

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 5432-5435

1-Alkyl-2-aryl-4-(1-naphthoyl)pyrroles: New high affinity ligands for the cannabinoid CB₁ and CB₂ receptors

John W. Huffman,^{a,*} Lea W. Padgett,^a Matthew L. Isherwood,^a Jenny L. Wiley^b and Billy R. Martin^b

^aHoward L. Hunter Laboratory, Clemson University, Clemson, SC 29634-0973, USA

^bDepartment of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA

> Received 12 June 2006; revised 17 July 2006; accepted 18 July 2006 Available online 4 August 2006

Abstract—Two series of 1-alkyl-2-aryl-4-(1-naphthoyl)pyrroles were synthesized and their affinities for the cannabinoid CB₁ and CB₂ receptors were determined. In the 2-phenyl series (5) the *N*-alkyl group was varied from *n*-propyl to *n*-heptyl. A second series of 23 1-pentyl-2-aryl-4-(1-naphthoyl)-pyrroles (6) was also prepared. Several compounds in both series have CB₁ receptor affinities in the 6–30 nM range. The high affinities of these pyrrole derivatives relative to JWH-030 (1, $R = C_5H_{11}$) support the hypothesis that these pyrroles interact with the CB₁ receptor primarily by aromatic stacking. © 2006 Elsevier Ltd. All rights reserved.

Several years ago we reported the synthesis, CB₁ receptor affinities, and in vivo pharmacology for a series of 1-alkyl-3-(1-naphthoyl)pyrroles (1, $R = C_3H_7$ to C_7H_{15}).¹ The 1-propyl, 1-butyl and 1-heptyl analogs have little affinity for the CB1 receptor, however, the 1-pentyl compound (JWH-030, 1, $R = C_5H_{11}$) has moderate affinity for the CB₁ receptor with $K_i = 87 \pm 3$ nM and is quite potent in vivo in the spontaneous activity and tail flick procedures. It is considerably less potent in the rectal temperature and ring immobility protocols. The 1-hexylpyrrole derivative (JWH-031, 1, $R = C_6H_{13}$) has little affinity for the CB₁ receptor ($K_i = 399 \pm 109$ nM), but has moderate potency in the spontaneous activity and tail flick assays. Subsequently JWH-030 was found to inhibit the electrically stimulated contractions of the isolated mouse vas deferens.²

The design of these cannabimimetic pyrroles was based upon a model for a general pharmacophore that related the structures of the Sterling Winthrop aminoalkylindoles, in particular WIN-55,212-2 (2), with those of traditional cannabinoids such as Δ^9 -tetrahydrocannabinol (Δ^9 -THC, 3).³ In this model the phenolic hydroxyl of THC was assumed to align with the ketonic carbonyl

^{*} Corresponding author. E-mail: huffman@clemson.edu

of WIN-55,212-2 and the cyclohexene ring of THC was overlaid upon the naphthalene portion of the aminoalkylindole. In this alignment the aminoalkyl portion of WIN-55,212-2 corresponded to the alkyl side chain of THC. This suggested that the aminoalkyl portion of **2** could be replaced by a simple alkyl group and a series of 1-alkyl-2-methyl-3-(1-naphthoyl)indoles (**4**)

Keywords: Cannabinoid; Cannabimimetic pyrroles; CB₁ receptor; CB₂ receptor.

5433

was prepared; their affinities for the CB₁ receptor and in vivo pharmacology were determined. Several of these indole derivatives have high affinity ($K_i = 10-48$ nM) for the CB₁ receptor and are quite potent in vivo.^{3,4} 2-Methyl-1-pentyl-3-(1-naphthoyl)indole (JWH-007, **4**, R = C₅H₁₁) has the highest affinity for the CB₁ receptor of this series of indole derivatives ($K_i = 10 \pm 4$ nM) and is quite potent in the mouse model of cannabinoid activity.

Although the high CB₁ receptor affinity and in vivo potency of 4 ($R = C_5H_{11}$) and related indoles supported the alignment that led to the development of these cannabimimetic indoles,^{3,4} subsequent studies indicate that these compounds interact with the CB1 receptor primarily by aromatic stacking.^{5–7} These observations suggest that the addition of an aryl substituent to cannabimimetic pyrroles similar to JWH-030 (1, $R = C_5H_{11}$) would lead to compounds with enhanced affinity for the CB_1 receptor. In order to test this hypothesis, we have prepared two series of 1-alkyl-2-aryl-4-(1-naphthoyl)pyrroles. Initially a series of 1-alkyl-2-phenyl-4-(1naphthoyl)pyrroles (5, $R = C_3H_7$ to C_7H_{15}) was prepared. Following the observation that four of these compounds have from moderate to high affinity for the CB_1 receptor, the effect upon receptor affinity of varying the C-2 aryl substituent while maintaining a 1-pentyl group was investigated ($\mathbf{6}$, Ar = various aromatic groups).

The initial synthesis of 2-phenylpyrroles **5** was based upon that used for the preparation of pyrroles **1**.¹ 2-Phenylpyrrole was prepared in poor (22%) yield from acetophenone oxime and 1,2-dichloroethane by the procedure of Korostova et al.⁸ and was converted to the 1-*p*-toluenesulfonyl derivative with *p*-toluenesulfonyl chloride in the presence of sodium hydride. Friedel– Crafts acylation with 1-naphthoyl chloride in the presence of aluminum chloride provided 2-phenyl-1-*p*-toluenesulfonyl-4-(1-naphthoyl)pyrrole (**5**, R = C₇H₇SO₂). Basic hydrolysis gave 2-phenyl-4-(1-naphthoyl)pyrrole (**5**, R = H), which was converted to 1-pentyl- (JWH-145, **5**, R = C₅H₁₁), 1-hexyl- (JWH-147, **5**, R = C₆H₁₃), and 1-heptyl-2-phenyl-4-(1-naphthoyl)pyrrole (JWH-146, **5**, $R = C_7H_{15}$) upon treatment with sodium hydride and the appropriate alkyl bromide.⁹

Due to inconsistent results and poor yields in the synthesis of 2-phenylpyrrole, an alternative synthetic approach to indoles **5** was developed (Scheme 1). Bromination of 1-propyl- (**1**, $\mathbf{R} = \mathbf{C}_3\mathbf{H}_7$) or 1-butyl-3-(1-naphthoyl)pyrrole (**1**, $\mathbf{R} = \mathbf{C}_4\mathbf{H}_9$) with NBS, or better 1,3-dibromo-5,5-dimethylhydantoin,¹⁰ provided the corresponding 2-bromopyrrole derivatives (**7**, $\mathbf{R} = \mathbf{C}_3\mathbf{H}_7$ and $\mathbf{C}_4\mathbf{H}_9$), which were used in the subsequent step without further purification. Suzuki coupling¹¹ with phenylboronic acid under standard conditions using (Ph₃P)₄Pd and Na₂CO₃, in a mixture of toluene, ethanol, and water, provided 1-propyl- (JWH-156, **5**, $\mathbf{R} = \mathbf{C}_3\mathbf{H}_7$) and 1-butyl-2-phenyl-4-(1-naphthoyl)pyrrole (JWH-150, **5**, $\mathbf{R} = \mathbf{C}_4\mathbf{H}_9$) in 59% and 52% yield, respectively.

The affinities of pyrroles **5** for the CB₁ receptor were determined by measuring their ability to displace [³H]CP-55,940 from its binding site in a membrane preparation from rat brain,¹² and CB₂ receptor affinities were determined by measuring the ability of the compounds to displace [³H]CP-55,940 from a cloned human receptor preparation.¹³ The results of these determinations are summarized in Table 1. Also included in Table 1 are the receptor affinities for WIN-55,212-2 (1) and Δ^9 -THC (3).

Based upon the high CB₁ and CB₂ receptor affinities of 1-pentyl- (JWH-145, **5**, $R = C_5H_{11}$) and 1-hexyl-2-phenyl-4-(1-naphthoyl)pyrrole (JWH-147, **5**, $R = C_6H_{13}$) a second series of 2-aryl-4-(1-naphthoyl)pyrroles was syn-

Table 1. Receptor affinities (mean \pm SEM) of 1-alkyl-2-phenyl-4-(1-naphthoyl)pyrroles (5), WIN-55,212-2 (2), and Δ^9 -THC (3)

	$K_{\rm i}$ (nM)	
	$\overline{CB_1}$	CB ₂
WIN-55,212-2 (2)	1.9 ± 0.1^{a}	$0.28\pm0.16^{\rm a}$
Δ^9 -THC (3)	41 ± 2^{b}	36 ± 10^{a}
1-Alkyl Group, R		
Propyl, JWH-156	404 ± 18	104 ± 18
Butyl, JWH-150	60 ± 1	15 ± 2
Pentyl, JWH-145	14 ± 2	6.4 ± 0.4
Hexyl, JWH-147	11 ± 1	7.1 ± 0.2
Heptyl, JWH-146	21 ± 2	62 ± 5

^a Ref. 13.

^b Ref. 12.

Scheme 1. Reagents and conditions: (a) NBS, or 1,3-dibromo-5,5-dimethylhydantoin, THF, -78 °C; (b) (Ph₃P)₄Pd, Na₂CO₃, C₆H₅CH₃, C₂H₅OH, H₂O, reflux; (c) Pd(OAc)₂, (*o*-CH₃C₆H₄)₃P, K₂CO₃, (C₄H₉)₄NBr, C₆H₅CH₃, H₂O, reflux.

thesized in order to obtain data regarding the structureactivity relationships of this class of cannabinoids at both receptors. For this series of compounds an *N*-pentyl substituent was employed and the aryl group was varied. The pentyl group was selected since JWH-030 (1, $R = C_5H_{11}$) has the highest CB₁ receptor affinity in the original series of cannabimimetic pyrroles and JWH-145 (5, $R = C_5H_{11}$) has high affinity for both receptors.

The original synthetic design for pyrroles 6 was based upon the route initially employed for the synthesis of the 2-phenylpyrroles (5), but was to employ an efficient alternative synthesis of 1-p-toluenesulfonyl-2-arylpyrroles.¹⁴ However, with the exception of 1-p-toluenesulfonyl-2-phenylpyrrole (5, $R = C_7 H_7 SO_2$), Friedel-Crafts reaction of other 1-p-toluenesulfonyl-2-arylpyrroles with 1-naphthoyl chloride under a variety of conditions afforded either complex mixtures of regioisomers or the undesired 2-aryl-5-(1-naphthoyl) compound.¹⁵ Pyrroles **6** were successfully synthesized by a modification of the procedure outlined in Scheme 1 using JWH-030 (1, $R = C_5H_{11}$) as the starting material. Bromination with 1,3-dibromo-5,5-dimethylhydantoin gave 1-pentyl-2-bromo-4-(1-naphthoyl)pyrrole (7, R = C_5H_{11}) plus a small amount of the 3-bromo-4-(1-naphthoyl) isomer, from which 7, $R = C_5 H_{11}$ was isolated in 70% yield.

Suzuki coupling of 7, $R = C_5 H_{11}$ with four substituted arylboronic acids (p-methoxyphenyl, p-methylphenyl, pchlorophenyl, and m-chlorophenyl) under the conditions used for the preparation of JWH-156, $(5, R = C_3H_7)$ and JWH-150 (5, $R = C_4H_9$) gave poor (10–26%) yields of pyrroles 6. A modified Suzuki procedure reported by Badone, which employs Pd(OAc)₂, tri-o-tolylphosphine, and K₂CO₃ in aqueous toluene with a phase transfer catalyst,¹⁶ was used to prepare 19 additional substituted pyrroles in yields of 24-83%. With one exception these compounds were synthesized using commercially available boronic acids, however o-butylphenylboronic acid is not commercially available and was prepared in four steps from o-bromobenzaldehyde.¹⁵ For purification the boronic acid was converted to the potassium tetrafluoroborate salt.¹⁷ Coupling of 7, $R = C_5 H_{11}$ with this tetrafluoroborate salt was carried out by the modified Suzuki procedure, with $(Ph_3P)_4Pd$ as catalyst to give 6, Ar = o-butylphenyl (JWH-373) in 76% yield.

The affinities of 2-arylpyrroles **6** for the CB₁ and CB₂ receptors were determined by the same methods that were employed for the series of 2-phenylpyrroles (**5**) and are listed in Table 2.^{12,13} Those 2-arylpyrroles (**6**) with small *ortho*-substituents on the 2-aryl group (JWH-370, JWH-365, JWH-292, JWH-307, and JWH-369) and the unsubstituted analog (JWH-145, **5**, R = C₅H₁₁) have uniformly high affinity for the CB₁ receptor ($K_i = 5.6-29$ nM). An exception is the *o*-trifluoromethylphenyl derivative, JWH-372 (**6**, Ar = *o*-trifluoromethylphenyl), which has $K_i = 77 \pm 2$ nM. The trifluoromethyl group is inductively a strong electron-withdrawing substituent with approximately the same van der Waals radius as a methyl group, Thus, this decreased CB₁ receptor affinity would appear to be due

Table 2. Receptor affinities (mean \pm SEM) of 1-pentyl-2-aryl-4-(1-naphthoyl)pyrroles (6)

Aryl group, Ar	$K_{\rm i}$ (nM)	
	CB ₁	CB ₂
Phenyl, JWH-145	14 ± 2	6.4 ± 0.4
ortho-isomers		
o-Methylphenyl, JWH-370	5.6 ± 0.4	4.0 ± 0.5
o-Ethylphenyl, JWH-365	17 ± 1	3.4 ± 0.2
o-Butylphenyl, JWH-373	60 ± 3	69 ± 2
o-Methoxyphenyl, JWH-292	29 ± 1	20 ± 1
o-Fluorophenyl, JWH-307	7.7 ± 1.8	3.3 ± 0.2
o-Chlorophenyl, JWH-369	7.9 ± 0.4	5.2 ± 0.3
o-Trifluoromethylphenyl, JWH-372	77 ± 2	8.2 ± 0.2
meta-isomers		
m-Methylphenyl, JWH-346	67 ± 6	39 ± 2
m-Methoxyphenyl, JWH-367	53 ± 2	23 ± 1
m-Fluorophenyl, JWH-368	16 ± 1	9.1 ± 0.7
m-Chlorophenyl, JWH-246	70 ± 4	16 ± 1
<i>m</i> -Trifluoromethylphenyl, JWH-363	245 ± 5	71 ± 1
m-Nitrophenyl, JWH-293	100 ± 5	41 ± 4
para-isomers		
<i>p</i> -Methylphenyl, JWH-244	130 ± 6	18 ± 1
<i>p</i> -Ethylphenyl, JWH-364	34 ± 3	29 ± 1
<i>p</i> -Butylphenyl, JWH-371	42 ± 1	64 ± 2
p-Methoxyphenyl, JWH-243	285 ± 40	41 ± 3
p-Fluorophenyl, JWH-308	41 ± 1	33 ± 2
p-Chlorophenyl, JWH-245	276 ± 4	25 ± 2
p-Trifluoromethylphenyl, JWH-348	218 ± 19	53 ± 1
Others		
1-Naphthyl, JWH-309	41 ± 3	49 ± 7
2-Naphthyl, JWH-347	333 ± 17	169 ± 17
3-Pyridyl, JWH-366	191 ± 12	24 ± 1

to electronic effects rather than steric effects. 1-Pentyl-2-(2-butylphenyl)-4-(1-naphthoyl)pyrrole (JWH-373, **6**, Ar = *o*-butylphenyl) has decreased CB₁ receptor affinity ($K_i = 60 \pm 3$ nM). This effect is probably due to the steric bulk of the butyl group. With the exception of the *o*-trifluoromethylphenyl analog (JWH-372) there is little difference in the CB₁ and CB₂ receptor affinities of the 2-arylpyrroles with an *ortho*-substituted phenyl group. At the CB₂ receptor, JWH-372 is an exception with greater than 9-fold selectivity for the CB₂ receptor.

Other than the meta-fluoro analog (JWH-368, 6, Ar = *m*-fluorophenyl, $K_i = 16 \pm 1 \text{ nM}$) those pyrroles with a *meta*-substituted phenyl substituent in the 2-position have from somewhat to significantly lower CB_1 receptor affinities than the *ortho*-substituted analogs. The two compounds with strongly electron-withdrawing substituents, *m*-trifluoromethylphenyl (JWH-363) and m-nitrophenyl (JWH-293) pyrroles, both have very modest CB₁ receptor affinities ($K_i = 245 \pm 5 \text{ nM}$ and 100 ± 5 nM, respectively). The two compounds with electron-releasing groups (JWH-346 and JWH-367) and the *m*-chloro analog (JWH-246) have somewhat attenuated CB1 receptor affinities relative to the orthosubstituted compounds. This entire series of pyrroles with a *m*-substituted phenyl group in the 2-position exhibit some (1.7- to 4.4-fold) selectivity for the CB₂ receptor.

For those pyrroles **6** with a *para*-substituted phenyl substituent, the compounds with small electron donating substituents (JWH-244 and JWH-243) as well as the *p*-chloro (JWH-245) and *p*-trifluoromethyl (JWH-348) analogs have little affinity for the CB₁ receptor with $K_i = 130-276$ nM. However, the *p*-ethyl (JWH-244), *p*-butyl (JWH-371), and *p*-fluoro (JWH-308) analogs have considerably greater and nearly equal affinity with $K_i = 34-42$ nM. The CB₂ receptor affinities of this group of 1-pentyl-2-aryl-4-(1-naphthoyl)pyrroles (**6**) fall in a relatively narrow range with $K_i = 18-64$ nM.

Three examples of pyrroles **6** containing aromatic substituents at C-2 other than phenyl were also prepared. The analog with a 1-naphthyl moiety (JWH-309) has relatively high affinity for the CB₁ receptor with $K_1 = 41 \pm 3$ nM, while the 2-naphthyl analog (JWH-347) has little affinity with $K_i = 333 \pm 17$ nM. The 2-(3pyridyl) compound (JWH-366) also has modest affinity for the CB₁ receptor with $K_i = 191 \pm 12$ nM. The pyridyl (JWH-366) and the 1-naphthyl (JWH-309) compounds have relatively high affinity for the CB₂ receptor with $K_i = 24 \pm 1$ and 49 ± 7 nM, respectively. The 2-naphthyl compound (JWH-347) has little affinity for the CB₂ receptor ($K_i = 169 \pm 17$ nM).

The enhanced CB₁ receptor affinities of pyrroles 5 $(R = C_5H_{11}$ to $C_7H_{15})$ and 6 containing various aryl substituents, relative to JWH-030 (1, $R = C_5H_{11}$), provide additional evidence in support of the hypothesis that cannabimimetic pyrroles as well as their indole counterparts interact with the CB_1 receptor primarily by aromatic stacking.⁵⁻⁷ In pyrroles 6 a small ortho electron-releasing substituent slightly enhances CB₁ receptor affinity relative to JWH-145 (5, $R = C_5H_{11}$) with an unsubstituted phenyl group. An inductively electron withdrawing, but electron releasing by resonance, fluoro or chloro substituent also enhances CB1 receptor affinity.¹⁸ Larger or strongly electron-withdrawing groups attenuate affinity. Other than fluorine a meta- or para-substituent diminishes CB_1 receptor affinity, however a *p*-ethyl or *p*-butylphenyl group has only a slight effect. This would tend to indicate that at least some of the decrease in affinity for the metaand para-substituted compounds is due to steric effects inasmuch as a fluorine atom is only slightly larger than a hydrogen. The variation in CB_1 receptor affinities of pyrroles 6 would appear to be due to a subtle combination of steric and electronic effects. With the exception of the 2-naphthyl analog (JWH-347) there is relatively little variation in CB_2 receptor affinities for pyrroles 6, with $K_i = 3.4-71$ nM.

Acknowledgments

The work at Clemson was supported by Grants DA03590 and DA15340 to J.W.H. and DA15579 to L.W.P.; that at Virginia Commonwealth University was supported by Grant DA03672 to B.R.M.

References and notes

- Lainton, J. A. H.; Huffman, J. W.; Martin, B. R.; Compton, D. R. *Tetrahedron Lett.* **1995**, *36*, 1401.
- Pertwee, R. G.; Griffin, G.; Lainton, J. A. H.; Huffman, J. W. Eur. J. Pharmacol. 1995, 284, 241.
- Huffman, J. W.; Dai, D.; Martin, B. R.; Martin, B. R.; Compton, D. R. *Bioorg. Med. Chem. Lett.* 1994, 4, 563.
- Wiley, J. L.; Compton, D. R.; Dai, D.; Lainton, J. A. H.; Phillips, M.; Huffman, J. W.; Martin, B. R. J. Pharmacol. Exp. Ther. 1998, 285, 995.
- Reggio, P. H.; Basu-Dutt, S.; Barnett-Norris, J.; Castro, M. T.; Hurst, D. P.; Seltzman, H. H.; Roche, M. J.; Gilliam, A. F.; Thomas, B. F.; Stevenson, L. A.; Pertwee, R. G.; Abood, M. E. J. Med. Chem. 1998, 41, 5177.
- Bramblett, R. D.; Reggio, P. H. 1995 Symposium on the Cannabinoids; International Cannabinoid Research Society: Burlington, VT, 1995, p 16.
- Huffman, J. W.; Mabon, R.; Wu, M.-J.; Lu, J.; Hart, R.; Hurst, D. P.; Reggio, P. H.; Wiley, J. L.; Martin, B. R. Bioorg. Med. Chem. 2003, 11, 539.
- Korostova, S. E.; Mikhaleva, A. I.; Sobenina, L. N.; Shevchenko, S. G.; Polovnikova, R. I. J. Org. Chem. USSR 1986, 436.
- All target compounds have mass spectral, ¹H and ¹³C NMR data consistent with the assigned structures. All compounds were homogeneous to tlc and/or glc and gave acceptable microanalytical or high-resolution mass spectral data.
- Chen, W.; Stephenson, E. K.; Cava, M. P.; Jackson, Y. A. Org. Syn. 1991, 70, 151.
- 11. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.
- Compton, D. R.; Rice, K. C.; De Costa, B. R.; Razdan, R. K.; Melvin, L. S.; Johnson, M. R.; Martin, B. R. J. *Pharmacol. Exp. Ther.* **1993**, 265, 218.
- Showalter, V. M.; Compton, D. R.; Martin, B. R.; Abood, M. E. J. Pharmacol. Exp. Ther. 1996, 278, 989.
- Knight, L. W.; Huffman, J. W.; Isherwood, M. L. Synlett 2003, 1993.
- Padgett, L. W. Ph.D. Dissertation, Clemson University, May 2005.
- Badone, D.; Baroni, M.; Cardamone, R.; Ielmini, A.; Guzzi, U. J. Org. Chem. 1997, 62, 7170.
- Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020.
- 18. The net electronic effects of aryl halogen substituents are weakly electron withdrawing.