dd, 1H, J =8.1 and 1.8 Hz), 7.01 (d, 1H, J = 8.1 Hz), 6.63 (s, 1H), 5.91 (s, 1H), 4.32-4.30 (m, 2H), 4.16 (t, 2H, J = 6.5 Hz), 4.07-4.05 (m, 2H), 3.99 (s, 3H), 3.86 (s, 3H), 2.80 (t, 2H, J = 7.9 Hz), 2.35 (s, 3H), 2.08 (s, 3H), 2.06–2.01 (m, 2H); ${}^{13}C{}^{1}H{}$ NMR (150 MHz, CDCl₃): δ 171.2, 169.0, 153.9, 150.9, 145.9, 140.1, 139.7, 139.4, 132.2, 126.8, 126.1, 122.8, 122.3, 116.0, 114.2, 105.4, 100.4, 65.4, 64.0, 56.0, 55.6, 32.9, 30.6, 21.0, 20.7; HRMS-FAB (m/z): $[M + H]^+$ calcd for C26H29O8S, 501.1583; found, 501.1602.

3-[2-(4-Acetoxy-3-methoxyphenyl)-3-(acetoxymethyl)-7methoxybenzo[b]thiophen-5-yl]propyl Acetate (34). To a solution of 16 (134 mg, 0.53 mmol) in CH₂Cl₂ (10 mL) were added pyridine (90 µL, 0.98 mmol), DMAP (12 mg, 0.10 mmol), and Ac₂O (0.11 mL, 1.2 mmol), and the mixture was stirred at rt. After being stirred for 2.5 h, DMAP (15 mg, 0.12 mmol) and Ac₂O (45 µL, 0.48 mmol) were added and stirred for 30 min. The reaction mixture was poured into water and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (3:1) to afford 3-[3-(acetoxymethyl)-7-methoxybenzo[b]thiophen-5-yl]propyl acetate as a colorless oil (186 mg, 100%). ¹H NMR (600 MHz, CDCl₃): δ 7.46 (s, 1H), 7.22 (s, 1H), 6.66 (s, 1H), 5.31 (s, 2H), 4.13 (t, 2H, J = 6.5 Hz), 3.99 (s, 3H), 2.83 (t, 2H, J = 7.7 Hz), 2.11 (s, 3H), 2.08 (s, 3H), 2.06–2.01 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.2, 171.0, 154.6, 139.8, 139.6, 131.0, 127.2, 127.1, 113.7, 105.5, 63.8, 60.2, 55.7, 32.8, 30.6, 21.0; HRMS-FAB (m/z): [M]⁺ calcd for C₁₇H₂₀O₅S, 336.1031; found, 336.1030. 3-[3-(Acetoxymethyl)-7-methoxybenzo[b]thiophen-5-yl]propyl acetate (48 mg, 0.14 mmol) and 26a (179 mg, 0.84 mmol) were treated in the same manner as described for the above direct arylation to produce 34 (35 mg, 49%) as colorless needles. ¹H NMR (600 MHz, $CDCl_3$): δ 7.26 (s, 1H), 7.21 (d, 1H, J = 1.7 Hz), 7.16–7.12 (m, 2H), 6.67 (s, 1H), 5.32 (s, 2H), 4.13 (t, 2H, J = 6.5 Hz), 4.01 (s, 3H), 3.87 (s, 3H), 2.84 (t, 2H, J = 7.7 Hz), 2.35 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.06-2.01 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.9, 169.0, 154.2, 151.1, 145.0, 141.6, 140.1, 140.0, 132.3, 126.0, 123.1, 122.0, 114.3, 113.8, 105.8, 63.8, 58.5, 55.9, 55.7, 32.8, 30.6, 21.0, 20.7; HRMS-FAB (m/z): [M]⁺ calcd for C₂₆H₂₈O₈S, 500.1505; found, 500.1528.

3-[2-(4-Acetoxy-3-methoxyphenyl)-3-(hydroxymethyl)-7methoxybenzo[b]thiophen-5-yl]propyl Acetate (35). To a solution of 18 (16 mg, 0.039 mmol) in anhydrous THF (1.0 mL) was added sodium borohydride (2.1 mg, 0.055 mmol), and the mixture was stirred at 0 °C under N2. After being stirred for 2.0 h, the reaction mixture was adjusted to pH 7 by the addition of saturated NH4Cl solution and extracted with EtOAc (3 \times 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (1:1) to afford 35 (15 mg, 85%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃): δ 7.36 (s, 1H), 7.29 (d, 1H, J = 1.8 Hz), 7.21 (dd, 1H, J = 8.0, 1.8 Hz), 7.12 (d, 1H, J = 8.0Hz), 6.65 (s, 1H), 4.86 (d, 2H, J = 4.8 Hz), 4.14 (t, 2H, J = 6.4 Hz), 4.01 (s, 3H), 3.88 (s, 3H), 2.84 (t, 2H, J = 7.7 Hz), 2.35 (s, 3H), 2.07–2.02 (m, 5H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 171.3, 169.0, 154.2, 151.1, 143.3, 141.7, 140.0, 139.7, 132.7, 130.7, 125.7,

123.0, 121.9, 114.2, 113.9, 105.6, 63.7, 57.0, 56.0, 55.7, 32.8, 30.5, 21.0, 20.7; HRMS-FAB (m/z): [M]⁺ calcd for C₂₄H₂₆O₇S, 458.1399; found, 458.1398.

4-[3-(Hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxybenzo[b]thiophen-2-yl]-2-methoxyphenol (36). To a solution of 34 (16 mg, 0.033 mmol) in MeOH/THF (1:1, v/v, 1.0 mL) was added 2.0 M aq NaOH (0.14 mL, 0.28 mmol), and the mixture was stirred at rt. After being stirred for 3.5 h, the reaction mixture was adjusted to pH 4 by the addition of 1.0 M aq HCl and extracted with EtOAc $(3 \times 10 \text{ mL})$. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified using column chromatography on silica gel, eluting with hexane-EtOAc (1:10) and HPLC (MeOH/water 3:1, 8 mL/min) to afford 36 (9.1 mg, 73%) as a colorless oil. ¹H NMR (400 MHz, DMSO- d_6): δ 9.39 (s, 1H), 7.36 (s, 1H), 7.25 (d, 1H, J = 1.8 Hz), 7.34 (dd, 1H, J = 8.0, 1.8 Hz), 6.89 (d, 1H, J = 8.0 Hz), 6.80 (s, 1H), 5.24 (t, 1H, J = 5.2 Hz), 4.60 (d, 2H, J = 5.2 Hz), 4.52 (t, 1H, J = 5.2 Hz), 3.94 (s, 3H), 3.82 (s, 3H), 3.47 (dd, 2H, J = 11.7, 6.2 Hz), 2.75 (t, 2H, J = 7.7 Hz), 1.84–1.79 (m, 2H); ${}^{13}C{}^{1}H$ NMR (150 MHz, DMSO- d_6): δ 153.4, 147.7, 147.2, 142.2, 141.9, 140.5, 130.9, 124.7, 123.3, 122.0, 115.8, 114.7, 113.3, 105.8, 60.2, 55.7, 55.6, 55.3, 34.8, 32.4; HRMS-FAB (m/ z): [M]⁺ calcd for C₂₀H₂₂O₅S, 374.1188; found, 374.1183.

2-(4-Acetoxy-3-methoxyphenyl)-5-(3-acetoxypropyl)-7methoxybenzo[b]thiophene-3-carboxylic Acid (37). To a solution of 18 (22 mg, 0.048 mmol) in acetone (1.0 mL) was added $KMnO_4$ (0.6 mL, 0.24 mmol, 0.40 M in water), and the mixture was stirred at 40 °C in an oil bath. After stirring for 8.0 h, the acetone was evaporated. The mixture was adjusted to pH 8 by the addition of 1.0 M aq Na_2SO_3 and 2.0 M aq NaOH and extracted with CH_2Cl_2 (3 × 10 mL). The combined water layers were adjusted to pH 1-2 by the addition of 3.0 M aq HCl and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (1:2) and recrystallized to afford a mixture of carboxylic acids (11.3 mg) as colorless needles. ¹H NMR (400 MHz, CDCl₃, a mixture of two compounds, signals of the major are reported): δ 7.87 (s, 1H), 7.12– 7.09 (m, 2H), 6.98 (d, 1H, J = 8.3 Hz), 6.68 (s, 1H), 5.82 (s, 1H), 4.14 (t, 2H, J = 6.4 Hz), 4.00 (s, 3H), 3.91 (s, 3H), 2.85 (t, 2H, J = 7.8 Hz), 2.08-2.01 (m, 5H); HRMS-FAB (m/z): [M + Na]⁺ calcd for C22H22O7SNa, 453.0984; found, 453.0977. DMAP (0.31 mg, 2.6 \times 10⁻³ mmol) and pyridine/Ac₂O (1.9/2.2 µL) were added to the mixture (11.3 mg) and the reaction mixture was stirred at rt under N_2 . After stirring for 1.0 h, the reaction was guenched with water and extracted with CH_2Cl_2 (2 × 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (1:1) and recrystallized to afford a carboxylic acid 37 (6.8 mg, 30% for two steps) as colorless needles. ¹H NMR (600 MHz, $CDCl_3$: δ 7.87 (s, 1H), 7.17 (d, 1H, J = 1.8 Hz), 7.15 (dd, 1H, J =8.1, 1.8 Hz), 7.10 (d, 1H, J = 8.1 Hz), 6.69 (s, 1H), 4.13 (t, 2H, J = 6.5 Hz), 4.01 (s, 3H), 3.85 (s, 3H), 2.85 (t, 2H, J = 7.7 Hz), 2.35 (s, 3H), 2.08 (s, 3H), 2.07-2.02 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.4, 169.0, 167.6, 154.3, 153.7, 150.8, 141.1, 140.6, 140.3, 132.7, 125.6, 122.7, 122.4, 121.9, 117.0, 114.3, 106.1, 64.0, 56.2, 55.9, 33.1, 30.8, 21.2, 20.9; HRMS-FAB (m/z): [M]⁺ calcd for C24H24O8S, 472.1192; found, 427.1175.

Methyl 2-(4-Acetoxy-3-methoxyphenyl)-5-(3-acetoxypropyl)-7methoxybenzo[b]thiophene-3-carboxylate (**38**). K₂CO₃ (6.9 mg, 0.050 mmol) and MeI (1.0 mL, 0.040 M solution in anhydrous DMF) were added to compound **37** (6.8 mg, 0.015 mmol) and the reaction mixture was stirred at rt using a microvial. After stirring for 1.5 h, the reaction was quenched with water and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane–EtOAc (2:1) and HPLC (MeOH/water 6:1, 8 mL/min) to afford **38** (3.3 mg, 45%) as colorless needles. ¹H NMR (600 MHz, CDCl₃): δ 7.74 (s, 1H), 7.12 (s, 1H), 7.088 (s, 1H), 7.087 (s, 1H), 6.67 (s, 1H), 4.14 (t, J = 6.5 Hz), 4.00 (s, 3H), 3.86 (s, 3H), 3.76 (s, 3H), 2.84 (t, 2H, J = 7.7 Hz), 2.35 (s, 3H), 2.09 (s, 3H), 2.07–2.02 (m, 2H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 171.2, 168.9, 164.6, 155.4, 153.6, 151.3, 150.6, 140.7, 140.23, 140.18, 132.9, 125.5, 123.2, 122.5, 122.0, 116.3, 113.7, 105.9, 63.9, 56.0, 55.7, 51.6, 32.9, 30.6, 21.0, 20.7; HRMS-FAB (m/z): $[M + H]^+$ calcd for $C_{25}H_{27}O_8S$, 487.1427; found, 487.1422.

3-[2-(4-Acetoxy-3-methoxyphenyl)-7-methoxy-3-(methylcarbamoyl)benzo[b]thiophen-5-yl]propyl Acetate (39). To a solution of 37 (13 mg, 0.026 mmol) in MeCN (3.0 mL) were added N,N-diisopropylethylamine (11 µL, 0.066 mol) and HBTU (12 mg, 0.029 mmol), and the mixture was stirred at rt for 5 min. To the mixture was added 40% methylamine (6.1 mL, 0.078 mmol). After stirring for 3.0 h, the mixture was treated with water and extracted with CH_2Cl_2 (3 × 10 mL). The organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (2:1) to give 39 (10 mg, 78%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (s, 1H), 7.20 (s, 1H), 7.18 (dd, 1H, J = 8.0 and 2.4 Hz), 7.11 (d, 1H, J = 8.0 Hz), 6.65 (d, 1H, J = 0.8 Hz), 5.57 (q, 1H, J = 4.8 Hz), 4.12 (t, 2H, J = 6.4 Hz), 4.00 (s, 3H), 3.86 (s, 3H), 2.89 (d, 3H, J = 4.8 Hz), 2.81 (t, 2H, J = 7.2 Hz), 2.35 (s, 3H), 2.08 (s, 3H), 2.02 (m, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.4, 169.2, 166.2, 154.0, 151.5, 143.4, 140.7, 140.61, 140.56, 132.1, 129.1, 125.7, 123.5, 121.5, 115.8, 113.2, 106.2, 64.0, 56.2, 55.9, 32.9, 30.8, 26.8, 21.2, 20.8; HRMS-FAB (m/z): $[M + H]^+$ calcd for C25H28NO7S, 486.1586; found, 486.1568.

4-[3-(1-Hydroxyethyl)-5-(3-hydroxypropyl)-7-methoxybenzo[b]thiophen-2-yl]-2-methoxyphenol (40). MeMgBr (0.35 mL, 0.49 mmol, 1.4 M in THF/toluene (3:1)) was added dropwise to a solution of 4 (42 mg, 0.11 mmol) in THF (1.5 mL) at 0 °C. After stirring for 3 h, saturated NH₄Cl solution was added to the reaction mixture and extracted with EtOAc (3 \times 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (1:1) to EtOAc only to give 40 (16 mg, 37%) as a colorless solid. ¹H NMR (600 MHz, $CDCl_3$): δ 7.69 (s, 1H), 6.99-6.94 (m, 3H), 6.66 (s, 1H), 5.72 (s, 1H), 5.29 (dq, 1H, J = 6.6, 2.4 Hz), 3.99 (s, 3H), 3.92 (s, 3H), 3.74 (dt, 2H, J = 5.4, 5.4 Hz), 2.86 (t, 2H, J = 7.8 Hz), 1.99 (m, 2H), 1.86 (d, 1H, J = 2.4 Hz), 1.73 (d, 3H, J = 6.6 Hz), 1.31 (t, 1H, J = 5.4 Hz); ${}^{13}C{}^{1}H$ NMR (100 MHz, CD₃OD): δ 155.4, 148.9, 148.2, 141.6, 141.4, 141.0, 135.9, 127.2, 126.9, 123.9, 117.7, 116.3, 114.5, 106.1, 66.2, 62.3, 56.5, 56.0, 35.9, 33.8, 23.3; HRMS-FAB (m/z): $[M]^+$ calcd for $C_{21}H_{24}O_5S$, 388.1344; found, 388.1358.

Methyl (E)-3-[2-(4-Hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxybenzo[b]thiophen-3-yl]acrylate (41). To a mixture of (methoxycarbonylmethyl)triphenylphosphonium bromide (76 mg, 0.18 mmol) and potassium tert-butoxide (25 mg, 0.21 mmol) was added 4 (40 mg, 0.11 mmol) in CH₂Cl₂ (6.0 mL). After refluxing at 60 °C in an oil bath for 2 h, the mixture was treated with water and extracted with CH_2Cl_2 (3 × 10 mL). The organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (2:1) to give 41 (38 mg, 78%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, 1H, J = 16.0 Hz), 7.49 (s, 1H), 7.06-7.00 (m, 3H), 6.71 (s, 1H), 6.53 (d, 1H, J = 16.0 Hz), 5.80 (brs, 1H), 4.01 (s, 3H), 3.93 (s, 3H), 3.81 (s, 3H), 3.74 (t, 2H, J = 6.0 Hz), 2.87 (t, 2H, J = 7.6 Hz), 1.98 (m, 2H), 1.36 (brs, 1H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 168.1, 154.2, 148.5, 146.73, 146.67, 141.3, 140.1, 138.7, 126.5, 125.9, 125.5, 123.7, 119.0, 115.1, 114.9, 112.7, 106.0, 62.4, 56.2, 55.9, 51.8, 35.0, 33.1; HRMS-FAB (m/z): $[M + H]^+$ calcd for C₂₃H₂₄O₆S, 428.1294; found, 428.1272.

Methyl (E)-3-[5-(3-Hydroxypropyl)-7-methoxy-2-(3,4,5trimethoxyphenyl)benzo[b]thiophen-3-yl]acrylate (42). To a solution of 23 (49 mg, 0.12 mmol) in CH_2Cl_2 (10 mL) were added (methoxycarbonylmethyl)triphenylphosphonium bromide (76 mg, 0.18 mmol) and potassium carbonate (25 mg, 0.21 mmol). After refluxing at 60 °C in an oil bath for 19 h, the mixture was treated with water and extracted with CH_2Cl_2 (3 × 10 mL). The organic layer was washed with brine, dried over Na_2SO_4 , and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane–EtOAc (1:1) to give **42** (51 mg, 93%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, 1H, *J* = 16.4 Hz), 7.50 (s, 1H), 6.74 (s, 2H), 6.73 (s, 1H), 6.55 (d, 1H, *J* = 16.4 Hz), 4.02 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H), 3.82 (s, 3H), 3.74 (dt, 2H, *J* = 6.0, 6.0 Hz), 2.88 (t, 2H, *J* = 7.6 Hz), 1.99 (m, 2H), 1.34 (t, 1H, *J* = 6.0 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.9, 154.2, 153.4, 148.0, 141.4, 140.0, 138.9, 138.6, 129.2, 126.9, 125.6, 119.3, 115.2, 107.5, 106.2 62.4, 61.1, 56.4, 55.9, 51.9, 34.9, 33.1; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₂₅H₂₈O₇S, 472.1556; found, 472.1534.

Ethyl 3-(3-Formyl-7-methoxybenzo[b]thiophen-5-yl)propanoate (43). To a stirred solution of 13 (55 mg, 0.16 mmol) in dry isopropyl alcohol (2.0 mL) was added 1.0 M hydrochloric acid/diethyl ether (0.26 mL, 0.26 mmol), and the mixture was stirred at 55 $^\circ C$ in an oil bath for 24 h under N2. The reaction mixture was cooled to rt, adjusted to pH 7-8 by the addition of saturated NaHCO3 solution, and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was chromatographed on silica gel, eluting with hexane-EtOAc (2:1) to give ethyl 3-[3-(hydroxymethyl)-7methoxybenzo [b] thiophen-5-yl] propanoate (41 mg, 88%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (s, 1H), 7.31 (s, 1H), 6.68 (s, 1H), 4.90 (d, 2H, J = 5.7 Hz), 4.15 (dd, 2H, J = 14.2, 7.3 Hz), 3.99 (s, 3H), 3.09 (t, 2H, J = 7.8 Hz), 2.70 (t, 2H, J = 7.8 Hz), 1.63 (t, 1H, J = 5.7 Hz), 1.25 (t, 3H, J = 7.3 Hz); HRMS-FAB (m/z): $[M + H]^+$ calcd for $C_{15}H_{19}O_4S$, 295.1004; found, 295.1015. To a solution of ethyl 3-[3-(hydroxymethyl)-7-methoxybenzo[b]thiophen-5-yl]propanoate (41 mg, 0.14 mmol) in anhydrous DMSO (1.0 mL) was added 2-iodoxybenzoic acid (72 mg, 0.26 mmol), and the mixture was stirred at rt under N2. After being stirred for 1.5 h, the mixture was treated with water and extracted with EtOAc (3×10 mL). The organic layer was washed with water, aq NaHCO₃, and brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (8:1) to give 43 (40 mg, 100%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 10.1 (s, 1H), 8.28 (s, 1H), 8.10 (s, 1H), 6.77 (s, 1H), 4.15 (q, 2H, J = 7.2 Hz), 4.00 (s, 3H), 3.11 (t, 2H, J = 7.8 Hz), 2.71 (t, 2H, J = 7.8 Hz), 1.26 (t, 3H, J = 7.2 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 186.6, 172.8, 153.9, 143.7, 141.1, 137.0, 136.7, 127.6, 116.4, 106.9, 60.5, 55.7, 36.4, 31.5, 14.2; HRMS-FAB (m/z): [M + H]⁺ calcd for C₁₅H₁₇O₄S, 293.0848; found, 293.0860.

Ethyl 3-[2-(4-Acetoxy-3-methoxyphenyl)-3-formyl-7methoxybenzo[b]thiophen-5-yl]propyl Acetate (44). To a solution of 43 (79 mg, 0.275 mmol) in anhydrous toluene (2.0 mL) were added 26a (134 mg, 0.55 mmol), Pd(OAc)₂ (14.3 mg, 0.055 mmol), PCy₃BF₄ (30.5 mg, 0.083 mmol), PivOH (28.3 mg, 0.248 mmol), and K_2CO_3 (104 mg, 0.74 mmol), and the mixture was stirred at 110 °C in an oil bath under N2. After being stirred for 24 h, the mixture was treated with water and extracted with CH_2Cl_2 (3 × 10 mL). The organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (5:1-3:1) to give 44 (99 mg, 80%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃): δ 10.07 (s, 1H), 8.21 (d, 1H, J = 1.0 Hz), 7.172-7.166 (m, 2H), 7.15 (s, 1H), 6.77 (d, 1H, J = 1.0 Hz), 4.16 (dd, 2H, J = 14.3, 7.0 Hz), 4.00 (s, 3H), 3.89 (s, 3H), 3.12 (t, 2H, J = 7.9 Hz), 2.72 (t, 2H, J = 7.7 Hz), 2.37 (s, 3H), 1.27 (t, 3H, J = 7.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 186.8, 172.9, 168.8, 160.3, 153.5, 151.3, 141.33, 141.25, 138.7, 130.5, 124.9, 123.3, 123.1, 116.8, 114.4, 106.9, 60.5, 56.1, 55.7, 36.4, 31.7, 20.7, 14.3; HRMS-FAB (m/z): $[M + H]^+$ calcd for C₂₄H₂₅O₇S, 457.1321; found, 457.1337.

Diethyl 3,3'-[3,3'-Diformyl-7,7'-dimethoxy-(2,2'-bibenzo[b]thiophene)-5,5'-diyl]dipropionate (45). To a solution of 43 (11 mg, 0.038 mmol) in anhydrous toluene (1.0 mL) were added ethyl 3-(2-bromo-3-formyl-7-methoxybenzo[b]thiophen-5-yl)propanoate (22 mg, 0.058 mmol), Pd(OAc)₂ (1.6 mg, 0.0070 mmol), PCy₃ (2.5 mg, 0.0090 mmol), PivOH (3.8 mg, 0.037 mmol), and K₂CO₃ (19 mg, 0.14 mmol), and the mixture was stirred at 110 °C in an oil bath under N₂. After being stirred for 24 h, the mixture was treated with water and extracted with CH₂Cl₂ (3 × 10 mL). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane–EtOAc (4:1) and HPLC (acetone/water 4:1, 8 mL/min) to give **45** (6.1 mg, 26%) as a brown oil. ¹H NMR (400 MHz, CDCl₃): δ 10.07 (s, 2H), 8.24 (s, 2H), 6.84 (s, 2H), 4.17 (q, 4H, *J* = 7.2 Hz), 4.02 (s, 6H), 3.14 (t, 4H, *J* = 7.6 Hz), 2.73 (t, 4H, *J* = 7.6 Hz), 1.28 (t, 6H, *J* = 7.2 Hz); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 185.3, 172.7, 153.4, 146.9, 142.1, 138.0, 134.4, 126.8, 117.0, 107.8, 60.3, 55.8, 36.3, 31.6, 14.3; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₃₀H₃₁O₈S₂, 583.1460; found, 583.1452.

3-[2-(4-Acetoxy-3-methoxyphenyl)-3-(1,3-dioxolan-2-yl)-7-methoxybenzofuran-5-yl]propyl Acetate (52). To a solution of 51 (10 mg, 0.023 mmol) in toluene (1.5 mL) were added p-TsOH·H₂O (1.2 mg, 6.9 μ M) and ethylene glycol (19 μ L, 0.34 mmol), and the mixture was refluxed in an oil bath using a Dean-Stark apparatus. After being refluxed for 9 h, the mixture was treated with water and extracted with EtOAc (3 \times 10 mL). The organic layer was washed with saturated NaHCO₃ solution and brine, dried over MgSO₄, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (2:1) to give 52 (8.3 mg, 75%) as a colorless oil. ¹H NMR (600 MHz, CDCl₃): δ 7.43 (d, 1H, J = 1.8 Hz), 7.37 (dd, 1H, J = 7.8, 1.8 Hz), 7.18 (d, 1H, J = 1.2 Hz), 7.13 (d, 1H, J = 7.8 Hz), 6.66 (d, 1H, J = 1.2 Hz), 6.06 (s, 1H), 4.32–4.29 (m, 2H), 4.14 (t, 2H, J = 6.6 Hz), 4.12-4.09 (m, 2H), 4.01 (s, 3H), 3.91 (s, 3H),2.76 (t, 2H, J = 7.8 Hz), 2.34 (s, 3H), 2.08 (s, 3H), 2.04-1.99 (m, 2H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 171.2, 168.9, 155.0, 151.2, 144.9, 142.4, 140.6, 137.2, 128.8, 128.6, 123.0, 121.0, 113.0, 112.9, 112.3, 107.8, 99.8, 65.5, 64.0, 56.13, 56.10, 32.7, 30.8, 21.0, 20.7; HRMS-FAB (*m*/*z*): [M + H]⁺ calcd for C₂₆H₂₉O₉, 485.1812; found. 485.1803.

Experimental Procedure for Known Compounds. 4-(N,N-Dimethyl-carbamoylthio)-3-methoxybenzaldehyde (8).90 A solution of dimethylthiocarbamoyl chloride (0.17 mL, 0.66 mmol, 3.9 M in THF) was slowly added to a stirred, ice-cooled solution of vanillin 7 (101 mg, 0.66 mmol) and KOH (0.66 mL, 0.66 mmol, 1.0 M in water) at 0 °C. The formed suspension was stirred in the cooling bath for 15 min and next at room temperature. After being stirred for 2.5 h, a solution of dimethylthiocarbamoyl chloride (0.08 mL, 0.31 mmol, 3.9 M in THF) was slowly added to the stirred solution. After being stirred for 30 min, the mixture was poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel, eluting with hexane-EtOAc (3:1) to give 4-(N,N-dimethylthiocarbamoyloxy)-3-methoxybenzaldehyde(136 mg, 86%) along with recovered starting material 7 (5 mg, 5%). Colorless solid. ¹H NMR (600 MHz, $CDCl_3$): δ 9.96 (s, 1H), 7.51-7.49 (m, 2H), 7.23 (dd, 1H, J = 6.5 and 0.7 Hz), 3.90 (s, 3H), 3.47 (s, 3H), 3.38 (s, 3H); 4-(N,N-dimethylthiocarbamoyloxy)-3methoxybenzaldehyde (2.30 g, 9.6 mmol) in diphenyl ether (15.0 mL) was irradiated in a microwave oven for 15.0 min at 220 °C. The solution was cooled and directly chromatographed on silica gel to give 8 (2.22 g, 97%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 10.00 (s, 1H), 7.70 (d, 1H, J = 7.8 Hz), 7.48–7.45 (m, 2H), 3.95 (s, 3H), 3.15 (s, 3H), 3.03 (s, 3H).

4-Mercapto-3-methoxybenzaldehyde (9).^{9a} Compound 8 (2.22 g, 9.3 mmol) was dissolved in KOH (4.1 mL, 20.5 mmol, 5.0 M in water) and MeOH (20.0 mL). The mixture was heated to reflux for 1.0 h, and the reaction mixture was cooled and the MeOH was evaporated. The mixture and the organic layers were combined, washed with brine, dried with Na₂SO₄, filtered, and concentrated. The residue was chromatographed on silica gel, eluting with hexane–EtOAc (1:1) to afford 9 (1.55 g, 99%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃): δ 9.89 (s, 1H), 7.40 (dd, 1H, J = 6.9, 1.4 Hz), 7.36–7.34 (m, 2H), 4.17 (s, 1H), 3.98 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 189.9, 154.4, 137.8, 135.1, 135.0, 107.4, 96.5, 56.9; HRMS-FAB (m/z): [M + H]⁺ calcd for C₈H₈IO₂S, 294.9290; found, 294.9284.

Methyl (2R,3R)-2-(4-Hydroxy-3-methoxyphenyl)-7-methoxy-5-[(E)-3-methoxy-3-oxoprop-1-en-1-yl]-2,3-dihydrobenzofuran-3carboxylate (47).¹⁴ To a solution of methyl ferulate 46 (2.1 g, 10.0 mmol) in benzene/methanol = 2:1 (30 mL) was added Ag₂O (1.4 g, 6.0 mmol), and the mixture was stirred at room temperature. After the reaction was complete, the mixture was filtered, concentrated, and purified by chromatography on silica gel, eluting with hexane–EtOAc (3:1) to afford 47 (1.00 g, 48%) as a colorless solid. ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, 1H, J = 16.2 Hz), 7.19 (s, 1H), 7.02, (s, 1H), 6.93–6.89 (m, 3H), 6.32 (d, 1H, J = 16.2 Hz), 6.11 (d, 1H, J = 7.8 Hz), 5.64 (s, 1H), 4.35 (d, 1H, J = 7.8 Hz), 3.92 (s, 3H), 3.88 (s, 3H), 3.84 (s, 3H), 3.81 (s, 3H).

Methyl (E)-2-(4-Acetoxy-3-methoxyphenyl)-7-methoxy-5-(3-methoxy-3-oxoprop-1-en-1-yl)benzofuran-3-carboxylate (48).¹⁴ To a solution of 47 (1.0 g, 2.4 mmol) in pyridine (2.8 mL) were added Ac₂O (2.8 mL) and DMAP (29 mg, 0.24 mmol), and the mixture was stirred at room temperature. After the reaction was complete, the mixture was poured into ice cold water and extracted with EtOAc. The organic layer was washed with 1 N HCl, sat. NaHCO₃, water, and brine, dried over MgSO4, and evaporated. The obtained compound was dissolved in benzene (43 mL), and to the mixture was added DDQ (1.36 g, 6.0 mmol). After refluxing for 84 h, the mixture was evaporated. The residue was dissolved in EtOAc, washed with sat. NaHCO3 and brine, dried over MgSO4, concentrated, and purified by chromatography on silica gel, eluting with hexane-EtOAc (3:1) to afford 48 (533 mg, 50% from 47) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (s, 1H), 7.82 (d, 1H, J = 16.0 Hz), 7.81 (s, 1H), 7.68 (d, 1H, J = 8.0 Hz), 7.15 (d,1H, J = 8.0 Hz), 7.04 (s, 1H), 6.47 (d, 1H, J = 16.0 Hz), 4.06 (s, 3H), 3.97 (s, 3H), 3.94 (s, 3H), 3.84 (s, 3H), 2.35 (s, 3H).

Methyl 2-[4-(Benzyloxy)-3-methoxyphenyl]-7-methoxy-5-(3-methoxy-3-oxopropyl)-benzofuran-3-carboxylate (49).¹⁴ To a solution of 48 (550 mg, 1.2 mmol) in MeOH (30 mL) were added Pd-C and p-TsOH (50 mg, 0.26 mmol) under a N₂ atmosphere. After charging with H₂, the mixture was stirred at 40 °C in an oil bath overnight and filtered with Celite. To the filtrate was added sat. NaHCO3, and the mixture was stirred at room temperature for 1 h. After evaporation, the residue was extracted with EtOAc, washed with brine, dried over MgSO₄, and concentrated. The obtained compound was dissolved in 2-butanone (50 mL) and to the solution were added BnBr (154 μ L, 1.3 mmol) and K₂CO₃ (224 mg, 1.6 mmol). The mixture was refluxed overnight, to which water (100 mL) was added, extracted with EtOAc, washed with brine, dried over MgSO₄, and concentrated. The residue was purified by chromatography on silica gel, eluting with hexane-EtOAc (3:1) to afford 49 (534 mg, 87% from 48) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, 1H, J = 1.6 Hz) 7.60 (dd, 1H, J = 8.8, 1.6 Hz), 7.46-7.43 (m, 3H), 7.38 (t, 2H, J = 8.0 Hz, 7.31 (t, 1H, I = 8.0 Hz), 6.96 (d, 1H, I = 8.8 Hz), 6.70 (s, 1H), 5.24 (s, 2H), 4.01 (s, 3H), 3.98 (s, 3H), 3.94 (s, 3H), 3.70 (s, 3H), 3.06 (t, 2H, J = 8.0 Hz), 2.71 (t, 2H, J = 8.0 Hz).

2-[4-(Benzyloxy)-3-methoxyphenyl]-5-(3-hydroxypropyl)-7-methoxybenzofuran-3-carbaldehyde (**50**).¹⁴ To a solution of **49** (100 mg, 0.20 mmol) in THF (10 mL) was added LiAlH₄ (1.0 M solution in THF) (1.0 mL, 1.0 mmol) at -5 °C and the mixture was stirred for 10 min and then warmed to room temperature. After the reaction was complete, aqueous THF and sat. NH₄Cl were added. The mixture was extracted with EtOAc, washed with brine, dried over MgSO₄, and concentrated. The obtained compound was dissolved in EtOAc (15 mL) at 40 °C in an oil bath, and to the solution was added MnO₂ (3.0 g, 35 mmol). The mixture was stirred at room temperature for 20 min, filtered, and concentrated. The residue was purified by chromatography on silica gel, eluting with hexane–EtOAc (1:1) to afford **50** (78 mg, 88% from **49**) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 10.28 (s, 1H), 7.76 (s, 1H), 7.48–7.32 (m, 7H), 7.02 (d, 1H, *J* = 8.0 Hz), 6.76 (s, 1H), 5.26 (s, 2H), 4.03 (s, 3H), 3.99 (s, 3H), 3.72 (dt, 2H, *J* = 4.8, 5.6 Hz), 2.83 (t, 2H, *J* = 8.0 Hz), 1.97 (m, 2H).

Salvinal (1).¹⁴ To a solution of **50** (14 mg, 0.030 mmol) in CH₂Cl₂ was added TiCl₄ (0.3 mL, 2.7 mmol), and the mixture was stirred for 20 min at room temperature. The reaction was quenched with ice and 3 N HCl, and stirred for 30 min. The mixture was extracted with EtOAc, washed with sat. NaHCO₃, water, and brine, dried over MgSO₄, and concentrated. The residue was purified by chromatography on silica gel, eluting with hexane–EtOAc (1:1) to afford 1 (10 mg, 90%) as a pale yellow solid. ¹H NMR (600 MHz, CDCl₃): δ

10.29 (s, 1H), 7.67 (d, 1H, J = 1.2 Hz), 7.40 (dd, 1H, J = 8.4, 2.4 Hz), 7.38 (d, 1H, J = 2.4 Hz), 7.08 (d, 1H, J = 8.4 Hz), 6.76 (d, 1H, J = 1.2 Hz), 5.98 (s, 1H), 4.03 (s, 3H), 4.01 (s, 3H), 3.72 (t, 2H, J = 6.0 Hz), 2.84 (t, 2H, J = 7.8 Hz), 1.94 (m, 2H).

3-[2-(4-Acetoxy-3-methoxyphenyl)-3-formyl-7-methoxybenzofuran-5-yl]propyl Acetate (51).¹⁶ To a solution of 1 (10 mg, 0.028 mmol) in CH₂Cl₂ (0.5 mL) were added pyridine (7.9 μ L, 0.098 mmol), DMAP (1.7 mg, 0.014 mmol), and Ac2O (8.0 µL, 0.084 mmol), and the mixture was stirred at rt. After being stirred for 1 h, the reaction mixture was poured into water and extracted with EtOAc $(3 \times 10 \text{ mL})$. The combined organic layers were washed with 1 N HCl, saturated NaHCO3 solution, water, and brine, dried over MgSO₄, and concentrated in vacuo to give 51 (12 mg, 98%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 10.33 (s, 1H), 7.68 (d, 1H, I = 1.2 Hz), 7.46-7.43 (m, 2H), 7.22 (d, 1H, I = 8.4 Hz),6.75 (d, 1H, J = 1.2 Hz), 4.12 (t, 2H, J = 6.8 Hz), 4.04 (s, 3H), 3.95 (s, 3H), 2.81 (t, 2H, J = 7.6 Hz), 2.37 (s, 3H), 2.09 (s, 3H), 2.07-2.00 (m, 2H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 186.6, 171.2, 168.6, 164.7, 151.7, 144.7, 142.2, 142.0, 139.5, 127.2, 127.1, 123.6, 122.2, 117.7, 113.7, 112.7, 109.1, 63.8, 56.3, 56.1, 32.6, 30.7, 21.0, 20.7; HRMS-FAB (m/z): $[M + H]^+$ calcd for $C_{24}H_{25}O_{8}$, 441.1549; found, 441.1551.

Antiproliferative Activity Assay. The cells were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium supplemented with 25 mM N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES), 0.25% sodium bicarbonate, 10% fetal bovine serum, and 1× antibiotic-antimycotic (Gibco). Freshly trypsinized cell suspensions were seeded in 96-well microtiter plates at densities of 4000-11 000 cells per well, with compounds added from DMSO stock solutions and then successively diluted into the medium. The highest concentration of DMSO in the cultures (0.4% v/v) was used without the effect on cell growth under the culture conditions. After 72 h in culture, the attached cells were fixed in cold 10% trichloroacetic acid and then stained with 0.04% sulforhodamine B. The absorbance at 515 nm was measured using a microplate reader (ELx800, BioTek) after solubilizing the bound dye. The mean IC_{50} is the concentration of the agent that reduced the cell growth by 50% under the experimental conditions and is the average from at least three independent and similar determinations.

Flow Cytometric Analysis. KB-VIN and MDA-MB-231 (7×10^4 cells/well) cells were seeded in a 12-well plate 24 h prior to treatment with the compound for 24 or 48 h. 1 was used at 7.5 μ M ($1 \times IC_{50}$) or 22.5 μ M ($3 \times IC_{50}$) for MDA-MB-231 and 5 μ M ($1 \times IC_{50}$) or 15 μ M ($3 \times IC_{50}$) for KB-VIN. 4 was used at 0.95 μ M ($1 \times IC_{50}$) or 2.85 μ M ($3 \times IC_{50}$) for MDA-MB-231 and 0.57 μ M ($1 \times IC_{50}$) or 1.71 μ M ($3 \times IC_{50}$) for MDA-MB-231 and 5.7 μ M ($1 \times IC_{50}$) or 2.5.5 μ M ($3 \times IC_{50}$) for MDA-MB-231 and 5 μ M ($1 \times IC_{50}$) or 15 μ M ($3 \times IC_{50}$) for MDA-MB-231 and 5 μ M ($1 \times IC_{50}$) or 15 μ M ($3 \times IC_{50}$) for MDA-MB-231 and 5 μ M ($1 \times IC_{50}$) or 15 μ M ($3 \times IC_{50}$) for MDA-MB-231 and 5 μ M ($1 \times IC_{50}$) or 15 μ M ($3 \times IC_{50}$) for MDA-MB-231 or 5.8 μ M ($1 \times IC_{50}$) or 15 μ M ($3 \times IC_{50}$) for MDA-MB-231 or KB-VIN, respectively. Combretastatin A-4 (CA-4) was used at 0.1 μ M ($3 \times IC_{50}$). The harvested and 70% EtOH-fixed cells were stained with propidium iodide (PI) containing RNase (BD Bioscience) subjected to flow cytometry (LSRFortessa operated by FACS Diva software, BD Bioscience).

Immunocytochemistry. MDA-MB-231 cells (2.4×10^4 cells/ well) were seeded in an eight-well chamber slide (Lab-Tech) for 24 h prior to treatment with the compound for 24 h. **1** or **33** was used at 22.5 or 25.5 μ M ($3 \times IC_{50}$), respectively. CA-4 was used at 0.1 μ M ($3 \times IC_{50}$) as a control for the tubulin polymerization inhibitor. Treated cells were fixed in 4% paraformaldehyde in PBS and stained with monoclonal antibody to α -tubulin (B5-1-2, Sigma) and rabbit immunoglobulin G (IgG) to Ser10-phosphorylated histone H3 (p-H3) (#06-570, EMD Millipore), followed by labeling with fluorescein isothiocyanate (FITC)-conjugated antibody to mouse IgG (Sigma) and Alexa Fluor 549-conjugated antibody to rabbit IgG (Life Technologies), and DAPI for DNA as described previously.¹⁷ The stained cells were observed using a confocal laser-scanning microscope (LSM700, Zeiss). The represented images were a projection of 16–18 optical sections processed by ZEN software (Zeiss). Final images were prepared using Adobe Photoshop.

pubs.acs.org/joc

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c00348.

Experimental procedure for known compounds and NMR spectra for new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Kyoko Nakagawa-Goto – School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan; Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States;
orcid.org/0000-0002-1642-6538; Phone: +81-76-264-6305; Email: kngoto@p.kanazawa-u.ac.jp

Authors

- Yohei Saito School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Yukiko Kobayashi School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Nanami Yoshida School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Masuo Goto Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States; © orcid.org/0000-0002-9659-1460

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c00348

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We appreciate critical comments, suggestions, and editing of the manuscript by Susan L. Morris-Natschke (UNC-CH). We wish to thank the Microscopy Service Laboratory (UNC-CH) for their expertise in the confocal microscope. This study was supported by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT KAKENHI, Japan), awarded to Y.S. (Grant number 18K14344) and K.N.-G. (Grant number 25293024).

REFERENCES

(1) Yang, Z.; Hon, P. M.; Chui, K. Y.; Xu, Z. L.; Chang, H. M.; Lee, C. M.; Cui, Y. X.; Wong, H. N. C.; Poon, C. D.; Fung, B. M. Naturally occurring benzofuran: isolation, structure elucidation and total synthesis of 5-(3-hydroxypropyl)-7-methoxy-2-(3'-methoxy-4'-hydroxyphenyl)-3-benzo[b]furancarbaldehyde, a novel adenosine A1 receptor ligand isolated from *Salvia miltiorrhiza* Bunge (danshen). *Tetrahedron Lett.* **1991**, *32*, 2061–2064.

(2) Tsai, I. L.; Hsieh, C. F.; Duh, C. Y. Additional cytotoxic neolignans from *Persea obovatifolia*. *Phytochemistry* **1998**, 48, 1371–1375.

(3) Tanga, S.; Shia, J.; Liua, C.; Zhanga, F.; Xianga, N.; Liua, X.; Chena, Y.; Youa, J.; Shena, Q.; Miaoa, M.; Liua, Z.; Yanga, G. Three new arylbenzofurans from *Lavandula angustifolia* and their bio-activities. *Phytochem. Lett.* **2017**, *19*, 60–63.

(4) Chang, J. Y.; Chang, C. Y.; Kuo, C. C.; Chen, L. T.; Wein, Y. S.; Kuo, Y. H. Salvinal, a novel microtubule inhibitor isolated from *Salvia miltiorrhizae* Bunge (danshen), with antimitotic activity in multidrug-sensitive and -resistant human tumor cells. *Mol. Pharmacol.* **2004**, *65*, 77–84.

(5) Jeong, E. J.; Kim, N. H.; Heo, J. D.; Lee, K. Y.; Rho, J. R.; Kim, Y. C.; Sung, S. H. Antifibrotic compounds from *Liriodendron tulipifera* attenuating HSC-T6 proliferation and TNF- α production in RAW264.7 cells. *Biol. Pharm. Bull.* **2015**, *38*, 228–234.

(6) LoPachin, R. M.; Gavin, T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. *Chem. Res. Toxicol.* **2014**, *27*, 1081–1091.

(7) Keri, R. S.; Chand, K.; Budagumpi, S.; Somappa, S. B.; Patil, S. A.; Nagaraja, B. M. An overview of benzo[b]thiophene-based medicinal chemistry. *Eur. J. Med. Chem.* **2017**, *138*, 1002–1033.

(8) Nakagawa-Goto, K.; Wu, P. C.; Lai, C. Y.; Hamel, E.; Zhu, H.; Zhang, L.; Kozaka, T.; Ohkoshi, E.; Goto, M.; Bastow, K. F.; Lee, K. H. Antitumor agents. 284. New desmosdumotin B analogues with bicyclic B-ring as cytotoxic and antitubulin agents. *J. Med. Chem.* **2011**, 54, 1244–1255.

(9) (a) Garcia, C.; Andraud, C.; Collet, A. New key compounds in cyclotriveratrylene chemistry. Synthesis, optical resolution, absolute configuration, and circular dichroism of C3-cyclotriveratrylenes with sulfur substituents. *Supramol. Chem.* **1992**, *1*, 31–45. (b) Newman, M. S.; Hetzel, F. W. Thiophenol from phenols: 2-naphthalenethiol. *Org. Synth.* **1971**, *51*, 139–142.

(10) Kobayashi, Y.; Saito, Y.; Goto, M.; Nakagawa-Goto, K. Antitubulin effect of aminobenzothiophene-substituted triethylated chromones. *Bioorg. Med. Chem. Lett.* **2017**, *27*, 2731–2735.

(11) Bang, H. B.; Han, S. Y.; Choi, D. H.; Yang, D. M.; Hwang, J. W.; Lee, H. S.; Jun, J. G. Facile total synthesis of benzo[b]furan natural product XH-14. *Syn. Commun.* **2009**, *39*, 506–515.

(12) Schipper, D. J.; Fagnou, K. Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials. *Chem. Mater.* **2011**, *23*, 1594–1600.

(13) Colletto, C.; Panigrahi, A.; Fernández-Casado, J.; Larrosa, I. Ag(I)–C–H activation enables near-room-temperature direct α -arylation of benzo[b]thiophenes. J. Am. Chem. Soc. **2018**, 140, 9638–9643.

(14) Kuo, Y. H.; Wu, C. H. Synthesis of 5-(3-hydroxypropyl)-7methoxy-2-(3'-methoxy-4'-hydroxyphenyl)-3-benzo[b]furancarbaldehyde, a novel adenosine A₁ receptor ligand from root of *Salvia miltiorrhiza. J. Nat. Prod.* **1996**, *59*, 625–628.

(15) Garcia, C.; Andraud, C.; Collet, A. New key compounds in cyclotriveratrylene chemistry. Synthesis, optical resolution, absolute configuration and circular dichroism of C3-cyclotriveratrylenes with sulfur substituents. *Supramol. Chem.* **1992**, *1*, 31–45.

(16) Yang, Z.; Liu, H. B.; Lee, C. M.; Chang, H. M.; Wong, H. N. C. Compounds from Danshen. Part 7. Regioselective introduction of carbon-3 substituents to 5-alkyl-7-methoxy-2-phenylbenzo[b]furans: synthesis of a novel adenosine A1 receptor ligand and its derivatives. J. Org. Chem. 1992, 57, 7248–7257.

(17) Nakagawa-Goto, K.; Oda, A.; Hamel, E.; Ohkoshi, E.; Lee, K. H.; Goto, M. Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring. *J. Med. Chem.* **2015**, *58*, 2378–2389.