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ABSTRACT: The 1,5-benzodiazepines are important skeletons
frequently contained in medicinal chemistry. Herein, we described
an unexpected tandem cyclization/transfer hydrogenation reaction
for obtaining chiral 2,3-disubstituted 1,5-benzodiazepines. The
enolizable aryl aldehydes were chosen as substrates to react with
symmetric and unsymmetric o-phenylenediamines. The unforeseen
tandem reaction occurred among many possible latent side
reactions under chiral phosphoric acid catalysis and affords the
corresponding products in moderate yields and regioselectivities,
good diastereoselectivities, and enantiomeric ratio (up to 99:1).

■ INTRODUCTION

The 1,5-benzodiazepines (1,5-BDPs) and their polycyclic
derivatives have received great attention, because of their
wide range of therapeutic and pharmacological properties.1 For
example, some of them were recognized as HCV NS5B
inhibitors,2 Caspase-1 (ICE) inhibitor,3 antimicrobial,4 diet
pills, etc.;5 thus, these are referred to as “privileged structures,”
a term first used to describe the benzodiazepine.6 Because of
their wide range of biological and synthetic applications,
several methods have been developed.7 Among these reactions,
domino reactions of o-phenylenediamine (o-PDA) with
carbonyl compounds8 were systematically investigated, includ-
ing the use of Lewis acids as catalysts, and the employment of
microwave irradiation.9 A series of functionalized 1,5-BDP
derivatives were obtained as racemates. Though chiral 1,5-
BDPs were a fundamental skeleton in many bioactive
molecules, relatively few of these scaffolds have been
enantioselectively synthesized.
Generally, the preparation of chiral 1,5-BDP can be divided

into two categories including the enantioselective reduction of
the obtained cyclic imine and the enantioselective construction
of the seven-membered ring. Fan and co-workers10 developed
a useful asymmetric hydrogenation strategy, which could
obtain both enantiomers with the same enantiomer of the
ligand but in the presence of different achiral counteranions
(Scheme 1a).
Gong and Akiyama11 developed a similar way via the

dynamic kinetic asymmetric transfer hydrogenation of racemic
cyclic imine (Scheme 1a). The above methods elegantly

Received: December 31, 2020
Published: March 16, 2021

Scheme 1. Selected Examples of Enantioselective Synthesis
of 1,5-BDP
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ensured the preparation of 2,4-disubstituted 1,5-BDP through
the enantioselective reduction of the cyclized imine substrates
in different ways. On the other hand, researchers were trying to
construct the 1,5-BDP ring directly in an enantioselective way.
Feng and co-workers12 developed an enantioselective domino
reaction of o-PDA and chalcone derivatives, which produced
the corresponding 1,5-BDP ring in one step in up to 82% ee
(Scheme 1b). Shi and co-workers13 developed an interesting
way for enantioselective construction of the 1,5-BDP ring
through a chiral phosphoric acid catalyzed tandem reaction
with reactive 5,5-dimethyl cyclohexane-1,3-dione, o-PDA, and
aromatic aldehyde or isatin as substrates (Scheme 1b). The
reaction proceeded through the formation of the key enamine
intermediate, which was followed by an enantioselective
intramolecular Mannich reaction. These methods ensured
the enantioselective construction of 1,5-BDP possessing only
one chiral center by ingeniously utilizing a special substrate
according to the difference of the reactivity. However, the
efficient synthesis of 2,3-disubstituted 1,5-BDPs has not been
investigated. Herein, a unique tandem cyclization/transfer
hydrogenation reaction was unexpectedly found to be an
efficient way to construct 2,3-disubstituted 1,5-BDP, and its
chiral derivatives could be obtained with high enantioselectiv-
ity by using phosphoric acid as catalysts.

■ RESULTS AND DISCUSSION

Imidazoline was used as an interesting hydride donor in the
literature.14 When we intended to prepare alkyl substituted
imidazoline 3a′, to our surprise, the obtained main product
was 1,5-BDP 3a with aromatized imidazole 4a (Scheme 2a).
Moreover, the high diastereoselectivity (>25:1) was observed

for product 3a. This unexpected result inspired us to
investigate the reaction deeply. We speculated that the key
imine enamine intermediate A could be formed, which could
be cyclized to afford the seven-membered 1,5-BDP ring B with
two adjacent chiral centers through the similar mechanism
report by the Shi group.13 Then the cyclic imine intermediate
B was reduced probably by the in situ formed imidazoline 3a′,
yielding the 1,5-BDP 3a and imidazole 4a, respectively.15 If the
reaction proceeds according to the speculated mechanism, the
outcome observed is completely incredible due to the fact that
there are many possible side reactions (Scheme 2b): (i) the
possible reductive amination between o-PDA and aldehydes;
(ii) the formation of imidazolines with o-PDA, and the
following reductive amination to yield N-substituted o-PDA;
(iii) the direct formation of imidazoles; (iv) aldol reaction to
yield β-hydroxyl aldehyde or α,β-unsaturated aldehyde, which
might react with o-PDA as roads i−iii to get more complicated
products. However, the reaction afforded 2,3-disubstituted 1,5-
BDP as the unanticipated main product; thus, we optimized
the reaction conditions for obtaining 1,5-BDP 3a in the
tandem one-pot reaction (Table S1; see Supporting
Information). According to the result, the reaction could be
catalyzed under catalytic diphenyl phosphate (5 mol %), and
the corresponding product 3a could be obtained in 63% yield
in high diastereoselectivity (>25:1).
Then, we moved on to investigate the corresponding

enantioselective reaction with chiral phosphoric acid as catalyst
(Table 1). First, the phosphoric acid catalysts 5a−5g were

Scheme 2. The Discovery and the Property of the Reaction

Table 1. Optimization of Reaction Conditions

entrya cat T (°C) solvent yield (%)b erc

1 5a 15 DCM 30 68:32
2 5b 15 DCM 40 63:37
3 5c 15 DCM 34 57:43
4 5d 15 DCM 39 59:41
5 5e 15 DCM 42 63:37
6 5f 15 DCM 43 78:22
7 5g 15 DCM 29 65:35
8d 5f 15 ACN 55 87:13
9 5f 0 ACN 32 68:16
10e 5f 15 ACN 63 95:5
11e 5f 15 ACN/CHCl3 (1/1) 65 99:1
12e 5f 15 ACN/DCM (1/1) 55 96:4
13e 5f 15 ACN/PhCH3 (1/1) 53 98:2
14f 5f 15 ACN/DCM (1/1) 55 96:4
15g 5f 15 ACN/PhCH3 (1/1) 53 98:2

aCondition: 1a (0.2 mmol), 2a (0.3 mmol), catalyst (5 mol %),
solvent 2 mL, under a N2 atmosphere overnight. bCalculated based on
purification with silicon column; dr value was analyzed based on
crude 1H NMR (>25:1). cAnalyzed by chiral HPLC. dACN is the
short name of CH3CN.

e4 Å molecular sieves were added. fHEH (1.2
equiv) was added. gBTL (1.2 equiv) was added.
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screened (entries 1−7). Fortunately, both the enantioselectiv-
ity and yield were improved with 5f as a catalyst. Then the
reaction solvents were screened with 5f as a catalyst. The
reaction yield and er value were slightly improved when we
used acetonitrile (CH3CN) as solvent (entry 8). However, the
reaction yield and er value were decreased after decreasing the
reaction temperature to 0 °C (entry 9). To improve the
reaction yield and er value, when 4 Å molecular sieves were
used for absorbing the produced water, both the reaction yield
and er value could be improved (entry 10). Next, mixed
solvents were investigated, which demonstrated that the
mixture of CH3CN:CHCl3 (1:1) was the optimal solvent
(entries 11−13). Then the addition of extra reduction reagents
such as Hantzch ester (HEH)16 or 2-phenyl-2,3-dihydrobenzo-
[d]thiazole (BTL)17 were investigated (entries 14 and 15).
However, the reaction yield was not increased and the
aromatized Hantzch pyridine or thiazole was not found. On
the basis of this result, we realized that the in situ formed
imidazoline (BBI)14 was an irreplaceable hydride donor due to
the fact that its reduction ability is generally higher than that of
the HEH18 and BTL.19 Therefore, the optimal reaction
conditions were obtained as follows: 1 equiv of o-PDA 1 and
1.5 equiv of phenylacetaldehyde 2 reacted in the mixture of
CH3CN:CHCl3 (1:1) with catalytic 5f (5 mol %) at 15 °C for
12 h without the addition of external H-donor. On the basis of
the optimal reaction conditions, the 2,3-disubstituted-1,5-BDP
3a could be obtained in 65% yield, good dr value (>25:1), and
excellent er value (99:1).
Having the optimal conditions in hand, we began to explore

the scope of the aromatic phenylacetaldehydes. From the
results presented in Scheme 3, we could see that all chosen
substrates reacted with 1 to give desired products (3b−3j) in
excellent dr values (>25:1), moderate yields (43−70%), and
moderate to good er values (87:13−95:5). Initially, the para-
substituents of the phenylacetaldehydes were evaluated, which
demonstrated that the reaction proceeded well with an
electron-donating (3b) or electron-withdrawing (3c) group.

In addition, various halogen substituents (F, Cl, Br) were also
investigated, which proved that the desired products were
obtained with moderate yields and good er values (3d−3f).
Then the ortho-substituents were evaluated, which demon-
strated the o-methyl substituent was good for high yield (70%)
and bad for er value (87:13, 3g). However, the ortho-Cl
substituent was good for high er value (95:5, 3h). In addition,
the meta-F substituent was investigated, which also afforded
the corresponding product with a pleasant er value (94.5:5.5,
3i). Meanwhile, ortho-disubstituted phenylacetaldehyde with
big steric hindrance was evaluated, which afforded the desired
product 3j in slightly lower yield (43%) and moderate er value
(88.5:11.5).
Then we turned to investigate the reaction with substituted

o-PDAs as substrates (Scheme 4). To our delight, symmetric

disubstituted o-PDAs (e.g., fluoro, chloro, bromo) performed
well in this transformation, affording the corresponding
products (3k−3m) in excellent dr values (>25:1), moderate
yields (52−66%), and good er values (93.5:6.5−96:4).
Meanwhile, the absolute configuration of 3m was confirmed
by X-ray single crystal analysis and other products were
assigned by analogy. The universalities of the reaction
prompted us to investigate the reaction with unsymmetric o-
PDAs as substrate (Scheme 4). The reaction would become
very complicated due to the incorporation of regioselectivity,20

diastereoselectivity, and enantioselectivity. To our surprise, 4-
Cl-o-PDA and 4-Br-o-PDA reacted smoothly, affording the

Scheme 3. Investigation of the Phenylacetaldehyde
Substratea

aThe reaction temperature was decreased to 5 °C for better er.

Scheme 4. Investigation of the Reaction with Symmetric and
Unsymmetric o-PDA as Substrate
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corresponding products (3n, 3o) in pleasant regioselectivity
(6:1) and moderate yields. Moreover, high diastereoselectivity
(>25:1) and good enantioselectivity were maintained. Then
the 3-CH3-o-PDA was investigated, which afforded 3p in better
regioselectivity (7:1), high diastereoselectivity (>25:1), and
good enantioselectivity (94.5:5.5). Meanwhile, other substi-
tuted phenylacetaldehydes were used to react with 3-CH3-o-
PDA, and the corresponding products (3q, 3r) were obtained
in good regioselectivity (7:1), high diastereoselectivity
(>25:1), moderate yield, and good enantioselectivity as well.
On the basis of this unique regioselectivity, other unsymmetric
disubstituted o-PDAs were evaluated. Interestingly, the 3,5-di-
CH3-o-PDA proceeded well and afforded 3s in good
regioselectivity (6:1) and moderate er value (91:9). Mean-
while, 5-Br-3-CH3-o-PDA afforded the corresponding product
3t in moderate regioselectivity (5:1) and good er value
(96.5:3.5). The structures of these products were affirmed
based on 2D NMR (see Supporting Information). Interest-
ingly, when N-CH3-o-PDA was used as substrate, the
corresponding product was not obtained.
Then, we moved on to investigate the reaction mechanism.

On the basis of the reaction results as well as the previous
literature,11,21 two possible reaction roads were proposed
(Scheme 5). On the first road, o-PDA reacts with phenyl-

acetaldehyde to form imine intermediate A, which could easily
isomerize into intermediate B through imine/enamine isomer-
ization. Next, cyclic imine C is formed through the
intramolecular enantioselective Mannich reaction under the
chiral phosphoric catalyst. Finally, the in situ formed
imidazoline E selectively reduces the imine C and affords the
final product 3a and the corresponding aromatized imidazole
4a. On the second road, α,β-unsaturated aldehyde F might be
formed from 2a by aldol condensation. Then, α,β-unsaturated
imine G is formed, which reacts through intramolecular
Michael reaction to form the cyclic imine intermediate C.
Finally, intermediate C is reduced with E to afford the product
3a.
In order to verify the reaction road 2, α,β-unsaturated

aldehyde F was prepared and used as a substrate under the
optimal reaction conditions (Scheme 6a). Interestingly, the

obtained product was cis-3a rather than trans-3a. According to
this result, we concluded that the reaction proceeded via road
2. Meanwhile, the production of the reaction intermediate B
was detected via the NMR experiment (Figure S1; see
Supporting Information). Moreover, the imine/enamine
isomerization could be proved via the deuteration experiment
(Scheme 6b). Therefore, road 1 might be the reasonable
reaction process.
According to the reaction mechanism and the previous

report,22 the chirality of the reaction might be formed through
the intramolecular Mannich reaction. Therefore, we proposed
that the bifunctional nature of the chiral phosphoric acid is
responsible for concurrent activation of both the enamine
nucleophile and the imine electrophile through hydrogen
bonding23 (Scheme 7, TsA).

To demonstrate the synthetic practicality of this approach, a
large-scale synthesis of 3a was performed. The reaction
proceeded smoothly to give the corresponding product in
68% isolated yield with high dr value (>25:1) and only a slight
loss in er value (96.5:3.5) (Scheme 8).

■ CONCLUSIONS
In summary, we have developed an unexpected tandem
reaction for efficient preparation of 2,3-disubstituted-1,5-
BDPs which was incompetent with previous ways. There was
no need to add any extra reductant to reduce the imine
intermediate, and the in situ formed imidazoline was the
irreplaceable reductant for the reaction. A series of 2,3-

Scheme 5. Plausible Reaction Mechanism

Scheme 6. Investigation of the Reaction Mechanism

Scheme 7. Proposing the Reasonable Transition State

Scheme 8. Large-Scale Synthesis of 3a
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disubstituted-1,5-BDP were obtained in good er (up to 99:1),
good dr (>25:1), and especially acceptable rr (up to 7:1) for
the unsymmetric o-PDAs. The reaction mechanism was
investigated which demonstrated that the reaction probably
proceeds through the enantioselective intramolecular Mannich
reaction/transfer hydrogenation tandem reaction.

■ EXPERIMENTAL SECTION
General Information. Unless otherwise stated, all reagents were

purchased from commercial suppliers and used without further
purification. All solvents employed in the reactions were distilled from
appropriate drying agent prior to use. All kinds of phenylenediamines
are commercially available. All chiral phosphoric acid was purchased
from DAICEL CHIRAL TECHNOLOGIES (CHINA) CO., Ltd.
Organic solutions were concentrated under reduced pressure on a
Büchi rotary evaporator. The heating reaction condition was
performed under an oil bath with a magnetic stirrer DF-101T. The
cooling reaction condition was performed with a ChangCheng cooler
DFY-5L. Melting points are uncorrected and recorded on a digital
melting point apparatus WRS-1B. Reactions were monitored by thin
layer chromatography using 0.25 mm Merck silica gel precoated plates
(60F-254). Visualization was accomplished by irradiation with UV
light at 254 nm. Column chromatography was performed using
Macherey-Nagel silica gel 60 M (particle size 0.040−0.063 mm).
Chemical yields refer to pure isolated substances. 1H and 13C NMR
spectra were recorded at 25 °C on Bruker spectrometers at 400 or 101
MHz, respectively, using CDCl3 or DMSO-d6 as the solvent and TMS
as the internal reference. Structural assignments were made with
additional information from gHMBC, and gDEPT 135° experiments.
The following abbreviations were used to designate chemical shift
multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p =
pentet, m = multiplet, b = broad. HRMS (ESI) determinations were
performed on a Bruker micrOTOF II spectrometer (TOF analyzer).
X-ray crystallographic structure determination was carried out on a
Bruker SMART CCD. Enantiomeric ratios (er) were determined by
chiral HPLC using Daicel CHIRALCEL OJ-H, AD-H, and AS-H
columns with hexane/2-propanol as the eluents. Optical rotations
were measured on an Autopol IV Polarimeter and reported as follows:
[α]D

20 (c in g per 100 mL, solvent).
Synthesis of Phenylacetaldehydes. Phenylacetaldehyde 2a was

purchased. Others (2b−j)24 were prepared by oxidation of the
corresponding aryl ethanol according to a reported literature. IBX (10
mmol) was added to a solution of aryl ethanol (5 mmol) in CH3CN
(15 mL) at room temperature. Then the reaction mixture was moved
to an oil bath, which was refluxed at 80 °C under a N2 atmosphere for
2.5 h. After cooling to room temperature, filtration, and evaporation,
followed by flash column chromatography on silica gel (petroleum
ether/ethyl acetate = 10/1−7/1), the desired product was obtained.
Preparation of Chiral 2,3-Disubstituted 1,5-BDPs with

Different Phenylacetaldehydes (3a−3j). To a tube were added
a solution of o-DPA (0.2 mmol, 1.0 equiv), 4 Å MS (50 mg), acid
catalyst 5f (7.5 mg, 10 μmol, 0.05 equiv), and 1 mL of mixed solvent
(CH3CN:CHCl3 = 1:1); the tube was sealed with a septum,
evacuated, and backfilled with nitrogen three times. Next, phenyl-
acetaldehyde (0.3 mmol, 1.5 equiv) was dissolved in 1 mL of mixed
solvent (CH3CN:CHCl3 = 1:1), which was added into the above
solution by syringe under a nitrogen atmosphere, and it was stirred at
5 °C overnight, Next, the reaction mixture was concentrated. The
desired product was isolated by column chromatography on silica gel
(eluent: petroleum ether/ethyl acetate = 15/1−8/1). The enantio-
meric ratio of the product was determined by HPLC analysis.
(2S,3R)-2-Benzyl-3-phenyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]-

diazepine (3a). Prepared according to the general procedure, but the
reaction temperature was 15 °C, and purified by column
chromatography on silica gel and eluted with petroleum ether/ethyl
acetate (13:1) to afford a yellow oil (20 mg, yield 65%), with er 99:1
(HPLC, Daicel Chiralcel OJ-H column, 80:20 hexane/2-propanol, 1
mL/min, 254 nm; tR1 = 17.8 min; tR2 = 20.4 min; [α]D

20 = +35° (c
0.04, CH2Cl2).

1H NMR (400 MHz, CDCl3) δ 7.40 (dt, J = 14.9, 7.4

Hz, 4H), 7.30 (dt, J = 13.4, 7.3 Hz, 4H), 7.16 (d, J = 7.2 Hz, 2H),
6.76 (t, J = 7.0 Hz, 1H), 6.66 (dd, J = 14.1, 6.9 Hz, 2H), 6.30 (d, J =
7.6 Hz, 1H), 3.85 (dd, J = 13.2, 4.2 Hz, 1H), 3.77−3.51 (m, 2H), 3.13
(dd, J = 13.2, 6.2 Hz, 1H), 2.94−2.79 (m, 2H), 2.53 (dd, J = 14.3,
11.2 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 143.5, 140.4,
138.7, 138.6, 128.9, 128.8, 128.7, 128.0, 126.8, 126.7, 121.3, 120.6,
119.6, 118.4, 62.2, 53.4, 52.6, 40.8. HRMS (ESI-TOF) m/z [M + H]+

Calcd for C22H23N2 315.1856; Found 315.1862.
(2S,3R)-2-(4-Methoxybenzyl)-3-(4-methoxyphenyl)-2,3,4,5-tetra-

hydro-1H-benzo[b][1,4]diazepine (3b). Prepared according to the
general procedure and purified by column chromatography on silica
gel and eluted with petroleum ether/ethyl acetate (10:1) to afford a
yellow oil (23 mg, yield 62%), with er 92.5:7.5 (HPLC, Daicel
Chiralcel AD-H column, 80:20 hexane/2-propanol, 1 mL/min, 254
nm; tR1 = 12.4 min; tR2 = 23.4 min; [α]D

20 = +43° (c 0.04, CH2Cl2).
1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.7 Hz, 2H), 7.07 (d, J =
8.4 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 6.79
(dt, J = 14.7, 7.4 Hz, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.33 (d, J = 7.5
Hz, 1H), 3.83 (d, J = 5.1 Hz, 7H), 3.60−3.45 (m, 1H), 3.08 (dd, J =
13.1, 7.0 Hz, 1H), 2.90 (t, J = 9.9 Hz, 1H), 2.77 (dd, J = 14.2, 2.3 Hz,
1H), 2.44 (dd, J = 14.3, 11.2 Hz, 1H). 13C{1H} NMR (101 MHz,
CDCl3) δ 158.5, 158.3, 139.4, 135.1, 130.5, 129.9, 128.9, 121.5, 120.0,
119.1, 114.1, 114.0, 62.6, 55.3, 52.9, 52.0, 39.8. HRMS (ESI-TOF)
m/z [M + H]+ Calcd for C24H27N2O2 375.2067; Found 375.2061.

(2S,3R)-2-(4-(Trifluoromethyl)benzyl)-3-(4-(trifluoromethyl)-
phenyl)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3c). Pre-
pared according to the general procedure and purified by column
chromatography on silica gel and eluted with petroleum ether/ethyl
acetate (10:1) to afford a yellow oil (24 mg, yield 53%), with er 89:11
(HPLC, Daicel Chiralcel OJ-H column, 95:5 hexane/2-propanol, 1
mL/min, 254 nm; tR1 = 26.9 min; tR2 = 35.2 min); [α]D

20 = +51° (c
0.04, CH2Cl2).

1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz,
2H), 7.59−7.54 (m, 4H), 7.29−7.23 (m, 2H), 6.81−6.73 (m, 1H),
6.67 (t, J = 7.6 Hz, 2H), 6.37−6.31 (m, 1H), 3.96 (dd, J = 13.4, 4.5
Hz, 1H), 3.88 (ddd, J = 10.7, 9.2, 3.3 Hz, 3H), 3.18 (dd, J = 13.4, 5.0
Hz, 1H), 2.98 (dt, J = 9.2, 4.7 Hz, 1H), 2.86 (dd, J = 14.5, 2.7 Hz,
1H), 2.72 (dd, J = 14.5, 10.8 Hz, 1H). 13C{1H} NMR (101 MHz,
CDCl3) δ 147.7, 142.5, 139.6, 137.5, 129.3 (C-F, 2JC‑F = 33.3 Hz),
129.2, 128.3, 125.7 (C-F, 3JC‑F = 4.0 Hz), 124.1 (C-F,1JC‑F = 273.7
Hz), 121.4, 120.5, 119.3, 118.1, 61.8, 52.5, 51.6, 40.8. 19F NMR (376
MHz, CDCl3) δ −62.4, −62.5. HRMS (ESI-TOF) m/z [M + H]+

Calcd for C24H21F2N2 451.1603; Found 451.1591.
(2S,3R)-2-(4-Fluorobenzyl)-3-(4-fluorophenyl)-2,3,4,5-tetrahy-

dro-1H-benzo[b][1,4]diazepine (3d). Prepared according to the
general procedure and purified by column chromatography on silica
gel and eluted with petroleum ether/ethyl acetate (13:1) to afford a
yellow oil (20 mg, yield 56%), with er 91:9 (HPLC, Daicel Chiralcel
AD-H column, 80:20 hexane/2-propanol, 1 mL/min, 254 nm; tR1 =
9.2 min; tR2 = 16.8 min); [α]D

20 = +146° (c 0.04, CH2Cl2).
1H NMR

(400 MHz, CDCl3) δ 7.40 (dd, J = 8.4, 5.6 Hz, 2H), 7.15−7.04 (m,
4H), 7.01 (t, J = 8.6 Hz, 2H), 6.77 (t, J = 7.4 Hz, 1H), 6.72−6.59 (m,
2H), 6.32 (d, J = 7.3 Hz, 1H), 3.89 (dd, J = 13.3, 4.3 Hz, 1H), 3.75−
3.19 (m, 3H), 3.11 (dd, J = 13.3, 5.7 Hz, 1H), 2.88 (dt, J = 9.6, 5.0
Hz, 1H), 2.83−2.69 (m, 1H), 2.53 (dd, J = 14.4, 11.1 Hz, 1H).
13C{1H} NMR (101 MHz, CDCl3) δ 161.8 (C-F,1JC‑F = 245.4 Hz),
168.7 (C-F,1JC‑F = 245.4 Hz), 139.8, 139.3 (C-F, 4JC‑F = 3.0 Hz),
138.3, 134.1 (C-F, 4JC‑F = 3.0 Hz), 130.3 (C-F, 3JC‑F = 7.1 Hz), 129.3
(C-F, 3JC‑F = 8.1 Hz), 121.4, 120.7, 119.5, 118.3, 115.6 (C-F, 2JC‑F =
21.2 Hz), 115.5 (C-F, 2JC‑F = 20.2 Hz), 62.5, 52.3, 52.1, 40.0. 19F
NMR (376 MHz, CDCl3) δ −116.0, −116.1. HRMS (ESI-TOF) m/z
[M + H]+ Calcd for C22H21F2N2 351.1667; Found 351.1664.

(2S,3R)-2-(4-Chlorobenzyl)-3-(4-chlorophenyl)-2,3,4,5-tetrahy-
dro-1H-benzo[b][1,4]diazepine (3e). Prepared according to the
general procedure and purified by column chromatography on silica
gel and eluted with petroleum ether/ethyl acetate (12:1) to afford a
yellow oil (22 mg, yield 57%), with er 91.5:8.5 (HPLC, Daicel
Chiralcel AD-H column, 80:20 hexane/2-propanol, 1 mL/min, 254
nm; tR1 = 8.7 min; tR2 = 10.9 min); [α]D

20 = +28° (c 0.04, CH2Cl2).
1H NMR (400 MHz, CDCl3) δ 7.44−7.32 (m, 4H), 7.29 (d, J = 4.2
Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H), 6.76 (t, J = 7.0 Hz, 1H), 6.66 (t, J =
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6.9 Hz, 2H), 6.32 (d, J = 7.3 Hz, 1H), 3.89 (dd, J = 13.3, 4.4 Hz, 1H),
3.78−3.20 (m, 3H), 3.11 (dd, J = 13.3, 5.4 Hz, 1H), 2.85 (dt, J = 9.4,
4.8 Hz, 1H), 2.78 (dd, J = 14.4, 2.6 Hz, 1H), 2.54 (dd, J = 14.4, 11.1
Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 142.1, 139.8, 138.0,
136.9, 132.6, 132.5, 130.2, 129.3, 128.9, 128.8, 121.4, 120.6, 119.4,
118.2, 62.1, 52.2, 52.0, 40.2. HRMS (ESI-TOF) m/z [M + H]+ Calcd
for C22H21Cl2N2 383.1076; Found 383.1071.
(2S,3R)-2-(4-Bromobenzyl)-3-(4-bromophenyl)-2,3,4,5-tetrahy-

dro-1H-benzo[b][1,4]diazepine (3f). Prepared according to the
general procedure and purified by column chromatography on silica
gel and eluted with petroleum ether/ethyl acetate (13:1) to afford a
yellow oil (31 mg, yield 66%), with er 94:6 (HPLC, Daicel Chiralcel
AD-H column, 80:20 hexane/2-propanol, 1 mL/min, 254 nm; tR1 =
9.7 min; tR2 = 11.6 min); [α]D

20 = +88° (c 0.04, CH2Cl2).
1H NMR

(400 MHz, CDCl3) δ 7.50 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.3 Hz,
2H), 7.32 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.2 Hz, 2H), 6.83−6.73
(m, 1H), 6.67 (t, J = 6.7 Hz, 2H), 6.33 (d, J = 7.7 Hz, 1H), 3.89 (dd, J
= 13.3, 4.4 Hz, 1H), 3.78−3.20 (m, 3H), 3.11 (dd, J = 13.3, 5.4 Hz,
1H), 2.85 (dt, J = 9.3, 4.7 Hz, 1H), 2.76 (dd, J = 14.4, 2.7 Hz, 1H),
2.53 (dd, J = 14.4, 11.0 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3)
δ 142.6, 139.7, 138.0, 137.4, 131.8, 130.6, 129.7, 121.4, 120.7, 120.6,
120.5, 119.5, 118.2, 62.0, 52.2, 51.9, 40.3. HRMS (ESI-TOF) m/z [M
+ H]+ Calcd for C22H21Br2N2 471.0066; Found 471.0060.
(2S,3R)-2-(2-Methylbenzyl)-3-(o-tolyl)-2,3,4,5-tetrahydro-1H-

benzo[b][1,4]diazepine (3g). Prepared according to the general
procedure and purified by column chromatography on silica gel and
eluted with petroleum ether/ethyl acetate (13:1) to afford a yellow oil
(24 mg, yield 70%), with er 87:13 (HPLC, Daicel Chiralcel AD-H
column, 80:20 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 5.8 min;
tR2 = 16.2 min; [α]D

20 = +26° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.48 (d, J = 7.0 Hz, 1H), 7.27−7.22 (m, 2H), 7.18 (dd, J =
7.4, 3.4 Hz, 5H), 6.78 (t, J = 7.0 Hz, 1H), 6.69 (dd, J = 12.9, 6.8 Hz,
2H), 6.41−6.30 (m, 1H), 3.73 (dd, J = 13.2, 4.1 Hz, 2H), 3.69−3.53
(m, 2H), 3.29 (ddd, J = 9.7, 7.0, 4.2 Hz, 1H), 3.07 (dd, J = 13.2, 7.0
Hz, 1H), 2.78 (dd, J = 14.4, 2.5 Hz, 1H), 2.60 (dd, J = 14.4, 11.2 Hz,
1H), 2.48 (s, 3H), 2.12 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ
141.5, 140.6, 139.0, 136.9, 136.7, 135.9, 130.8, 130.5, 129.3, 126.8,
126.5, 126.3, 126.1, 121.5, 120.8, 119.9, 118.6, 61.2, 52.4, 47.9, 37.7,
20.5, 19.4. HRMS (ESI-TOF) m/z [M + H]+ Calcd for C24H27N2
343.2169; Found 343.2165.
(2S,3R)-2-(2-Chlorobenzyl)-3-(2-chlorophenyl)-2,3,4,5-tetrahy-

dro-1H-benzo[b][1,4]diazepine (3h). Prepared according to the
general procedure and purified by column chromatography on silica
gel and eluted with petroleum ether/ethyl acetate (13:1) to afford a
yellow oil (20 mg, yield 53%), with er 95:5 (HPLC, Daicel Chiralcel
AD-H column, 80:20 hexane/2-propanol, 1 mL/min, 254 nm; tR1 =
7.1 min; tR2 = 11.8 min); [α]D

20 = +33° (c 0.04, CH2Cl2).
1H NMR

(400 MHz, CDCl3) δ 7.76 (d, J = 7.7 Hz, 1H), 7.44 (d, J = 7.8 Hz,
1H), 7.36−7.29 (m, 2H), 7.19 (t, J = 7.4 Hz, 4H), 6.77−6.70 (m,
1H), 6.68−6.60 (m, 2H), 6.38 (d, J = 7.3 Hz, 1H), 3.96 (dq, J = 9.3,
4.4 Hz, 2H), 3.68 (dt, J = 9.0, 4.5 Hz, 3H), 3.14 (dd, J = 13.4, 4.6 Hz,
1H), 2.95−2.84 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 140.9,
138.0, 136.6, 131.0, 129.8, 129.4, 128.7, 128.1, 127.7, 127.1, 126.9,
121.0, 120.2, 119.2, 118.0, 61.0, 51.0, 46.8, 38.1. HRMS (ESI-TOF)
m/z [M + H]+ Calcd for C22H21Cl2N2 383.1076; Found 383.1072.
(2S,3R)-2-(3-Fluorobenzyl)-3-(3-fluorophenyl)-2,3,4,5-tetrahy-

dro-1H-benzo[b][1,4]diazepine (3i). Prepared according to the
general procedure and purified by column chromatography on silica
gel and eluted with petroleum ether/ethyl acetate (15:1) to afford a
yellow oil (20 mg, yield 56%), with er 94.5:5.5 (HPLC, Daicel
Chiralcel AD-H column, 80:20 hexane/2-propanol, 1 mL/min, 254
nm; tR1 = 7.5 min; tR2 = 15.8 min; [α]D

20 = +30° (c 0.04, CH2Cl2).
1H

NMR (400 MHz, CDCl3) δ 7.38−7.31 (m, 1H), 7.30 (d, J = 4.7 Hz,
1H), 7.19 (t, J = 7.3 Hz, 2H), 7.05−6.89 (m, 3H), 6.85 (d, J = 9.8 Hz,
1H), 6.77 (t, J = 7.4 Hz, 1H), 6.69 (dd, J = 16.1, 7.8 Hz, 2H), 6.33 (d,
J = 7.6 Hz, 1H), 3.91 (dd, J = 13.3, 4.3 Hz, 1H), 3.77−3.23 (m, 2H),
3.14 (dd, J = 13.3, 5.6 Hz, 1H), 2.91 (dt, J = 9.4, 4.8 Hz, 1H), 2.82
(dd, J = 14.4, 2.6 Hz, 1H), 2.58 (dd, J = 14.4, 11.1 Hz, 1H). 13C{1H}
NMR (101 MHz, CDCl3) δ 163.1 (C-F,1JC‑F = 246.4 Hz), 163.0 (C-
F,1JC‑F = 247.5 Hz), 145.9 (C-F, 3JC‑F = 7.1 Hz), 141.0 (C-F, 3JC‑F =

7.1 Hz), 139.4, 138.2, 130.3 (C-F, 3JC‑F = 8.1 Hz), 130.2 (C-F, 3JC‑F =
8.1 Hz), 124.5 (C-F, 4JC‑F = 2.0 Hz), 123.7 (C-F, 4JC‑F = 3.0 Hz),
121.5, 120.9, 119.5, 118.5, 115.7 (C-F, 2JC‑F = 21.2 Hz), 114.7 (C-F,
2JC‑F = 22.2 Hz), 113.8 (C-F, 2JC‑F = 21.2 Hz), 113.7 (C-F, 2JC‑F =
21.2 Hz), 62.0, 52.5, 52.0, 40.5. 19F NMR (376 MHz, CDCl3) δ
−112.7, −112.8. HRMS (ESI-TOF) m/z [M + H]+ Calcd for
C22H21F2N2 351.1667; Found 351.1669.

(2S,3R)-2-(2,6-Dichlorobenzyl)-3-(2,6-dichlorophenyl)-2,3,4,5-
tetrahydro-1H-benzo[b][1,4]diazepine (3j). Prepared according to
the general procedure and purified by column chromatography on
silica gel and eluted with petroleum ether/ethyl acetate (13:1) to
afford a yellow oil (19 mg, yield 43%), with er 88.5:11.5 (HPLC,
Daicel Chiralcel AD-H column, 80:20 hexane/2-propanol, 1 mL/min,
254 nm; tR1 = 9.7 min; tR2 = 27.3 min); [α]D

20 = +31° (c 0.04,
CH2Cl2).

1H NMR (400 MHz, CDCl3) δ 7.43 (d, J = 8.0 Hz, 1H),
7.33 (dd, J = 18.1, 8.0 Hz, 3H), 7.16 (dt, J = 11.7, 8.0 Hz, 2H), 6.77
(ddt, J = 21.7, 14.4, 7.2 Hz, 3H), 6.40 (d, J = 7.5 Hz, 1H), 4.32 (td, J
= 10.3, 2.8 Hz, 1H), 4.23 (td, J = 9.5, 2.9 Hz, 1H), 3.90 (dd, J = 12.5,
10.0 Hz, 3H), 3.44−3.29 (m, 2H), 2.84 (dd, J = 13.7, 2.6 Hz, 1H).
13C{1H} NMR (101 MHz, CDCl3) δ 141.8, 139.2, 137.3, 136.3,
134.9, 134.6, 130.2, 128.8, 128.6, 128.5, 128.4, 122.1, 121.4, 121.2,
119.6, 57.2, 52.6, 49.2, 35.7. HRMS (ESI-TOF) m/z [M + H]+ Calcd
for C22H19Cl4N2 451.0297; Found 451.0290.

Preparation of Chiral 2,3-Disubstituted 1,5-BDPs with
Different o-DPAs (3k−3t). To a tube were added a solution of
different o-DPA (0.2 mmol, 1.0 equiv), 4 Å MS (50 mg), acid catalyst
5f (7.5 mg, 10 μmol, 0.05 equiv), and 1 mL of mixed solvent
(CH3CN:CHCl3 = 1:1); the tube was sealed with a septum,
evacuated, and backfilled with nitrogen three times. Next, phenyl-
acetaldehyde (0.3 mmol, 1.5 equiv) was dissolved in 1 mL of mixed
solvent (CH3CN:CHCl3 = 1:1), which was added into the above
solution by syringe under a nitrogen atmosphere, and it was stirred at
15 °C overnight. Next, the reaction mixture was concentrated. The
desired product was isolated by column chromatography on silica gel
(eluent: petroleum ether/ethyl acetate = 15/1−8/1). The enantio-
meric ratio of the product was determined by HPLC analysis. X-ray
quality crystals were obtained by slow evaporation of solvent from a
saturated solution in hexanes. This compound was further
characterized by X-ray crystallography.

(2S,3R)-2-Benzyl-7,8-difluoro-3-phenyl-2,3,4,5-tetrahydro-1H-
benzo[b][1,4]diazepine (3k). Prepared according to the general
procedure and purified by column chromatography on silica gel and
eluted with petroleum ether/ethyl acetate (13:1) to afford a yellow oil
(23 mg, yield 66%), with er 96:4 (HPLC, Daicel Chiralcel AD-H
column, 80:20 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 9.6 min;
tR2 = 17.0 min; [α]D

20 = +38° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.39 (d, J = 4.2 Hz, 4H), 7.36−7.32 (m, 2H), 7.29 (s, 2H),
7.15 (d, J = 7.2 Hz, 2H), 6.48 (dd, J = 11.2, 7.7 Hz, 1H), 6.07 (dd, J =
11.2, 7.8 Hz, 1H), 3.76 (dd, J = 13.3, 4.0 Hz, 1H), 3.68−3.37 (m,
3H), 3.09 (dd, J = 13.3, 6.8 Hz, 1H), 2.93−2.76 (m, 2H), 2.49 (dd, J
= 14.2, 11.3 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 144.6 (C-
F,1JC‑F = 227.3 Hz), 144.4 (C-F,1JC‑F = 227.3 Hz), 142.6, 138.2, 135.9
(C-F, 3JC‑F = 7.1 Hz), 135.8 (C-F, 3JC‑F = 7.1 Hz), 135.2 (C-F, 3JC‑F =
6.1 Hz), 135.1 (C-F, 3JC‑F = 6.1 Hz), 128.9, 128.8, 128.7, 127.9, 127.1,
127.0, 108.1 (C-F, 2JC‑F = 19.2 Hz), 107.2 (C-F, 2JC‑F = 20.2 Hz),
62.41, 53.22, 52.80, 40.61. 19F NMR (376 MHz, CDCl3) δ −147.8,
−147.9, −148.7, −148.8. HRMS (ESI-TOF) m/z [M + H]+ Calcd for
C22H21F2N2 351.1667; Found 351.1667.

(2S,3R)-2-Benzyl-7,8-dichloro-3-phenyl-2,3,4,5-tetrahydro-1H-
benzo[b][1,4]diazepine (3l). Prepared according to the general
procedure and purified by column chromatography on silica gel and
eluted with petroleum ether/ethyl acetate (13:1) to afford a yellow oil
(23 mg, yield 60%), with er 93.5:6.5 (HPLC, Daicel Chiralcel AS-H
column, 98:2 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 18.7 min;
tR2 = 26.5 min; [α]D

20 = +28° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.44−7.38 (m, 3H), 7.38−7.31 (m, 3H), 7.30−7.25 (m,
2H), 7.18−7.07 (m, 2H), 6.69 (s, 1H), 6.32 (s, 1H), 3.87 (dd, J =
13.4, 4.4 Hz, 1H), 3.83−3.69 (m, 2H), 3.55 (s, 1H), 3.14 (dd, J =
13.4, 5.5 Hz, 1H), 2.86 (ddd, J = 14.3, 8.1, 4.0 Hz, 2H), 2.52 (dd, J =
14.5, 11.0 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 143.1,
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139.8, 138.3, 138.2, 128.9, 128.8, 128.7, 127.9, 127.1, 127.0, 123.1,
122.2, 120.0, 118.8, 62.1, 52.6, 51.9, 40.7. HRMS (ESI-TOF) m/z [M
+ H]+ Calcd for C22H21Cl2N2 383.1076; Found 383.1077.
(2S,3R)-2-Benzyl-7,8-dibromo-3-phenyl-2,3,4,5-tetrahydro-1H-

benzo[b][1,4]diazepine (3m). Prepared according to the general
procedure and purified by column chromatography on silica gel and
eluted with petroleum ether/ethyl acetate (13:1) to afford a yellow oil
(24. mg, yield 52%), with er 94.5:5.5 (HPLC, Daicel Chiralcel AS-H
column, 98:2 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 12.2 min;
tR2 = 15.5 min; [α]D

20 = +41° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.44−7.37 (m, 3H), 7.34 (dd, J = 9.4, 7.7 Hz, 2H), 7.28 (d,
J = 9.7 Hz, 3H), 7.16−7.08 (m, 2H), 6.86 (s, 1H), 6.48 (s, 1H), 3.88
(dd, J = 13.4, 4.5 Hz, 1H), 3.84−3.70 (m, 2H), 3.55 (s, 1H), 3.14
(dd, J = 13.3, 5.3 Hz, 1H), 2.92−2.77 (m, 2H), 2.52 (dd, J = 14.5,
11.0 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 143.2, 140.5,
139.0, 128.9, 128.8, 128.7, 127.9, 127.1, 127.0, 122.9, 121.8, 62.0,
52.4, 51.8, 40.7. HRMS (ESI-TOF) m/z [M + H]+ Calcd for
C22H21Br2N2 471.0066; Found 471.0076.
(2S,3R)-2-Benzyl-7-chloro-3-phenyl-2,3,4,5-tetrahydro-1H-

benzo[b][1,4]diazepine (3n). Prepared according to the general
procedure and purified by column chromatography on silica gel and
eluted with petroleum ether/ethyl acetate (13:1) to afford a yellow oil
(20 mg, yield 57%), with er 94.5:5.5 (HPLC, Daicel Chiralcel AS-H
column, 98:2 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 13.0 min;
tR2 = 17.7 min; [α]D

20 = +30° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.44−7.29 (m, 8H), 7.14 (d, J = 7.1 Hz, 2H), 6.68 (dd, J =
8.3, 2.3 Hz, 1H), 6.56 (d, J = 8.3 Hz, 1H), 6.26 (d, J = 2.3 Hz, 1H),
3.83 (dd, J = 13.3, 4.3 Hz, 1H), 3.77−3.68 (m, 1H), 3.59 (s, 1H),
3.11 (dd, J = 13.3, 6.0 Hz, 1H), 2.86 (ddd, J = 17.1, 12.0, 4.2 Hz, 2H),
2.52 (dd, J = 14.4, 11.1 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3)
δ 143.2, 139.8, 138.7, 138.3, 128.9, 128.8, 128.7, 127.9, 127.0, 126.9,
124.9, 120.8, 119.2, 119.0, 62.0, 53.0, 52.4, 40.8. HRMS (ESI-TOF)
m/z [M + H]+ Calcd for C22H22Cl2N2 349.1466; Found 349.1447.
(2S,3R)-2-Benzyl-7-bromo-3-phenyl-2,3,4,5-tetrahydro-1H-

benzo[b][1,4]diazepine (3o). Prepared according to the general
procedure and purified by column chromatography on silica gel and
eluted with petroleum ether/ethyl acetate (13:1) to afford a yellow oil
(23 mg, yield 58%), with er 92.5:7.5 (HPLC, Daicel Chiralcel AD-H
column, 80:20 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 11.3
min; tR2 = 36.1 min); [α]D

20 = +33° (c 0.04, CH2Cl2).
1H NMR (400

MHz, CDCl3) δ 7.39 (q, J = 8.1, 7.5 Hz, 4H), 7.35−7.26 (m, 4H),
7.14 (d, J = 7.2 Hz, 2H), 6.86−6.78 (m, 1H), 6.51 (d, J = 8.2 Hz,
1H), 6.43−6.37 (m, 1H), 3.84 (dd, J = 13.3, 4.2 Hz, 1H), 3.78−3.47
(m, 3H), 3.12 (dd, J = 13.3, 5.8 Hz, 1H), 2.94−2.76 (m, 2H), 2.52
(dd, J = 14.2, 11.1 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ
143.3, 140.0, 139.3, 138.3, 128.9, 128.8, 128.7, 127.9, 126.9, 126.8,
123.6, 121.7, 119.4, 111.9, 62.0, 52.9, 52.3, 40.8. HRMS (ESI-TOF)
m/z [M + H]+ Calcd for C22H22BrN2 393.0961; Found 393.0963.
(2S,3R)-2-Benzyl-6-methyl-3-phenyl-2,3,4,5-tetrahydro-1H-

benzo[b][1,4]diazepine (3p). Prepared according to the general
procedure and purified by column chromatography on silica gel and
eluted with petroleum ether/ethyl acetate (13:1) to afford a yellow oil
(21 mg, yield 65%), with er 94.5:5.5 (HPLC, Daicel Chiralcel AD-H
column, 98:2 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 12.3 min;
tR2 = 18.7 min; [α]D

20 = +43° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.48−7.42 (m, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.31 (td, J =
3.4, 2.0 Hz, 3H), 7.27−7.21 (m, 1H), 7.19−7.11 (m, 2H), 6.68 (d, J =
7.4 Hz, 1H), 6.53 (t, J = 7.6 Hz, 1H), 6.19 (dd, J = 7.8, 1.4 Hz, 1H),
4.00 (dd, J = 13.3, 4.4 Hz, 1H), 3.78 (ddd, J = 11.0, 9.5, 3.0 Hz, 3H),
3.16 (dd, J = 13.3, 5.4 Hz, 1H), 2.94−2.80 (m, 2H), 2.54 (dd, J =
14.4, 11.0 Hz, 1H), 2.19 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3)
δ 143.8, 138.7, 138.4, 128.9, 128.7, 128.6, 128.1, 126.8, 126.6, 124.5,
123.0, 119.5, 117.8, 62.2, 53.1, 51.9, 40.8, 17.8. HRMS (ESI-TOF)
m/z [M + H]+ Calcd for C23H25N2 329.2012; Found 329.2019.
(2S,3R)-(2S,3R)-2-(3-Fluorobenzyl)-3-(3-fluorophenyl)-6-methyl-

2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3q). Prepared ac-
cording to the general procedure, but the reaction temperature was
5 °C, and purified by column chromatography on silica gel and eluted
with petroleum ether/ethyl acetate (12:1) to afford a yellow oil (12
mg, yield 33%), with er 86.5:13.5 (HPLC, Daicel Chiralcel AD-H

column, 95:5 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 10.1 min;
tR2 = 13.5 min; [α]D

20 = +15° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.33 (dt, J = 12.1, 5.9 Hz, 1H), 7.28−7.15 (m, 3H), 7.06−
6.97 (m, 1H), 6.94 (t, J = 6.5 Hz, 2H), 6.85 (d, J = 9.7 Hz, 1H), 6.69
(d, J = 7.3 Hz, 1H), 6.56 (t, J = 7.6 Hz, 1H), 6.23 (d, J = 7.6 Hz, 1H),
4.05 (dd, J = 13.4, 4.4 Hz, 1H), 3.89−3.35 (m, 3H), 3.19 (dd, J =
13.4, 4.5 Hz, 1H), 2.98−2.77 (m, 2H), 2.59 (dd, J = 14.3, 11.0 Hz,
1H), 2.20 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 163.1 (C-
F,1JC‑F = 246.4 Hz), 163.0 (C-F,1JC‑F = 248.5 Hz), 146.2 (C-F, 3JC‑F =
7.1 Hz), 141.1 (C-F, 3JC‑F = 8.1 Hz), 137.8, 137.7, 130.2 (C-F, 3JC‑F =
8.1 Hz), 130.1 (C-F, 3JC‑F = 8.1 Hz), 124.6, 124.5 (C-F, 4JC‑F = 3.0
Hz), 123.83 (C-F, 4JC‑F = 3.0 Hz), 123.2, 119.6, 117.7, 115.7 (C-F,
2JC‑F = 20.2 Hz), 114.7 (C-F, 2JC‑F = 21.2 Hz), 113.8 (C-F, 2JC‑F =
21.2 Hz), 113.7 (C-F, 2JC‑F = 21.21 Hz), 62.0, 52.3, 51.3, 40.5, 17.8.
19F NMR (376 MHz, CDCl3) δ −112.8, −112.9. HRMS (ESI-TOF)
m/z [M + H]+ Calcd for C23H23F2N2 365.1824; Found 365.1817.

(2S,3R)-(2S,3R)-2-(4-Chlorobenzyl)-3-(4-chlorophenyl)-6-methyl-
2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3r). Prepared ac-
cording to the general procedure, but the reaction temperature was
5 °C, and purified by column chromatography on silica gel and eluted
with petroleum ether/ethyl acetate (15:1) to afford a yellow oil (14
mg, yield 35%), with er 87.5:14.5 (HPLC, Daicel Chiralcel AD-H
column, 95:5 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 12.6 min;
tR2 = 15.2 min; [α]D

20 = +25° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.37 (q, J = 8.6 Hz, 4H), 7.28 (d, J = 1.3 Hz, 2H), 7.06 (d, J
= 8.3 Hz, 2H), 6.68 (d, J = 7.1 Hz, 1H), 6.55 (t, J = 7.6 Hz, 1H), 6.21
(d, J = 7.0 Hz, 1H), 4.03 (dd, J = 13.4, 4.5 Hz, 1H), 3.76 (td, J = 11.0,
3.1 Hz, 3H), 3.15 (dd, J = 13.4, 4.6 Hz, 1H), 2.89−2.74 (m, 2H), 2.54
(dd, J = 14.5, 11.0 Hz, 1H), 2.18 (s, 3H). 13C{1H} NMR (101 MHz,
CDCl3) δ 142.2, 137.8, 137.7, 136.9, 132.6, 132.4, 130.1, 129.4, 128.8,
124.5, 119.5, 117.6, 62.1, 52.0, 51.4, 40.1, 17.8. HRMS (ESI-TOF)
m/z [M + H]+ Calcd for C23H23Cl2N2 397.1233; Found 397.1236.

(2S,3R)-2-Benzyl-6,8-dimethyl-3-phenyl-2,3,4,5-tetrahydro-1H-
benzo[b][1,4]diazepine (3s). Prepared according to the general
procedure and purified by column chromatography on silica gel and
eluted with petroleum ether/ethyl acetate (15:1) to afford a yellow oil
(19 mg, yield 56%), with er 91:9 (HPLC, Daicel Chiralcel AD-H
column, 98:2 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 10.7 min;
tR2 = 15.6 min; [α]D

20 = +25° (c 0.04, CH2Cl2).
1H NMR (400 MHz,

CDCl3) δ 7.45−7.35 (m, 4H), 7.32 (q, J = 6.1, 5.2 Hz, 3H), 7.28−
7.23 (m, 1H), 7.16 (d, J = 7.0 Hz, 2H), 6.52 (s, 1H), 6.02 (s, 1H),
3.90 (dd, J = 13.2, 4.3 Hz, 1H), 3.71 (td, J = 11.0, 2.9 Hz, 1H), 3.11
(dd, J = 13.2, 6.0 Hz, 1H), 2.94−2.79 (m, 2H), 2.53 (dd, J = 14.4,
11.1 Hz, 1H), 2.17 (s, 3H), 2.12 (s, 3H). 13C{1H}NMR (101 MHz,
CDCl3) δ 143.7, 138.7, 138.6, 136.2, 129.1, 128.9, 128.7, 128.6, 128.1,
126.8, 126.6, 124.9, 123.9, 118.4, 62.1, 53.5, 52.4, 40.9, 20.4, 17.8.
HRMS (ESI-TOF) m/z [M + H]+ Calcd for C24H27N2 343.2169;
Found 343.2165.

(2S,3R)-2-Benzyl-8-bromo-6-methyl-3-phenyl-2,3,4,5-tetrahy-
dro-1H-benzo[b][1,4]diazepine (3t). Prepared according to the
general procedure and purified by column chromatography on silica
gel and eluted with petroleum ether/ethyl acetate (12:1) to afford a
yellow oil (26 mg, yield 64%),with er 96.5:3.5 (HPLC, Daicel
Chiralcel AD-H column, 80:20 hexane/2-propanol, 1 mL/min, 254
nm; tR1 = 7.9 min; tR2 = 8.8 min; [α]D

20 = +28° (c 0.04, CH2Cl2).
1H

NMR (400 MHz, CDCl3) δ 7.41 (dd, J = 13.4, 7.1 Hz, 4H), 7.32 (d, J
= 6.9 Hz, 4H), 7.13 (d, J = 6.9 Hz, 2H), 6.78 (s, 1H), 6.30 (s, 1H),
3.97 (dd, J = 13.6, 3.4 Hz, 1H), 3.85−3.56 (m, 3H), 3.16 (dd, J =
13.2, 4.4 Hz, 1H), 2.90−2.83 (m, 2H), 2.59−2.48 (m, 1H), 2.14 (s,
3H). 13C{1H} NMR (101 MHz, CDCl3) δ 143.5, 139.6, 138.4, 137.4,
128.9, 128.8, 128.7, 128.0, 126.9, 126.8, 126.2, 125.2, 119.8, 110.8,
62.0, 52.6, 51.7, 40.8, 17.7. HRMS (ESI-TOF) m/z [M + H]+ Calcd
for C23H24BrN2 407.1117; Found 407.1115.

2-Benzyl-1H-benzo[d]imidazole (4a). Prepared according to the
general procedure and purified by column chromatography on silica
gel and eluted with petroleum ether/ethyl acetate (5:1) to afford a
white solid (8 mg, yield 38%, mp 243−244 °C). 1H NMR (400 MHz,
(DMSO-d6) δ 12.29 (s, 1H), 7.48 (s, 2H), 7.33 (d, J = 6.4 Hz, 4H),
7.27−7.21 (m, 1H), 7.13 (dd, J = 5.9, 3.1 Hz, 2H), 4.18 (s, 2H).
13C{1H} NMR (101 MHz, (DMSO-d6) δ 154.0, 138.1, 129.2, 128.9,

The Journal of Organic Chemistry pubs.acs.org/joc Article

https://dx.doi.org/10.1021/acs.joc.0c03064
J. Org. Chem. 2021, 86, 5110−5119

5116

pubs.acs.org/joc?ref=pdf
https://dx.doi.org/10.1021/acs.joc.0c03064?ref=pdf


127.0, 121.7, 35.4. HRMS (ESI-TOF) m/z [M + H]+ Calcd for
C14H13N2 209.1073; Found 209.1075.
Large-Scale Synthesis of 3a. To a tube were added a solution of

o-DPA (1.0 mmol, 1.0 equiv), 4 Å MS (250 mg), acid catalyst 5f (37
mg, 50 μmol, 0.05 equiv), and 5 mL of mixed solvent
(CH3CN:CHCl3 = 1:1); the tube was sealed with a septum,
evacuated, and backfilled with nitrogen three times. Next, phenyl-
acetaldehyde (1.5 mmol, 1.5 equiv) was dissolved in 5 mL of mixed
solvent (CH3CN:CHCl3 = 1:1), which was added into the above
solution by syringe under a nitrogen atmosphere, and it was stirred at
15 °C overnight, Next, the reaction mixture was concentrated. The
desired product was isolated by column chromatography on silica gel
(eluent: petroleum ether/ethyl acetate = 13/1), to afford a yellow oil
(107 mg, yield 68%), with er 96.5:3.5 (HPLC, Daicel Chiralcel OJ-H
column, 80:20 hexane/2-propanol, 1 mL/min, 254 nm; tR1 = 17.2
min; tR2 = 21.1 min.
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