Article

Synthesis and Structural Implication of the JKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1

Makoto Sasaki,* Kotaro Iwasaki, and Keisuke Arai

 Cite This: J. Org. Chem. 2021, 86, 4580–4597
 Read Online

 ACCESS
 Int
 Metrics & More
 Image: Article Recommendations
 Image: Supporting Information

ABSTRACT: Synthesis of the JKLMN-ring fragment of Caribbean ciguatoxin C-CTX-1, the causative toxin of ciguatera fish poisoning in the Caribbean Sea and the Northeast Atlantic areas, is described in ^{Br} detail. Key to the synthesis are a [2,3]-sigmatropic rearrangement to construct a seven-membered α -hydroxy *exo*-enol ether, stereoselective construction of an angular tetrasubstituted stereogenic center on the seven-membered M-ring by a hydrogen atom transfer-based reductive olefin coupling, Suzuki–Miyaura coupling of the KLMN-ring enol phosphate with a highly congested M-ring, and silica gel-mediated epoxide ring opening to form the J-ring. Comparison of the nuclear magnetic resonance spectroscopic data for the synthesized fragment with those for the natural product provided support for the formerly assigned structure of the N-ring in the right-hand terminal of C-CTX-1.

INTRODUCTION

Ciguatera fish poisoning (CFP) is a foodborne disease prevalent in circumtropical areas of the Pacific Ocean, Indian Ocean, and Caribbean Sea with more than 20,000-60,000 patients annually, and continues to be a serious public health problem around the world.^{1,2} Because of the globalization of trade, in addition to climate change, the incidence of CFP has recently been spreading in temperate regions,³ and thus prevention of CFP is a global issue to be urgently addressed. Pacific ciguatoxins, the causative toxins for CFP in the Pacific Ocean, are produced by the epiphytic dinoflagellate Gambierdiscus toxicus, enter the food chain, and accumulate in many fish.⁴ So far, more than 20 Pacific ciguatoxin congeners, including CTX3C $(1)^5$ (Figure 1), have been identified from toxic fish and/or G. toxicus.⁶ Hirama and colleagues have reported the total synthesis of four Pacific ciguatoxins, including CTX3C (1),⁷ and developed a sandwich enzyme-linked immunosorbent assay utilizing monoclonal antibodies for their sensitive and specific detection.⁸

In contrast to the Pacific ciguatoxins, research on Caribbean ciguatoxins has not made much progress because of the extremely limited availability of toxins from natural sources. A major Caribbean ciguatoxin, C-CTX-1, the causative toxin for CFP in the Caribbean Sea and the Northeast Atlantic areas, was first isolated in 1995 by Dickey and co-workers from Caribbean barracuda (*Sphyraena barracuda*) and horse-eye jack (*Caranx latus*).⁹ In 1997, Vernoux and Lewis isolated C-CTX-1, along with a minor analogue, C-CTX-2, from horse-eye jack.¹⁰ The structures of C-CTX-1 (2) and C-CTX-2 (3) were determined from extensive two dimensional nuclear magnetic resonance (2D NMR) experiments (Figure 1).¹¹ Compared to

the typical Pacific ciguatoxins, such as 1, Caribbean ciguatoxins possess 14 ether rings with a more complicated architecture. In particular, the sterically congested seven-membered M-ring with two pseudoaxially oriented angular methyl groups in a 1,3-relationship represents a formidable synthetic challenge.¹² Very recently, it has been reported on the basis of LC–MS/ MS analysis that the N-ring of C-CTX-1 (2) is more likely a seven-membered ring as shown in structure 4 rather than a sixmembered ring.¹³ Hence, the structure of the N-ring should be confirmed using synthetic methods.

As part of our synthetic studies toward C-CTX-1 and its structural fragments as synthetic haptens for the development of antibody-based immunological detection methods, we have already developed a synthetic route to the LMN-ring fragment of C-CTX-1, in which a hydrogen atom transfer (HAT)-based olefin coupling¹⁴ was utilized for an efficient construction of the M-ring.¹⁵ We describe herein in detail an advanced synthetic route to the JKLMN-ring fragment of C-CTX-1 through Suzuki–Miyaura coupling and *6-exo* epoxide opening, providing support for the originally assigned structure of the right-hand N-ring.

Received: December 26, 2020 Published: March 5, 2021

Figure 1. Structures of CTX3C (1), C-CTX-1 (2), C-CTX-2 (3), and newly proposed structure 4 for C-CTX-1.

RESULTS AND DISCUSSION

Synthesis Plan. Retrosynthetic analysis of the JKLMN-ring fragment 5 of C-CTX-1 (2) is depicted in Scheme 1. We envisioned that the J-ring of 5 would be constructed by acid- or base-catalyzed 6-exo epoxide opening and the precursor epoxide could be derived from enol ether 6. Compound 6 would be synthesized from enol phosphate 7 and alkylborate 8 through Suzuki-Miyaura coupling,^{16,17} and enol phosphate 7 in turn would be accessed from compound 9. For the construction of the C53 tetrasubstituted stereogenic center as well as installation of a four-carbon unit required for the Nring, we planned to use a HAT-based reductive olefin coupling^{14,18} of *exo*-enol ether 10 with vinyl ketone 11. The exo-enol ether 10 would be derived from allylic selenide 12 through [2,3]-sigmatropic rearrangement.¹⁹ The selenide 12 would be available from the corresponding allylic alcohol, which in turn, would be accessed from enol phosphate 13 through Stille coupling with (tributylstannyl)methanol.

Synthesis of Enol Phosphate 13. The synthesis of enol phosphate 13 was carried out according to the previous method¹⁵ with some modifications (Scheme 2). Benzylation of the known alcohol 14^{12b} (93%) and ozonolysis of the derived benzyl ether 15 provided the corresponding aldehyde, which was subjected to Brown asymmetric allylboration using (–)-*B*-allyldiisopinocamphenylborane.²⁰ The desired homoallylic alcohol 17 was obtained in 73% yield (two steps) with a diastereomeric ratio of 10:1. However, during scaleup, we could not secure reproducibility of the diastereomer ratio of this allylboration (4.8:1 to 15:1). No conversion of the aldehyde to 17 was observed under Keck allylation.²¹ In

contrast, allyltitanation with the Hafner-Duthaler reagent²² provided gram amounts of 17 in high yield (89% in two steps) and with excellent and reproducible diastereoselectivity (dr > 20:1). The configuration of the C44 stereogenic center was confirmed using the NOE data after conversion to bisacetonide derivative 18 (Figure 2). Protection of alcohol 17 as its TIPS ether and hydroboration of the terminal olefin using dicyclohexylborane followed by benzylation provided bisbenzyl ether 19 in 91% overall yield. Removal of the pmethoxybenzylidene acetal under acidic conditions afforded diol 20 in 96% yield. Diol 20 was subjected to one-pot triflation and triethylsilyl (TES) protection²³ provided a triflate, which was then treated with allylmagnesium bromide in the presence of CuBr^{24} to afford elongated olefin 21 in 96% yield in two steps. Removal of the TES group of 21 with TsOH (98%), followed by Dess-Martin oxidation²⁵ of the resulting secondary alcohol 22, provided ketone 23 in 98% yield. Upon treatment of ketone 23 with excess Me₃Al (CH₂Cl₂, -78 to -15 °C),²⁶ the requisite tertiary alcohol 24 was obtained in 92% yield along with a small amount of its diastereomer (7%). The configuration of the C48 stereogenic center of 24 was determined by NOE. Hydroboration of 24 provided diol 25, which was oxidized with 2-hydroxy-2-azaadamantane (AZA-DOL) and PhI(OAc)₂ in CH₂Cl₂/pH 7 buffer $(1:1)^{27}$ to afford hydroxy carboxylic acid 26 in 87% yield in two steps. Yamaguchi lactonization²⁸ of 26 provided seven-membered lactone 27 in 96% yield. Finally, lactone 27 was converted into enol phosphate 13 in 97% yield by treatment with KHMDS and (PhO)₂P(O)Cl [HMPA, tetrahydrofuran (THF), -78 °C].

Scheme 1. Retrosynthetic Analysis of JKLMN-Ring Fragment 5 of C-CTX-1

Synthesis of exo-Enol Ether 10. With the desired enol phosphate 13 in hand, we next attempted the hydroxymethy-

Figure 2. Configurational assignment of homoallylic alcohol 17.

lation by Stille coupling.²⁹ Thus, Stille coupling of enol phosphate 13 with (tributylstannyl)methanol^{30,31} using Pd- $(PPh_3)_4$ and LiCl (THF, reflux) gave allylic alcohol 28 in 85% yield (Scheme 3). Alcohol 28 was then converted into 2nitrophenylselenide 12 in 88% yield according to the Grieco-Nishizawa protocol.³² The [2,3]-sigmatropic rearrangement¹⁹ of selenide 12 was best achieved by treatment with aqueous H_2O_2 and 4-dimethylaminopyridine (DMAP) in THF at -44 °C to room temperature, giving α -hydroxy *exo*-enol ether 29 with the incorrect configuration at C52 in 68% yield. Under these conditions, the desired alcohol 31 was obtained in only small amounts (<2%). The C52 configuration of 29 was confirmed using the NOE data as shown in Figure 3. The observed stereoselectivity in this [2,3]-sigmatropic rearrangement could be explained by the steric hindrance of the C48 angular methyl group. The C52 hydroxy group of 29 was inverted by modified Mitsunobu conditions (4- $NO_2C_6H_4CO_2H$, Ph_3P , DEAD, toluene, 0 °C),³³ and subsequent methanolysis of the resulting 4-nitrobenzoate 30 (K₂CO₃ and MeOH) led to alcohol 31 in 74% yield in two steps. TES protection of 31 completed the synthesis of exoenol ether 10 in 95% yield.

https://dx.doi.org/10.1021/acs.joc.0c03031 J. Org. Chem. 2021, 86, 4580-4597

Article

Scheme 3. Synthesis of exo-Enol Ether 10

Figure 3. Configurational assignment of alcohol 29.

Synthesis of LMN-Ring Fragment 9. With the key intermediate **10** in hand, we next investigated the crucial HAT-based reductive olefin coupling¹⁴ with the known vinyl ketone **11**³⁴ using a combination of (isopropoxy)phenylsilane Ph(*i*-PrO)SiH₂³⁵ and iron(III) diisobutyrylmethanoate (Fe-(dibm)₃)^{14a,b} (Table 1). Thus, slow addition of Ph(*i*-PrO)SiH₂ (3.5 equiv) to *exo*-enol ether **10** and vinyl ketone **11** (3.5 equiv) in the presence of Fe(dibm)₃ (10 mol %) and Na₂HPO₄ (1 equiv) in EtOAc/*i*-PrOH (1:1) at room temperature led to the desired product **33** in moderate yield (44%) as a single stereoisomer (Table 1, entry 1). The yield of

33 was improved by increasing the molar amounts of 11 and $Fe(dibm)_3$ (entry 2). Baran and colleagues reported that olefin cross-coupling of glucal derivatives required the slow addition of a large excess of both methyl vinyl ketone and PhSiH₃ to obtain an acceptable yield.^{14a,b} Thus, a solution of vinyl ketone 11 (5 equiv) and Ph(i-PrO)SiH₂ (5 equiv) in EtOAc was slowly added using a syringe pump to a mixture of 10, Fe(dibm)₃ (30 mol %), and Na₂HPO₄ in *i*-PrOH to provide 33 in 63% yield (entry 3). Finally, running the reaction in the degassed solvents further improved the yield of the desired ketone 33 to 70% (entry 4). The configuration of the newly generated stereogenic center of C53 was confirmed by an NOE observed between two methyl groups. The stereochemical outcome of this radical reaction could be ascribed to the effective shielding of the α -face of the seven-membered ring by the C48 angular methyl and C52 triethysilyloxy substituents of the intermediary radical species 32.

Selective removal of the *tert*-butyldimethylsilyl (TBS) and TES ethers of **33** under acidic conditions (CSA, $CH_2Cl_2/MeOH$) gave methyl acetal **34** in 85% yield as a single

^{*a*}The reaction was performed in the presence of Na₂HPO₄ (1 equiv) in EtOAc/*i*-PrOH (1:1). ^{*b*}Silane was added to a solution of *exo*-olefin, enone, and Fe(dibm)₃ in EtOAc/*i*-PrOH. ^{*c*}A solution of enone and silane in EtOAc was slowly added via a syringe pump to a solution of *exo*-olefin and Fe(dibm)₃ in *i*-PrOH. ^{*d*}The solvents were degassed with argon for 1 h.

diastereomer (Scheme 4). Subsequent treatment of methyl acetal 34 with scandium(III) triflate^{12b,36} in acetone provided the desired LMN-ring fragment 9 of C-CTX-1 in 81% yield.

Scheme 4. Synthesis of LMN-Ring Fragment 9

Synthesis of KLMN-Ring Enol Phosphate 7. Removal of the benzyl ethers of **9** was carried out with lithium 4,4'-di-*tert*-biphenylide (LiDBB)³⁷ to give diol **35** in 99% yield (Scheme 5). Oxidative lactonization of 1,6-diol **35** using a catalytic

amount of TEMPO and PhI(OAc)₂ as a stoichiometric oxidant $(CH_2Cl_2, 0.1 \text{ M}, \text{ room temperature})^{38}$ proceeded smoothly to provide seven-membered lactone **36** in 94% yield. Lactone **36** was converted to the requisite enol phosphate 7 in 97% yield by the action of KHMDS and (PhO)₂P(O)Cl.

Synthesis of lodide 37. The synthesis of iodide 37, the precursor of alkylborate 8, commenced with the known alcohol 38,³⁹ which was readily available from (–)-malic acid in three steps (Scheme 6). Protection of 38 as its PMB ether using 2-(4-methoxybenzyloxy)-4-methylquinoline 39 in the presence of CSA (0.1 equiv) (CH₂Cl₂, room temperature, 4 days)⁴⁰ provided 40,⁴¹ which was reduced with LiAlH₄ (THF, –40 °C) to give primary alcohol 41 in 67% yield in two steps. Iodination of alcohol 41 with I₂, PPh₃, and imidazole provided iodide 37 in 84% yield.

Scheme 6. Synthesis of Iodide 37

Synthesis of Ketone 43. Suzuki–Miyaura coupling of enol phosphate 7 with alkylborate 8, in situ generated from iodide 37 (*t*-BuLi, *B*-MeO-9-BBN, Et₂O/THF, -78 °C to room temperature),⁴² was carried out in the presence of Pd(PPh₃)₄ as a catalyst and the aqueous Cs₂CO₃ solution as a base in dimethylformamide (DMF) at 50 °C, giving the desired enol ether 6 in 81% yield (Scheme 7). Hydroboration

Scheme 7. Synthesis of Ketone 43

of 6 with BH₃·THF followed by oxidative workup gave alcohol 42 (79%) with the incorrect configuration at C41 because of the sterically encumbered pseudoaxially oriented tri-(isopropyl)silyloxy group at the C44 position.⁴³ Dess–Martin oxidation²⁵ of alcohol 42 (90%), followed by treatment of the resultant ketone with excess 1,8-diazabicyclo[5.4.0]undec-7ene (DBU) in toluene under reflux conditions, provided the desired ketone 43 (86%). The relative configuration at the C41 position of 43 was confirmed using the ROE data.

Synthesis of JKLMN-Ring Fragment 5. With the desired ketone 43 in hand, the next task was the construction of the J-ring. To this end, stereoselective reduction of ketone 43 was next investigated. After some experimentation, it was found that DIBALH reduction of 43 (CH₂Cl₂, -78 °C) gave the desired alcohol 44 albeit in a moderate yield (51%) (Scheme 8). The configuration at the C42 position was confirmed by

Scheme 8. Synthesis of JKLMN-Ring Fragment 5

derivatization to the corresponding acetate 45 and ROE experiments. After careful examination of the DIBALH reduction of 43, its low yield was ascribed to the partial deprotection of the primary TBS ether under the current reaction conditions.⁴⁴ Thus, ketone 43 was treated with excess DIBALH in CH₂Cl₂ at -78 °C for 1 h, and then allowed to warm to -20 °C and stirred for 3 h to complete the deprotection of the primary hydroxy group by reductive cleavage of the TBS ether. Under these conditions, diol 46 was obtained in 76% yield with a diastereomer ratio of >20:1. Selective tosylation of the primary alcohol within 46 (TsCl, Et₃N, DMAP, CH₂Cl₂) provided tosylate 47 in 95% yield. Oxidative removal of the PMB ether of 47 with DDQ, followed by treatment with K₂CO₃ in CH₂Cl₂/MeOH, afforded epoxide 48 in 84% yield in two steps. The final 6-exo cyclization in the epoxide opening of 48 to form the J-ring proved to be unexpectedly difficult. Cyclization of 48 under basic conditions using potassium dimsylate⁴⁵ in THF provided the desired 49 in only a low yield (32%). An acidic treatment of epoxide 48 using CSA, PPTS, or Sc(OTf)₃ also resulted in a low yield of 49 because of the competitive cleavage of the acetonide group. Upon careful experimentation, it was found that cyclization product 49 was formed in small amounts during the experiment on a thin layer chromatography (TLC) plate for a long time. Accordingly, epoxide 48 was dissolved in a slurry of silica gel in toluene and stirred at 50 °C for 13 h 40 min to effect clean cyclization, giving the desired 49 in quantitative yield.⁴⁶ Finally, desilylation of **49** with tetra-*n*-butylammonium fluoride (TBAF) (THF, 50 °C) completed the synthesis of the JKLMN-ring fragment 5 in 87% yield. The relative configuration of the newly generated stereogenic centers within 5 was determined by NOE experiments.

Structural Implication of the N-Ring of Caribbean Ciguatoxin C-CTX-1. In order to confirm the structure of the N-ring of C-CTX-1, we decided to synthesize tetrahydroxy JKLMN-ring fragment 50 and compare its NMR data with those reported for the natural product. Thus, cleavage of the acetonide of compound 5 with THF/H₂O/TFA (5:1:1) at 50 $^{\circ}$ C gave tetraol 50 in 94% yield as an approximately 5:1 mixture of anomers at the C56 position (Scheme 9). The ¹H and ¹³C NMR data for 50 thus prepared were carefully compared to those for the corresponding portion of the natural

product.⁴⁷ As shown in Figure 4, the ¹H NMR chemical shifts in the KLMN-ring region of **50** matched well with those reported for the natural product within 0.06 ppm, while the ¹³C NMR chemical shifts for **50** also corresponded to those for C-CTX-1 within ± 1.0 ppm except that for C62 (C53-Me).⁴⁸ Especially, the ¹H and ¹³C NMR signals of the C57 hydroxymethyl group were clearly observed in compound **50**, and their chemical shifts were virtually identical to those reported for the natural product, but there is no corresponding partial structure in the revised structure **4**. These results demonstrated that the formerly assigned structure of the righthand terminal of C-CTX-1 by the Lewis group is most likely represented by structure **50**, which contains the six-membered N-ring.

CONCLUSIONS

In conclusion, we have reported an advanced synthetic route to the JKLMN-ring fragment of Caribbean ciguatoxin C-CTX-1. Highlights of the synthesis are a [2,3]-sigmatropic rearrangement of allylic selenoxide to form the α -hydroxy *exo*-enol ether, a HAT-based reductive olefin coupling for the stereoselective construction of an angular tetrasubstituted stereogenic center on the seven-membered M-ring, and silica-gel-promoted *6-exo* epoxide opening to form the J-ring. Additional salient features

Figure 4. Differences in ¹H and ¹³C NMR chemical shifts between C-CTX-1 and synthetic fragment **50**. $\Delta \delta = \delta$ (natural product) $-\delta$ (synthetic fragment) in ppm (pyridine- d_5).

include a hydroxymethylation by Stille coupling of sevenmembered enol phosphate, TEMPO/PhI(OAc)₂-mediated oxidative lactonization of a 1,6-diol, and Suzuki–Miyaura coupling of the KLMN-ring enol phosphate containing the sterically congested M-ring. The present synthesis also provided support for the formerly assigned structure of the N-ring of C-CTX-1. The first synthesis of the JKLMN-ring fragment of C-CTX-1 enabled the preparation of a nontoxic hapten to generate monoclonal antibodies that specifically recognize the right-hand structure of C-CTX-1. Further studies along this line and toward the total synthesis of C-CTX-1 are underway and will be reported in due course.

EXPERIMENTAL SECTION

General Methods. All reactions sensitive to moisture and/or air were carried out under an atmosphere of argon in dry, freshly distilled solvents under anhydrous conditions using oven-dried glassware unless otherwise noted. Anhydrous acetone, acetonitrile (MeCN), 1,2-dichloroethane (DCE), dichloromethane (CH₂Cl₂), DMF, ethyl acetate (EtOAc), methanol (MeOH), and 2-propanol (*i*-PrOH) were purchased, and anhydrous diethyl ether (Et₂O), THF, and toluene were purified using a Glass Contour solvent purification system. 2,6lutidine and triethylamine (Et₃N) were distilled from calcium hydride under an atmosphere of argon. Hexamethylphosphoramide (HMPA) was distilled from calcium hydride under reduced pressure. All other chemicals were purchased at the highest commercial grade and used directly. Analytical TLC was performed using a precoated glass plate (silica gel 60 F₂₅₄, 0.25 mm thickness). Flash column chromatography was carried out using silica gel (spherical, neutral, and 40–100 mesh). Article

Optical rotations were measured on a digital polarimeter at 589 nm. IR spectra were recorded as a thin film on a KBr disk using an FT-IR spectrometer and reported in wavenumbers (cm⁻¹). ¹H and ¹³C NMR spectra were recorded using 600 and 150 MHz NMR spectrometers, respectively. Chemical shift values are reported in ppm (δ) downfield from tetramethylsilane with reference to internal residual solvents [1H NMR, CHCl₃ (7.26), C₆HD₅ (7.16), and C₅HD₄N (7.21); ¹³C NMR, CDCl₃ (77.0), C₆D₆ (128.0), and C₅D₅N (123.5)]. Coupling constants (J) are reported in hertz (Hz). The following abbreviations were used to designate the multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet or unresolved; and br = broad. High-resolution mass spectra (HRMS) were measured on an electron spin ionization-time of flight mass spectrometer. The diastereomer ratio (dr) and the E/Z isomer ratio were estimated by ¹H NMR spectroscopic analysis, unless otherwise noted.

Benzyl Ether 15. To a solution of alcohol 14 (20.40 g, 66.59 mmol) in THF (320 mL) at 0 °C was added t-BuOK (17.26 g, 153.8 mmol). The resultant solution was stirred at room temperature for 20 min. To this mixture were added sequentially BnBr (12.0 mL, 101 mmol) and n-Bu₄NI (2.47 g, 6.69 mmol), and the resultant solution was stirred at room temperature for 2 h. The reaction was quenched with the saturated aqueous NH₄Cl solution (100 mL) at 0 °C. The mixture was extracted with EtOAc (500 mL), and the organic layer was washed with brine $(2 \times 100 \text{ mL})$, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 5 to 10 to 15 to 20% EtOAc/ hexanes) gave benzyl ether 15 (24.68 g, 93%) as a colorless solid: mp 83.0-84.0 °C; $[\alpha]_{D}^{24.3}$ -35.9 (c 1.29, CHCl₃); IR (neat): 2984, 2940, 2863, 1615, 1518, 1250, 1092, 1034, 829, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.44-7.40 (m, 2H), 7.36-7.27 (m, 5H), 6.92-6.88 (m, 2H), 6.04 (dd, J = 17.4, 11.0 Hz, 1H), 5.48 (s, 1H), 5.34 (dd, J = 17.4, 1.4 Hz, 1H), 5.13 (dd, J = 11.0, 1.4 Hz, 1H), 4.61 (d, J = 11.9 Hz, 1H), 4.50 (d, J = 11.9 Hz, 1H), 4.27 (m, 1H), 3.80 (s, 3H), 3.70-3.64 (m, 2H), 3.47 (m, 1H), 3.43 (dd, J = 11.5, 4.6 Hz, 1H), 2.41 (ddd, J = 11.9, 4.6, 4.1 Hz, 1H), 1.80 (ddd, J = 11.9, 11.5, 11.5 Hz, 1H), 1.41 (s, 3H); ${}^{13}C{}^{1}H{}$ NMR (150 MHz, CDCl₃): δ 160.1, 142.6, 138.1, 130.0, 128.3 (2C), 127.7, 127.5 (2C), 127.4 (2C), 113.7 (2C), 113.5, 101.6, 79.0, 77.32, 77.29, 71.6, 70.0, 66.3, 55.3, 30.9, 15.9; HRMS (FAB) m/z: $[M + H]^+$ calcd for C₂₄H₂₉O₅, 397.2010; found, 397.2013.

Aldehyde **S1**. Ozone gas was bubbled through a solution of benzyl ether **15** (6.12 g, 15.4 mmol) in CH₂Cl₂/MeOH/pyridine (4:4:1, v/ v/v, 153 mL) at -78 °C until a blue color persisted for 34 min. After passing O₂ gas to remove excess O₃ for 12 min, Me₂S (7.0 mL, 94.6 mmol) was added to the reaction mixture. The resultant solution was allowed to warm to room temperature and stirred for 3 h. The mixture was concentrated under reduced pressure. The residue was diluted with EtOAc (250 mL), washed with H₂O (80 mL) and brine (80 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude aldehyde **S1** (6.29 g) was used in the next step without further purification.

Preparation of Duthaler–Hafner Reagent 16. To a suspension of CpTiCl₃ (4.49 g, 20.06 mmol) in anhydrous cyclohexane (400 mL) was added (4*R*,*trans*)-2,2-dimethyl- α , α , α' , α' -tetraphenyl-1,3-dioxo-lane-4,5-dimethanol (9.37 g, 20.08 mmol). The reaction flask was fitted with a Soxhlet extractor containing 16 g of MgO (activated at 450 °C (heat gun) for 3.5 h under reduced pressure), and the mixture was stirred under reflux (oil bath) for 19 h 20 min. The resultant mixture was cooled to room temperature, and the solvent was evaporated with caution. The residue was twice dissolved in anhydrous Et₂O (200 mL), stirred at room temperature for 10–15 min, and concentrated under reduced pressure. Duthaler–Hafner reagent 16 thus obtained as a pale yellow solid was used in the next step without further purification.

Homoallylic Alcohol 17. To a solution of the above Duthaler–Hafner reagent 16 in Et₂O (300 mL) at 0 $^{\circ}$ C was added allylmagnesium chloride (2.0 M solution in THF, 9.6 mL, and 19.2 mmol) dropwise over 5 min, and the resultant orange-brown suspension was stirred at 0 $^{\circ}$ C for 1 h 50 min. The resultant

pubs.acs.org/joc

suspension was cooled to -78 °C, and a solution of the above crude aldehyde S1 (6.29 g) in THF (25 mL + 2 \times 5 mL rinse) was added dropwise over 10 min. The resultant mixture was stirred at -78 °C for 3.5 h. The reaction was quenched with pH 7.0 phosphate buffer (150 mL). The mixture was allowed to warm to room temperature and stirred for 4 days. The mixture was filtered through a pad of Celite, washing with EtOAc (250 mL). The aqueous layer was separated and extracted with EtOAc (120 mL). The combined organic extracts were washed with brine $(2 \times 100 \text{ mL})$, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 10 to 20 to 30 to 35% EtOAc/ hexanes) gave homoallylic alcohol 17 (6.05 g, 89% in two steps, dr > 20:1) as a colorless solid and (4R, trans)-2,2-dimethyl- $\alpha, \alpha, \alpha', \alpha'$ tetraphenyl-1,3-dioxolane-4,5-dimethanol (9.09 g, 97%) was recovered: data for 17: mp 76.0–77.0 °C; $[\alpha]_D^{19.8}$ –61.3 (c 1.32, CHCl₃); IR (neat): 3501, 2948, 2865, 2360, 2341, 1615, 1518, 1463, 1386, 1367, 1250, 1173, 1094, 1030, 829, 699 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.43–7.40 (m, 2H), 7.37–7.33 (m, 2H), 7.32–7.28 (m, 3H), 6.91–6.88 (m, 2H), 5.88 (dddd, J = 17.0, 10.1, 7.3, 6.4 Hz, 1H), 5.48 (s, 1H), 5.12–5.05 (m, 2H), 4.66 (d, J = 11.5 Hz, 1H), 4.45 (d, J = 11.5 Hz, 1H), 4.21 (m, 1H), 3.80 (s, 3H), 3.79 (dd, J = 11.5, 4.6 Hz, 1H), 3.65-3.59 (m, 3H), 3.42 (m, 1H), 3.03 (m, 1H), 2.54 (ddd, *J* = 11.5, 4.6, 4.6 Hz, 1H), 2.38 (m, 1H), 2.14 (m, 1H), 1.79 (ddd, *J* = 11.9, 11.5, 11.5 Hz, 1H), 1.34 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 160.1, 137.3, 136.4, 129.8, 128.5 (2C), 127.9, 127.7 (2C), 127.4 (2C), 116.5, 113.7 (2C), 101.7, 78.5, 77.9, 77.2, 76.9, 70.2, 69.8, 66.2, 55.3, 35.4, 30.0, 12.6; HRMS (FAB) m/z: [M + H]⁺ calcd for C₂₆H₃₃O₆, 441.2272; found, 441.2274.

Bis-acetonide **18**. To a solution of homoallylic alcohol **17** (22.1 mg, 0.0502 mmol) in MeOH (1 mL) was added 10% Pd/C (11 mg), and the resultant mixture was stirred at room temperature under an atmosphere of H_2 (balloon) for 22 h. The mixture was filtered through a pad of Celite eluting with EtOAc and MeOH, and the filtrate was concentrated under reduced pressure to give crude tetraol (13.5 mg).

To a solution of the above tetraol in CH_2Cl_2 (1 mL) were added 2,2-dimethoxypropane (0.2 mL, 1.6 mmol) and PPTS (2.8 mg, 0.011 mmol), and the resultant solution was stirred at room temperature for 17 h. The mixture was neutralized with Et₃N (0.1 mL) and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10% EtOAc/hexanes) gave bis-acetonide 18 (12.3 mg, 78% in two steps): $[\alpha]_{D}^{26.4}$ -6.9 (c 1.26, CHCl₃); IR (neat): 2991, 2958, 2873, 1466, 1269, 1200, 1120, 1104, 1069, 1041, 931, 903, 863, 755 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 3.79 (dd, J = 10.6, 5.0 Hz, 1H), 3.68 (dd, J = 11.5, 4.1 Hz, 1H), ca. 3.66 (m, 1H, overlapped), 3.65 (dd, J = 10.6, 10.5 Hz, 1H), 3.52 (dd, *J* = 9.6, 2.3 Hz, 1H), 3.48 (ddd, *J* = 10.5, 10.1, 5.0 Hz, 1H), 1.92 (ddd, J = 11.5, 4.1, 4.1 Hz, 1H), 1.76 (ddd, J = 11.5, 11.5, 11.5 Hz, 1H), 1.56-1.44 (m, 2H, overlapped), 1.49 (s, 3H), 1.47 (s, 3H), 1.41 (s, 3H), 1.40 (s, 3H), 1.32-1.22 (m, 2H, overlapped), 1.24 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 100.2, 99.4, 77.7, 74.0, 73.0, 70.7, 68.1, 63.5, 30.3, 29.9, 29.6, 29.2, 19.6, 19.3, 19.2, 14.0, 10.6; HRMS (FAB) m/z: $[M + H]^+$ calcd for C₁₇H₃₁O₅ 315.2166; found, 315.2166.

Bis-benzyl Ether 19. To a solution of alcohol 17 (10.42 g, 23.65 mmol) in DCE (200 mL) were sequentially added 2,6-lutidine (8.4 mL, 72.1 mmol) and TIPSOTf (7.8 mL, 29.0 mmol). The resultant solution was heated to 50 °C (oil bath) for 22.5 h. Additional TIPSOTf (1.9 mL, 7.07 mmol) was added, and the resultant solution was stirred at 50–60 $^\circ C$ (oil bath) for 5.5 h. The reaction was quenched with MeOH (3 mL) at room temperature, and the resultant mixture was stirred at room temperature for 15 min. The mixture was diluted with CH_2Cl_2 (200 mL), washed with the saturated aqueous NaHCO₃ solution (150 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 5% EtOAc/hexanes) gave TIPS ether S2 (15.46 g) as a pale yellow oil, which was contaminated with a small amount of TIPSOH. Data for S2: $[\alpha]_{D}^{21.1} - 37.6$ (c 1.13, CHCl₃); IR (neat): 2943, 2864, 1615, 1463, 1384, 1365, 1250, 1173, 1092, 1034, 883, 827, 678 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ

7.44–7.40 (m, 2H), 7.36–7.26 (m, 5H), 6.91–6.87 (m, 2H), 5.85 (dddd, *J* = 17.0, 10.0, 6.9, 6.9 Hz, 1H), 5.44 (s, 1H), 5.02–4.95 (m, 2H), 4.61 (d, *J* = 11.5 Hz, 1H), 4.51 (d, *J* = 11.5 Hz, 1H), 4.18 (m, 1H), 4.11 (dd, *J* = 11.5, 4.6 Hz, 1H), 3.84 (dd, *J* = 6.9, 4.6 Hz, 1H), 3.80 (s, 3H), 3.65–3.58 (m, 2H), 3.40 (m, 1H), 2.64 (m, 1H), 2.43 (ddd, *J* = 11.5, 4.6, 4.6 Hz, 1H), 2.33 (m, 1H), 1.73 (ddd, *J* = 11.9, 11.9, 11.4 Hz, 1H), 1.28 (s, 3H), 1.15–1.08 (m, 21H); $^{13}C{^{1}H}$ NMR (150 MHz, CDCl₃): δ 160.1, 138.2, 137.6, 130.1, 128.3 (2C), 127.7 (2C), 127.6, 127.4 (2C), 115.9, 113.7 (2C), 101.7, 80.8, 79.0, 76.9, 73.0, 70.7, 69.9, 66.3, 55.3, 39.2, 30.8, 18.5 (3C), 18.4 (3C), 14.3, 13.3 (3C); HRMS (FAB) *m*/*z*: [M + H]⁺ calcd for C₃₅H₅₃O₆Si, 597.3608; found, 597.3617.

To a solution of cyclohexene (7.0 mL, 69.1 mmol) in THF (140 mL) at 0 °C was slowly added BH3. THF (0.9 M solution in THF, 34.0 mL, 30.6 mmol), and the resultant solution was stirred at 0 $^\circ\text{C}$ for 1 h. To the resultant white suspension was slowly added a solution of the above TIPS ether S2 (15.46 g) in THF (25 mL + 2×5 mL rinse) over 12 min. The resultant solution was stirred at room temperature for 1 h. To this solution at 0 °C were slowly added 3 M aqueous NaOH solution (34 mL) followed by 30% aqueous H₂O₂ solution (34 mL). The resultant mixture was stirred at room temperature for 1.5 h. The organic layer was separated, and the aqueous layer was extracted with Et_2O (2 × 60 mL). The combined organic layers were washed with brine $(2 \times 80 \text{ mL})$, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10 to 20 to 30% EtOAc/hexanes) gave alcohol S3 (15.03 g) as a colorless oil: $[\alpha]_{D}^{21.6}$ -36.7 (c 1.45, CHCl₃); IR (neat): 3433, 2943, 2865, 1615, 1518, 1464, 1384, 1366, 1250, 1173, 1033, 883, 829, 678 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.44-7.39 (m, 2H), 7.35-7.26 (m, 5H), 6.91–6.87 (m, 2H), 5.43 (s, 1H), 4.61 (d, J = 11.5 Hz, 1H), 4.46 (d, J = 11.5 Hz, 1H), 4.17 (m, 1H), 4.08 (dd, J = 11.5, 4.6 Hz, 1H), 3.80 (s, 3H), 3.72 (m, 1H), 3.65-3.58 (m, 2H), 3.58-3.53 (m, 2H), 3.40 (m 1H), 2.44 (ddd, J = 11.5, 4.6, 4.6 Hz, 1H), 1.85– 1.72 (m, 2H), 1.72 (ddd, J = 11.5, 11.5, 11.5 Hz, 1H), 1.60–1.47 (m, 2H), 1.26 (s, 3H), 1.17-1.06 (m, 21H), one proton missing due to H/D exchange; ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 160.1, 138.3, 130.1, 128.3 (2C), 127.8 (2C), 127.6, 127.4 (2C). 113.7 (2C), 101.7, 80.8, 79.6, 76.9, 73.1, 70.8, 69.9, 66.4, 63.3, 55.3, 31.3, 30.8, 30.6, 18.6 (3C), 18.5 (3C), 14.3, 13.5 (3C); HRMS (FAB) m/z: $[M + Na]^+$ calcd for C₃₅H₅₄O₇SiNa, 637.3531; found, 637.3541.

To a solution of the above alcohol S3 (15.03 g) in THF (180 mL) at 0 °C was added KOt-Bu (8.00 g, 71.3 mmol), and the resultant solution was stirred at room temperature for 30 min. To this solution at 0 °C was added benzyl bromide (4.2 mL, 35.1 mmol), and the resultant solution was stirred at room temperature for 1.5 h. Additional benzyl bromide (0.4 mL, 3.3 mmol) was added, and the resultant solution was stirred at room temperature for 40 min. MeOH (3 mL) was added, and the resultant mixture was stirred at room temperature for 1 h. The reaction was quenched with the saturated aqueous NH₄Cl solution (50 mL). The resultant mixture was extracted with EtOAc (200 mL), and the organic layer was washed with H₂O (50 mL) and brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 5 to 10 to 15% EtOAc/ hexanes) gave benzyl ether 19 (15.20 g, 91% in three steps) as a colorless oil: $[\alpha]_D^{25.6}$ -25.7 (c 1.69, CHCl₃); IR (neat): 2924, 2863, 1615, 1517, 1462, 1364, 1250, 1092, 1034, 883, 828, 734, 698, 678 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.44-7.40 (m, 2H), 7.35-7.23 (m, 10H), 6.91-6.87 (m, 2H), 5.43 (s, 1H), 4.58 (d, J = 11.9 Hz, 1H), 4.51–4.44 (m, 2H, overlapped), 4.48 (d, J = 11.9 Hz, 1H), 4.17 (m, 1H), 4.08 (dd, J = 11.5, 4.6 Hz, 1H), 3.80 (s, 3H), 3.72 (m, 1H), 3.65-3.58 (m, 2H), 3.45-3.36 (m, 3H), 3.42 (m, 1H), 1.93-1.80 (m, 2H), 1.72 (ddd, J = 11.5, 11.5, 11.5 Hz, 1H), 1.62–1.53 (m, 2H), 1.26 (s, 3H), 1.16–1.06 (m, 21H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 160.1, 138.7, 138.3, 130.1, 128.30 (2C), 128.28 (2C), 127.7 (2C), 127.5 (3C), 127.4 (3C), 113.7 (2C), 101.7, 80.8, 79.7, 76.9, 73.0, 72.8, 70.78, 70.71, 69.9, 66.3, 55.3, 31.0, 30.9, 28.4, 18.6 (3C), 18.5 (3C), 14.3, 13.4 (3C); HRMS (FAB) m/z: $[M + Na]^+$ calcd for C42H60O7SiNa, 727.4001; found, 727.4005.

Diol 20. To a solution of p-methoxybenzylidene acetal 19 (4.37 g, 6.20 mmol) in CH₂Cl₂/MeOH (1:1, v/v, 120 mL) at room temperature was added TsOH·H₂O (356.8 mg, 1.876 mmol), and the resulting solution was stirred at room temperature for 3 h. The reaction was quenched with Et₃N (3 mL). The mixture was concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 20 to 30 to 40 to 50% EtOAc/hexanes) gave diol 20 (3.50 g, 96%) as a colorless oil: $[\alpha]_{D}^{22.6}$ -13.9 (c 1.50, CHCl₃); IR (neat): 3398, 2943, 2866, 1463, 1455, 1362, 1207, 1109, 1058, 883, 734, 697, 678 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35–7.23 (m, 10H), 4.57 (d, J = 11.5 Hz, 1H), 4.50-4.44 (m, 3H), 3.92 (dd, J = 11.0, 4.6 Hz, 1H), 3.78 (ddd, J = 11.0, 6.9, 4.6 Hz, 1H), 3.75 (dd, J = 5.9, 3.2 Hz, 1H), 3.67 (m, 1H), 3.53-3.44 (m, 2H), 3.39 (dd, J = 6.4, 6.0 Hz, 2H), 2.30 (ddd, J = 12.4, 4.6, 4.6 Hz, 1H), 2.26-2.17 (m, 2H), 1.90-1.77 (m, 2H), 1.69–1.54 (m, 3H), 1.23 (s, 3H), 1.12–1.05 (m, 21H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 138.6, 138.3, 128.3 (4C), 127.7 (2C), 127.5 (3C), 127.4, 80.1, 78.7, 74.0, 73.5, 72.8, 71.1, 70.6, 67.8, 64.3, 33.8, 30.8, 28.1, 18.5 (3C), 18.4 (3C), 13.8, 13.4 (3C); HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₄H₅₄O₆SiNa, 609.3582; found, 609.3582.

Olefin 21. To a solution of diol 20 (3.42 g, 5.83 mmol) and 2,6lutidine (2.7 mL, 23.2 mmol) in CH_2Cl_2 (100 mL) at -80 °C was slowly added Tf_2O (98%, 1.05 mL, 6.27 mmol), and the resultant solution was stirred at -80 °C for 30 min. To this mixture was slowly added TESOTf (2.6 mL, 11.5 mmol), and the resultant solution was stirred at -80 °C for 40 min. The reaction was quenched with the saturated aqueous NaHCO₃ solution (50 mL). The mixture was extracted with CH_2Cl_2 (100 mL), washed with brine (50 mL), washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10% EtOAc/hexanes) gave triflate S4, which was unstable and immediately used in the next reaction.

To a suspension of CuBr (838 mg, 5.84 mmol) in $Et_2O~(20~mL)$ at 0 °C was slowly added allylmagnesium bromide (1.0 M solution in Et₂O, 30 mL, 30 mmol) over 5 min, and the resultant solution was stirred at 0 °C for 30 min. To the resultant black solution was slowly added a solution of the above triflate S4 in Et₂O (15 mL + 2 \times 5 mL rinse) over 10 min. The resultant solution was stirred at 0 °C for 1 h, then allowed to warm to room temperature, and stirred for 17.5 h. The reaction was quenched with the saturated aqueous NH4Cl solution (30 mL) at 0 °C with caution. The mixture was stirred at room temperature for 50 min and filtered through a pad of Celite eluting with Et₂O (ca. 100 mL). The organic layer was separated, washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 2 to 4 to 6% EtOAc/ hexanes) gave olefin 21 (4.06 g, 96% in two steps) as a colorless oil: $[\alpha]_{D}^{25.0}$ +14.3 (c 1.99, CHCl₃); IR (neat): 2946, 2867, 1455, 1361, 1240, 1108, 1014, 884, 733, 697, 677 cm⁻¹; ¹H NMR (600 MHz, $CDCl_3$): δ 7.35–7.22 (m, 10H), 5.79 (dddd, J = 17.4, 10.1, 6.9, 6.4 Hz, 1H), 4.98 (d, J = 17.4 Hz, 1H), 4.93 (dm, J = 10.1 Hz, 1H), 4.53 (d, J = 11.9 Hz, 1H), 4.48 (d, J = 11.9 Hz, 1H), 4.50-4.45 (m, 2H),3.96 (dd, J = 11.9, 4.6 Hz, 1H), 3.71 (br d, J = 5.9 Hz, 1H), 3.45-3.36 (m, 2H), 3.25 (dd, J = 9.6, 9.2 Hz, 1H), 3.20 (ddd, J = 10.5, 9.2, 4.6 Hz, 1H), 2.24 (m, 1H), 2.09 (ddd, J = 12.4, 5.0, 4.6 Hz, 1H), 2.02 (m, 1H), 1.90-1.81 (m, 3H), 1.64-1.53 (m, 2H), 1.50 (ddd, J =11.9, 11.5, 11.5 Hz, 1H), 1.25 (m, 1H), 1.14 (s, 3H), 1.18-1.08 (m, 21H), 0.94 (t, J = 7.8 Hz, 9H), 0.56 (q, J = 7.8 Hz, 6H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 138.9, 138.78, 138.76, 128.3 (2C), 128.2 (2C), 127.8 (2C), 127.5 (2C), 127.39, 127.37, 114.2, 79.9, 79.1, 73.7, 72.9, 72.8, 71.0, 70.8, 70.5, 35.6, 31.00, 30.98, 30.2, 28.4, 18.6 (3C), 18.5 (3C), 14.0, 13.4 (3C), 6.8 (3C), 5.0 (3C); HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{43}H_{72}O_5Si_2Na$, 747.4810; found, 747.4810.

Alcohol 22. To a solution of olefin 21 (4.03 g, 5.56 mmol) in $CH_2Cl_2/MeOH$ (1:1, v/v, 70 mL) at room temperature was added TsOH·H₂O (317.4 mg, 1.669 mmol), and the resulting solution was stirred at room temperature for 1 h 40 min. The reaction was quenched with Et_3N (2.0 mL). The mixture was concentrated under reduced pressure. Purification of the residue by flash column

pubs.acs.org/joc

chromatography (silica gel, 10 to 20% EtOAc/hexanes) gave alcohol 22 (3.34 g, 98%) as a colorless oil: $\left[\alpha\right]_{D}^{25.4}$ -2.3 (c 1.54,00, CHCl₃); IR (neat): 3388, 2943, 2865, 1455, 1361, 1102, 1058, 883, 734, 697, 678 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35–7.23 (m, 10H), 5.80 (dddd, J = 17.0, 10.1, 6.9, 6.4 Hz, 1H), 5.00 (dm, J = 17.0 Hz, 1H),4.95 (dm, J = 10.1 Hz, 1H), 4.56 (d, J = 11.5 Hz, 1H), 4.48 (d, J =11.5 Hz, 1H), 4.50-4.45 (m, 2H, overlapped), 3.99 (dd, J = 11.0, 4.6 Hz, 1H), 3.72 (dd, I = 6.9, 3.2 Hz, 1H), 3.44-3.36 (m, 2H), 3.30-3.24 (m, 2H), 2.31–2.23 (m, 2H), 2.07 (m, 1H), 1.91–1.79 (m, 3H), 1.66-1.52 (m, 3H), 1.38 (m, 1H), 1.17 (s, 3H), 1.15-1.07 (m, 21H), one proton missing due to H/D exchange; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 138.8, 138.64, 138.57, 128.3 (4C), 127.7 (2C), 127.50 (2C), 127.46, 127.38, 114.6, 79.5, 79.3, 73.69, 73.66, 72.8, 71.1, 70.8, 70.3, 34.4, 31.4, 31.0, 30.0, 28.3, 18.6 (3C), 18.5 (3C), 13.7, 13.4 (3C); HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{37}H_{58}O_5SiNa$, 633.3946; found, 633.3945.

Ketone 23. To a suspension of alcohol 22 (3.46 g, 5.66 mmol) and NaHCO₃ (2.41 g, 28.7 mmol) in CH₂Cl₂ (60 mL) at 0 °C was added Dess-Martin periodinane (95%, 5.06 g, 11.3 mmol), and the resultant mixture was stirred at room temperature for 2 h. The reaction was quenched with a 1:1 mixture of the saturated aqueous NaHCO3 solution and the saturated aqueous Na₂S₂O₃ solution (70 mL) at 0 °C. The resultant mixture was stirred at room temperature for 20 min. The mixture was extracted with EtOAc (200, 60 mL), and the combined organic layers were washed with the saturated aqueous NaHCO₃ solution (60 mL) and brine (60 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 5 to 15% EtOAc/ hexanes) gave ketone 23 (3.37 g, 98%) as a colorless oil: $[\alpha]_{\rm D}^{25.7}$ +54.3 (c 1.80, CHCl₃); IR (neat): 2943, 2866, 1736, 1455, 1097, 1069, 883, 735, 697, 680 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.36–7.24 (m, 10H), 5.77 (dddd, J = 17.4, 10.1, 6.9, 6.4 Hz, 1H), 5.01 (dd, J = 17.4, 1.9 Hz, 1H), 4.96 (dm, J = 10.1 Hz, 1H), 4.54 (d, J = 11.5 Hz, 1H), 4.50 (s, 2H), 4.35 (d, J = 11.5 Hz, 1H), 4.22 (dd, J = 3.7, 2.8 Hz, 1H), 3.97 (dd, J = 9.1, 3.2 Hz, 1H), 3.77 (dd, J = 5.5, 5.0 Hz, 1H), 3.48-3.41 (m, 2H), 2.83 (dd, J = 15.6, 2.7 Hz, 1H), 2.66 (dd, J = 15.6, 4.1 Hz, 1H), 2.17 (m, 1H), 2.11 (m, 1H), 1.98-1.90 (m, 2H), 1.84-1.74 (m, 2H), 1.63–1.52 (m, 2H), 1.26 (s, 3H), 1.10–1.05 (m, 21H); $^{13}C{^{1}H}$ NMR (150 MHz, CDCl₃): δ 212.2, 138.7, 138.0, 137.9, 128.3 (4C), 127.6, 127.54 (2C), 127.46 (2C), 127.43, 115.2, 82.1, 77.0, 76.5, 75.4, 72.8, 71.4, 70.6, 39.8, 30.7, 29.6, 29.0, 27.8, 18.4 (3C), 18.3 (3C), 13.5, 13.3 (3C); HRMS (FAB) m/z: $[M + Na]^+$ calcd for C37H56O5SiNa, 631.3789; found, 631.3792.

Alcohols 24 and 47-epi-24. To a solution of ketone 23 (3.37 g, 5.53 mmol) in CH₂Cl₂ (55 mL) at -78 °C was slowly added Me₃Al (1.4 M solution in n-hexane, 15.0 mL, 21.0 mmol). The resultant solution was stirred at -78 °C for 6 h, then allowed to warm to -15°C and stirred for 16.5 h. The reaction was quenched with MeOH (2 mL). The mixture was diluted with the saturated aqueous potassium sodium tartrate solution (50 mL) and EtOAc (50 mL), and the resultant mixture was vigorously stirred at room temperature for 50 min. The mixture was extracted with EtOAc (120, 50 mL), and the combined organic layers were washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10 to 20 to 30% EtOAc/hexanes) gave alcohol 24 (3.19 g, 92%) as a colorless oil, along with its diastereomeric alcohol 47-epi-24 (0.24 g, 7%) as a colorless oil. Data for 24: $[\alpha]_{D}^{24.8}$ +0.73 (c 1.02, CHCl₃); IR (neat): 3421, 2943, 2865, 2360, 1639, 1455, 1378, 1362, 1098, 1072, 883, 733, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.24 (m, 10H), 5.81 (dddd, I = 17.4, 10.1, 7.3, 6.4 Hz, 1H), 5.00 (dd, J = 17.4, 1.9 Hz, 1H), 4.94 (dm, J = 10.1 Hz, 1H), 4.54 (d, J = 11.5 Hz, 1H), 4.50-4.45 (m, 2H), 4.45 (d, J = 11.5 Hz, 1H), 3.84 (dd, J = 10.1, 4.1 Hz, 1H), 3.72 (dd, J = 5.0, 5.0 Hz, 1H), 3.40 (dd, J)= 6.8, 6.4 Hz, 2H), 3.36 (dd, J = 10.6, 1.8 Hz, 1H), 2.26 (m, 1H), 2.03 (m, 1H), 1.97-1.90 (m, 2H), 1.81 (m, 1H), 1.71 (dd, J = 12.4, 10.1 Hz, 1H), 1.70-1.51 (m, 3H), 1.33 (m, 1H), 1.21 (s, 3H), 1.12 (s, 3H), 1.14–1.07 (m, 21H, overlapped), one proton missing due to H/D exchange; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 138.9, 138.8, 138.4, 128.32 (2C), 128.28 (2C), 127.7 (2C), 127.6, 127.5 (2C),

127.4, 114.5, 80.4, 78.1, 75.8, 74.9, 72.7, 71.36, 71.34, 70.8, 40.5, 30.73, 30.71, 28.2, 28.0, 21.6, 18.5 (3C), 18.4 (3C), 13.6 (3C), 13.5; HRMS (FAB) m/z: [M + Na]⁺ calcd for C₃₈H₆₀O₅SiNa, 647.4102; found, 647.4110. Data for 47-epi-24: $[\alpha]_{D}^{24.4}$ -5.38 (c 1.19, CHCl₃); IR (neat): 3579, 3480, 2944, 2866, 2360, 1639, 1455, 1362, 1097, 911, 883, 815, 734, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.21 (m, 10H), 5.79 (dddd, J = 17.0, 10.1, 7.3, 5.9 Hz, 1H), 5.00 (dm, J = 17.0 Hz, 1H), 4.96 (dm, J = 10.1 Hz, 1H), 4.56 (d, J = 11.5 Hz, 1H), 4.49-4.44 (m, 2H), 4.42 (d, J = 11.5 Hz, 1H), 4.09 (dd, J = 11.9, 5.3 Hz, 1H), 3.76 (dd, J = 6.2, 4.4 Hz, 1H), 3.40-3.35 (m, 3H), 2.25 (m, 1H), 2.16 (dd, J = 13.1, 5.3 Hz, 1H), 2.03 (m, 1H), 1.94 (m, 1H), 1.84 (m, 1H), 1.65–1.48 (m, 4H), 1.51 (dd, J = 12.8, 11.9 Hz, 1H, overlapped), 1.16 (s, 3H), 1.14–1.08 (m, 24H), one proton missing due to H/D exchange; $^{13}C\{^{1}H\}$ NMR (150 MHz, CDCl₃): δ 138.7, 138.6 (2C), 128.3 (2C), 128.2 (2C), 127.6 (2C), 127.5 (2C), 127.40, 127.38, 114.7, 80.0, 79.6, 74.8, 72.8, 71.4, 71.1, 70.7, 70.5, 39.6, 31.0, 30.2, 28.3, 27.2, 24.2, 18.4 (6C), 13.8 (3C), 13.6; HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{38}H_{60}O_5SiNa$, 647.4102; found, 647.4128.

Diol 25. To a solution of cyclohexene (4.0 mL, 39.5 mmol) in THF (70 mL) at 0 °C was slowly added BH₃·THF (0.9 M solution in THF, 20.0 mL, 18.0 mmol), and the resultant solution was stirred at 0 °C for 1 h. To the resultant white suspension was slowly added a solution of alcohol 24 (4.46 g, 7.14 mmol) in THF (20 mL + 2×5 mL rinse) over 35 min. The resultant solution was stirred at room temperature for 1 h. To this solution at 0 °C were slowly added 3 M aqueous NaOH solution (30 mL) followed by 30% aqueous H₂O₂ solution (30 mL). The resultant mixture was vigorously stirred at room temperature for 90 min. The organic layer was separated, and the aqueous layer was extracted with Et_2O (2 × 100 mL). The combined organic layers were washed with the saturated aqueous Na2S2O3 solution (80 mL) and brine (80 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, first round: 40 to 50 to 60% EtOAc/hexanes, second round: 40 to 70% EtOAc/hexanes) gave diol **25** (4.70 g, quantitative) as a colorless oil: $[\alpha]_D^{24.4}$ +1.49 (c 1.13, CHCl₃); IR (neat): 3373, 2943, 2865, 1455, 1378, 1362, 1098, 1072, 883, 734, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.24 (m, 10H), 4.53 (d, J = 11.5 Hz, 1H), 4.47 (s, 2H), 4.44 (d, J = 11.5 Hz, 1H), 3.81 (dd, J = 9.6, 4.1 Hz, 1H), 3.71 (dd, J = 5.0, 5.0 Hz, J)1H), 3.64–3.58 (m, 2H), 3.39 (dd, J = 6.9, 6.4 Hz, 2H), 3.33 (d, J = 9.6 Hz, 1H), 1.94 (dd, J = 12.8, 4.1 Hz, 1H), 1.90 (m, 1H), 1.80 (m, 1H), 1.71 (dd, J = 12.8, 9.6 Hz, 1H), 1.70–1.49 (m, 8H), 1.22 (s, 3H), 1.11 (s, 3H), 1.11-1.06 (m, 21H), two protons missing due to H/D exchange; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 138.7, 138.4, 128.33 (2C), 128.28 (2C), 127.7 (2C), 127.6, 127.5 (2C), 127.4, 80.4, 77.9, 76.6, 74.9, 72.7, 71.4, 71.3, 70.8, 62.9, 40.4, 32.7, 30.6, 28.2, 28.1, 22.9, 21.6, 18.4 (3C), 18.3 (3C), 13.6 (3C), 13.4; HRMS (FAB) m/z: $[M + Na]^+$ calcd for $C_{38}H_{62}O_6SiNa$, 665.4208; found, 665.42.12

Carboxylic Acid 26. To a solution of the above diol 25 (4.70 g, 7.31 mmol) in CH₂Cl₂/pH 7.0 phosphate buffer (1:1, v/v, 48 mL) at 0 °C were sequentially added AZADOL (115.4 mg, 0.7532 mmol) and $PhI(OAc)_2$ (7.07 g, 21.9 mmol). The resultant solution was stirred at room temperature for 3 h 40 min. The reaction was quenched with the saturated aqueous Na₂S₂O₃ solution (50 mL) at 0 $^{\circ}$ C. The mixture was extracted with EtOAc (120 mL, 2 \times 60 mL), washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 40 to 50 to 60 to 70% EtOAc/hexanes) gave carboxylic acid 26 (4.11 g, 87% in two steps) as a colorless oil: $[\alpha]_{D}^{26.5} - 1.91$ (c 1.49, CHCl₃); IR (neat): 3409, 2943, 2866, 1710, 1455, 1380, 1363, 1252, 1206, 1097, 883, 735, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.24 (m, 10H), 4.54 (d, *J* = 11.5 Hz, 1H), 4.48 (s, 2H), 4.44 (d, *J* = 11.5 Hz, 1H), 3.81 (dd, *J* = 10.1, 4.1 Hz, 1H), 3.72 (dd, J = 5.0, 5.0 Hz, 1H), 3.40 (dd, J = 6.4, 6.4 Hz, 2H), 3.35 (d, J = 10.1 Hz, 1H), 2.40-2.30 (m, 2H), 1.98-1.87 (m, 2H), 1.86–1.76 (m, 2H), 1.72 (dd, J = 12.4, 10.1 Hz, 1H), 1.70-1.60 (m, 3H), 1.53 (m, 1H), 1.26 (m, 1H), 1.23 (s, 3H), 1.11 (s, 3H), 1.13-1.05 (m, 21H, overlapped), two protons missing due to

H/D exchange; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 178.6, 138.6, 138.3, 128.32 (2C), 128.27 (2C), 127.7 (2C), 127.6, 127.5 (2C), 127.4, 80.5, 77.9, 76.4, 74.8, 72.7, 71.4, 71.3, 70.8, 40.3, 33.9, 30.5, 28.1, 27.7, 22.1, 21.5, 18.4 (3C), 18.3 (3C), 13.5 (3C), 13.4; HRMS (FAB) m/z: [M + Na]⁺ calcd for C₃₈H₆₀O₇SiNa, 679.4001; found, 679.4012.

Lactone 27. To a solution of carboxylic acid 26 (4.11 g, 6.26 mmol) and Et₃N (2.7 mL, 19.4 mmol) in THF (62 mL) at 0 °C was slowly added 2,4,6-trichlorobenzoyl chloride (1.4 mL, 8.95 mmol), and the resultant solution was stirred at room temperature for 50 min. The mixture was filtered through a pad of Celite and washed with benzene (ca. 50 mL). The filtrate was concentrated under reduced pressure to give a crude mixed anhydride. To a solution of DMAP (3.86 g, 31.6 mmol) in toluene (550 mL) at 100 °C (oil bath) was slowly added a solution of the above mixed anhydride in toluene (150 $mL + 2 \times 20 mL$ rinse) over 3 h. The resultant mixture was stirred at 100 °C (oil bath) for further 55 min. The mixture was cooled to room temperature and transferred to a separatory funnel with EtOAc (140 mL). The mixture was washed with cold 1 M aqueous HCl solution (100 mL), the saturated aqueous NaHCO₃ solution (100 mL), and brine (100 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10 to 20 to 30% EtOAc/hexanes) gave lactone 27 (3.83 g, 96%) as a pale yellow oil: $[\alpha]_D^{24.8}$ -37.8 (c 1.40, CHCl₃); IR (neat): 2944, 2866, 1728, 1455, 1273, 1201, 1100, 1067, 1052, 884, 734, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.24 (m, 10H), 4.53 (d, I = 11.5 Hz, 1H), 4.49-4.44 (m, 2H), 4.43 (d, J = 11.5 Hz, 1H), 3.86 (dd, J = 11.9, 4.6 Hz, 1H), 3.73 (dd, J = 5.9, 4.1 Hz, 1H), 3.60 (dd, J = 11.0, 2.8 Hz, 1H), 3.42-3.35 (m, 2H), 2.78 (m, 1H), 2.51 (m, 1H), 2.19 (dd, J = 12.6, 4.8 Hz, 1H), 1.97-1.77 (m, 5H), 1.71-1.49 (m, 4H), 1.44 (s, 3H), 1.21 (s, 3H), 1.12–1.06 (m, 21H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 174.0, 138.7, 138.1, 128.30 (2C), 128.28 (2C), 127.9 (2C), 127.6, 127.46 (2C), 127.41, 80.7, 80.0, 78.9, 73.5, 72.8, 72.1, 70.9, 70.7, 40.4, 36.8, 30.9 (2C), 28.3, 20.6, 19.1, 18.5 (3C), 18.4 (3C), 13.7, 13.6 (3C); HRMS (FAB) m/z: [M + Na]⁺ calcd for C₃₈H₅₈O₆SiNa, 661.3895; found, 661,3903.

Enol Phosphate 13. To a solution of lactone 27 (3.83 g, 5.99 mmol) in THF (60 mL) were added HMPA (4.2 mL, 24.1 mmol) and $(PhO)_2P(O)Cl$ (3.8 mL, 18.4 mmol). To this solution at -78 °C was slowly added KHMDS (0.5 M solution in toluene, 36 mL, 18 mmol) dropwise over 15 min, and the resultant solution was stirred at -78 °C for 1 h. The reaction was quenched with 3% NH₄OH (30 mL). The resultant mixture was diluted with Et₂O (30 mL) and vigorously stirred at room temperature for 20 min. The mixture was extracted with EtOAc (160 mL), and the organic layer was washed with H₂O (60 mL) and brine (60 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10 to 15 to 20% EtOAc/ hexanes) gave enol phosphate 13 (5.07 g, 97%) as a pale yellow oil, which was unstable and used immediately in the next reaction without further purification: ¹H NMR (600 MHz, CDCl₃): δ 7.37–7.17 (m, 20H), 4.86 (m, 1H), 4.49 (d, J = 11.5 Hz, 1H), 4.48-4.42 (m, 1H), 4.36 (d, J = 11.5 Hz, 1H), 3.82 (dd, J = 11.9, 4.6 Hz, 1H), 3.71 (dd, J = 5.9, 4.1 Hz, 1H), 3.51 (dd, J = 11.5, 2.8 Hz, 1H), 3.40-3.32 (m, 2H), 2.09 (m 1H), 2.04-1.97 (m, 2H), 1.90 (m, 1H), 1.79 (m, 1H), 1.76 (dd, J = 11.9, 11.9 Hz, 1H), 1.62–1.53 (m, 2H), 1.52–1.41 (m, 2H), 1.31 (s, 3H), 1.21 (s, 3H), 1.11-1.04 (m, 21H).

Allylic Alcohol 28. LiCl (99%, 749.6 mg, 17.5 mmol) was placed in a flask and dried with a heat gun under reduced pressure for 40 min. Pd(PPh₃)₄ (1.01 g, 0.874 mmol) and THF (40 mL) were added to the flask, and the resultant mixture was stirred at room temperature for 15 min. To the resultant clear yellow solution were slowly added a solution of the above enol phosphate 13 (5.07 g, 5.82 mmol) in THF (20 mL + 2 × 5 mL rinse) followed by a solution of *n*-Bu₃SnCH₂OH (3.85 g, 12.0 mmol) in THF (20 + 10 mL rinse). The resultant solution was heated to 75 °C (oil bath) for 3 h. The resultant brown solution was cooled to room temperature and treated with H₂O (60 mL). The mixture was extracted with EtOAc (150, 60 mL), and the combined organic layers were washed with brine (60 mL), dried over

MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (10% w/w anhydrous K₂CO₃-silica gel, 10 to 20 to 25% EtOAc/hexanes) gave allylic alcohol **28** (3.22 g, 85%) as a pale yellow oil: $[\alpha]_{\rm D}^{24.1}$ –9.53 (c 1.29, CHCl₃); IR (neat): 3420, 2943, 2865, 1717, 1454, 1362, 1097, 735, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.24 (m, 10H), 5.15 (dd, J = 6.9, 5.0 Hz, 1H), 4.57 (d, J = 11.5 Hz, 1H), 4.49-4.43 (m, 2H), 4.43 (d, J = 11.5 Hz, 1H), 3.91-3.83 (m, 3H), 3.75 (dd, J = 6.0, 4.1 Hz, 1H), 3.56 (dd, J = 11.5, 3.2 Hz, 1H), 3.41-3.34 (m, 2H), 2.15 (dd, J = 11.9, 5.0 Hz, 1H), 2.12-2.03 (m, 2H), 1.94 (m, 1H), 1.86 (dd, J = 11.9, 11.9 Hz, 1H), 1.82 (m, 1H), 1.68-1.56 (m, 3H), 1.56-1.43 (m, 2H), 1.24 (s, 3H), 1.20 (s, 3H), 1.12-1.06 (m, 21H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 152.4, 138.7, 138.4, 128.28 (2C), 128.25 (2C), 127.8 (2C), 127.5 (3C), 127.4, 108.2, 79.9, 79.0, 77.9, 76.7, 72.9, 72.7, 70.8, 70.7, 65.2, 40.2, 30.9, 28.3, 27.1, 21.9, 18.5 (3C), 18.4 (3C), 16.4, 13.9, 13.6 (3C); HRMS (FAB) m/z: $[M + H]^+$ calcd for $C_{39}H_{61}O_6Si$, 653.4232; found, 653.4233.

Selenide 12. To a solution of allylic alcohol 28 (3.00 g, 4.59 mmol) and 2-nitrophenyl selenocyanate (98%, 1.33 g, 5.74 mmol) in THF (50 mL) at 0 °C was slowly added n-Bu₃P (1.6 mL, 6.48 mmol), and the resultant solution was stirred at 0 °C for 70 min. The mixture was concentrated under reduced pressure, and the residue was directly purified by flash column chromatography (silica gel, 5 to 10 to 15% EtOAc/hexanes) to give selenide 12 (3.38 g, 88%) as a bright yellow oil: [*a*]^{24.5}_D -3.14 (*c* 1.27, CHCl₃); IR (neat): 2942, 2865, 1515, 1454, 1331, 1303, 1098, 1066, 731, 697, 679 cm⁻¹; ¹H NMR (600 MHz, $CDCl_3$): δ 8.28 (dd, J = 8.3, 1.4 Hz, 1H), 7.66 (dd, J = 8.2, 0.9 Hz, 1H), 7.48 (ddd, J = 8.3, 8.2, 1.4 Hz, 1H), 7.34–7.22 (m, 11H), 5.24 (dd, J = 6.4, 5.5 Hz, 1H), 4.54 (d, J = 11.5 Hz, 1H), 4.49-4.43 (m, J)2H), 4.40 (d, J = 11.5 Hz, 1H), 3.83 (dd, J = 11.9, 5.0 Hz, 1H), 3.73 (dd, J = 5.9, 4.1 Hz, 1H), 3.56-3.47 (m, 3H), 3.40-3.33 (m, 2H),2.11-2.05 (m, 3H), 1.91 (m, 1H), 1.82 (dd, J = 12.4, 11.9 Hz, 1H), 1.81 (m, 1H), 1.63–1.54 (m, 2H), 1.54–1.42 (m, 2H), 1.22 (s, 3H), 1.21 (s, 3H), 1.11–1.05 (m, 21H); $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (150 MHz, CDCl₃): δ 149.2, 146.7, 138.7, 138.4, 134.5, 133.4, 129.5, 128.27 (2C), 128.24 (2C), 127.7 (2C), 127.5 (3C), 127.4, 126.2, 125.4, 110.5, 79.9, 79.0, 78.4, 76.4, 72.82, 72.76, 70.8, 70.6, 39.9, 32.8, 30.8, 28.3, 27.0, 22.6, 18.5 (3C), 18.4 (3C), 16.4, 13.9, 13.6 (3C); HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₄₅H₆₃NO₇SeSiNa, 860.3431; found, 860.3425.

exo-Olefins 29. To a solution of selenide 12 (3.38 g, 4.04 mmol) and DMAP (2.60 g, 21.3 mmol) in THF (65 mL) at -44 °C was slowly added 30% aqueous H₂O₂ solution (5.0 mL, ca. 44 mmol), and the resultant solution was stirred at -44 °C for 1 h. The mixture was allowed to warm to room temperature and stirred for 15 h 20 min. The reaction was quenched with a 1:1 mixture of the saturated aqueous NaHCO3 solution and the saturated aqueous Na2S2O3 solution (60 mL) at 0 °C. The mixture was extracted with EtOAc $(2 \times 80 \text{ mL})$, and the combined organic layers were washed with brine (60 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10 to 15 to 20% EtOAc/hexanes) gave exo-olefin 29 (1.79 g, 68%) as a pale yellow oil, along with a small amount of its C52 diastereomeric alcohol 31 (39.4 mg) as a pale yellow oil. Data for 29: $[\alpha]_D^{26.5}$ -32.6 (c 0.86, CHCl₃); IR (neat): 3427, 2943, 2866, 1715, 1455, 1361, 1097, 1071, 883, 735, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.34–7.22 (m, 10H), 4.77 (d, J = 0.9 Hz, 1H), 4.63 (s, 1H), 4.56 (d, J = 11.5 Hz, 1H), 4.49-4.43 (m, 2H), 4.41 (d, J = 11.5 Hz, 1H), 4.20 (m, 1H), 3.82 (dd, J = 11.5, 5.0 Hz, 1H), 3.72 (dd, J = 5.5, 4.6 Hz, 1H), 3.61 (dd, J = 10.6, 3.2 Hz, 1H), 3.40–3.33 (m, 2H), 2.13 (dd, J = 12.4, 5.0 Hz, 1H), 1.99–1.89 (m, 2H), 1.83 (dd, J = 11.9, 11.9 Hz, 1H), 1.81 (m, 1H), 1.74-1.54 (m, 4H), 1.50 (m, 1H), 1.21 (s, 3H), 1.20 (s, 3H), 1.12-1.05 (m, 21H), one proton missing due to H/D exchange; $^{13}C\{^{1}H\}$ NMR (150 MHz, CDCl₃): δ 162.8, 138.7, 138.4, 128.27 (2C), 128.25 (2C), 127.7 (2C), 127.48, 127.45 (2C), 127.38, 97.3, 80.0, 78.9, 78.6, 73.4, 73.0, 72.7 (2C), 70.8, 70.7, 40.1, 32.8, 30.8, 28.3, 26.7, 19.0, 18.5 (3C), 18.4 (3C), 14.1, 13.6 (3C); HRMS (FAB) m/z: [M + H]⁺ calcd for C₃₉H₆₁O₆Si, 653.4232; found, 653.4235.

Article

4-Nitrobenzoate 30. To a solution of alcohol 29 (1.79 g, 2.74 mmol) and PPh₃ (2.16 g, 8.24 mmol) in THF (30 mL) at 0 °C were sequentially added 4-nitrobenzoic acid (1.37 g, 8.20 mmol) and DEAD (2.2 M solution in toluene, 3.7 mL, 8.14 mmol). The resultant solution was stirred at room temperature for 1 h. The reaction was quenched with the saturated aqueous NaHCO₃ solution (30 mL) at 0 °C. The mixture was extracted with EtOAc (160 mL), and the organic layer was washed with brine (30 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 5 to 8 to 10% EtOAc/ hexanes) gave 4-nitrobenzoate 30 (1.91 g, 87%) as a bright yellow oil: $[\alpha]_{D}^{25.5}$ -15.8 (c 1.09, CHCl₃); IR (neat): 2944, 2865, 1725, 1530, 1348, 1270, 1100, 1069, 1014, 883, 719, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 8.31-8.28 (m, 2H), 8.22-8.18 (m, 2H), 7.35-7.24 (m, 10H), 7.58 (m, 1H), 7.48-7.43 (m, 2H), 7.35-7.23 (m, 10H), 5.93 (br d, J = 5.5 Hz, 1H), 4.82 (s, 1H), 4.79 (s, 1H), 4.59 (d, J = 11.5 Hz, 1H), 4.50-4.45 (m, 2H), 4.44 (d, J = 11.5 Hz, 1H),3.88 (dd, J = 11.5, 5.0 Hz, 1H), 3.77 (dd, J = 5.5, 4.6 Hz, 1H), 3.65 (m, 1H), 3.43-3.36 (m, 2H), 2.17 (dd, J = 11.9, 5.0 Hz, 1H), 2.09 (m, 1H), 1.96 (m, 1H), 1.92-1.79 (m, 4H), 1.72 (m, 1H), 1.61 (m, 1H), 1.53 (m, 1H), 1.40 (s, 3H), 1.25 (s, 3H), 1.16-1.07 (m, 21H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 163.5, 156.6, 150.5, 138.7, 138.2, 135.7, 130.6 (2C), 128.3 (4C), 127.7 (2C), 127.5, 127.41 (2C), 127.38, 123.6 (2C), 104.6, 80.0, 79.1, 78.9, 74.0, 73.9, 72.9, 72.7, 70.73, 70.66, 40.4, 30.8, 28.3, 27.3, 25.0, 18.5 (3C), 18.4 (3C), 18.0, 14.1, 13.6 (3C); HRMS (FAB) m/z: [M + Na]⁺ calcd for C46H63NO9SiNa, 824.4164; found, 824.4173.

Alcohol 31. To a solution of 4-nitrobenzoate 30 (1.91 g, 2.38 mmol) in MeOH/THF (1:1, v/v, 40 mL) was added K₂CO₃ (989.4 mg, 7.159 mmol). The resultant solution was stirred at room temperature for 50 min. The reaction was quenched with the saturated aqueous NH₄Cl solution (20 mL) at 0 $^{\circ}\!C$. The mixture was extracted with CH_2Cl_2 (4 × 40 mL), dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10 to 20 to 30% EtOAc/ hexanes) gave alcohol 31 (1.32 g, 85%) as a pale yellow oil, which was unstable under both neutral and acidic conditions and immediately used in the next reaction without further identification. Data for 31: $[\alpha]_{D}^{25.4}$ -11.7 (c 0.92, CHCl₃); IR (neat): 3444, 2943, 2866, 1715, 1455, 1380, 1362, 1208, 1097, 1070, 883, 734, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.23 (m, 10H), 4.64 (s, 1H), 4.61 (s, 1H), 4.57 (d, J = 11.5 Hz, 1H), 4.49–4.44 (m, 2H), 4.44 (m, 1H), 4.42 (d, J = 11.5 Hz, 1H), 3.85 (dd, J = 11.5, 5.0 Hz, 1H), 3.74 (dd, J = 5.5, 4.6 Hz, 1H), 3.55 (dd, J = 11.0, 2.8 Hz, 1H), 3.41-3.34 (m, 2H), 2.15 (dd, J = 11.9, 5.0 Hz, 1H), 1.99–1.78 (m, 4H), 1.81 (dd, J = 11.9, 11.9 Hz, 1H, overlapped), 1.70-1.47 (m, 4H), 1.35 (s, 3H), 1.20 (s, 3H), 1.12-1.06 (m, 21H), one proton missing due to H/D exchange; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 161.2, 138.7, 138.4, 128.27 (2C), 128.25 (2C), 127.7 (2C), 127.48, 127.46 (2C), 127.38, 100.9, 79.9, 78.9 (2C), 73.6, 73.1, 72.8, 71.1, 70.8, 70.7, 39.8, 30.83, 30.80, 28.3, 24.5, 18.8, 18.5 (3C), 18.4 (3C), 14.0, 13.6 (3C).

TES Ether 10. To a solution of alcohol 31 (1.32 g, 2.02 mmol) and imidazole (692.9 mg, 10.18 mmol) in DMF (20 mL) at 0 °C was slowly added TESCI (1.0 mL, 5.97 mmol), and the resultant solution was stirred at room temperature for 1 h. The reaction was quenched with the saturated aqueous NaHCO₃ solution (4 mL) at 0 °C. The mixture was extracted with t-BuOMe (100 mL) and washed with H₂O (50 mL). The aqueous layer was extracted with t-BuOMe (2 \times 50 mL), and the combined organic layers were washed with brine (50 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 3 to 4% EtOAc/hexanes) gave TES ether 10 (1.47 g, 95%) as a colorless oil: $[\alpha]_D^{25.7}$ -13.6 (c 1.03, CHCl₃); IR (neat): 2946, 2868, 1456, 1379, 1240, 1099, 1069, 1011, 883, 734, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35–7.22 (m, 10H), 4.56 (d, J = 11.5 Hz, 1H), 4.51 (s, 1H), 4.49–4.44 (m, 2H), 4.43 (dd, J = 5.9, 2.3 Hz, 1H), 4.411 (s, 1H), 4.406 (d, J = 11.5 Hz, 1H), 3.81 (dd, J = 11.9, 5.0 Hz, 1H), 3.73 (dd, J = 5.9, 4.1 Hz, 1H), 3.50 (dd, J = 11.5, 2.8 Hz, 1H), 3.42–3.34 (m, 2H), 2.15 (dd, J = 11.9, 5.0 Hz, 1H), 1.98–1.88 (m, 2H), 1.86-1.72 (m, 3H), 1.67-1.55 (m, 2H), 1.54-1.47 (m, 2H), 1.38 (s, 3H), 1.20 (s, 3H), 1.14–1.06 (m, 21H), 0.96 (t, J = 8.0 Hz, 9H), 0.61 (q, J = 8.0 Hz, 6H); ${}^{13}C{}^{1}H{}$ NMR (150 MHz, CDCl₃): δ 162.3, 138.7, 138.5, 128.3 (2C), 128.2 (2C), 127.8 (2C), 127.5 (2C), 127.41, 127.36, 98.9, 79.6, 79.0, 78.8, 74.4, 73.0, 72.7, 71.1, 70.8, 70.5, 40.7, 31.7, 30.8, 28.3, 24.7, 18.5 (3C), 18.4 (3C), 18.1, 14.0, 13.6 (3C), 6.8 (3C), 4.8 (3C); HRMS (FAB) m/z: [M + Na]⁺ calcd for C₄₅H₇₄O₆Si₂Na, 789.4916; found, 789.4927.

Ketone 33. To a suspension of TES ether 10 (480.3 mg, 0.6260 mmol), Na₂HPO₄ (90.7 mg, 0.639 mmol), and Fe(dibm)₃ (99.0 mg, 0.190 mmol) in i-PrOH (degassed with argon for 1 h, 6 mL) was added a solution of vinyl ketone 11 (669.7 mg, 3.343 mmol) and Ph(i-PrO)SiH₂ (0.60 mL, 3.25 mmol) in EtOAc (degassed with argon for 1 h, 6 + 1 mL rinse) via a syringe pump over 2.5 h. The resultant solution was stirred at room temperature for further 2 h. The reaction was quenched with brine (10 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (4×20 mL). The combined organic layers were dried over MgSO4, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 3 to 4 to 5% EtOAc/ hexanes) gave ketone 33 (427.3 mg, 70%) as a colorless oil: $[\alpha]_{D}^{26.3}$ -7.6 (c 1.03, CHCl₂); IR (neat): 2952, 2866, 1720, 1463, 1378, 1362, 1254, 1102, 1070, 1005, 839, 735, 697, 678 cm⁻¹; ¹H NMR (600 MHz, $CDCl_3$): δ 7.34–7.21 (m, 10H), 4.54 (d, J = 11.5 Hz, 1H), 4.48-4.43 (m, 2H), 4.37 (d, J = 11.5 Hz, 1H), 4.22-4.15 (m, 2H), 3.79 (dd, J = 11.9, 4.6 Hz, 1H), 3.75 (d, J = 5.9 Hz, 1H), 3.70 (dd, J = 6.4, 4.1 Hz, 1H), 3.40–3.33 (m, 2H), 3.20 (dd, J = 11.5, 3.7 Hz, 1H), 2.78 (ddd, J = 17.9, 10.1, 5.5 Hz, 1H), 2.52 (ddd, J = 17.9, 10.1, 5.0 Hz, 1H), 1.93 (dd, J = 12.4, 4.6 Hz, 1H), ca. 1.92 (m, 1H, overlapped), 1.89-1.77 (m, 3H), 1.76 (m, 1H), 1.67 (m, 1H), 1.58 (m, 1H), 1.51 (dd, J = 12.4, 11.9 Hz, 1H), ca. 1.47 (m, 1H)overlapped), 1.41 (s, 3H), 1.42-1.33 (m, 2H), 1.19 (s, 3H), 1.15 (s, 3H), 1.14–1.06 (m, 21H), 0.96 (t, J = 7.8 Hz, 9H), 0.93 (s, 9H), 0.60 (q, J = 7.8 Hz, 6H), 0.093 (s, 3H), 0.090 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 211.8, 138.8 (2C), 128.3 (2C), 128.1 (2C), 127.7 (2C), 127.5 (2C), 127.33, 127.26, 80.6, 79.4, 79.3, 77.2, 76.4, 76.3, 72.8, 72.7, 70.9, 70.3, 69.3, 42.0, 37.1, 33.8, 30.9, 28.4, 27.4, 25.8 (3C), 24.0, 23.5, 18.5 (3C), 18.4 (3C), 18.2, 17.6, 14.2, 13.7 (3C), 6.9 (3C), 4.9 (3C), -5.5 (2C); HRMS (FAB) m/z: $[M + H]^+$ calcd for C55H97O8Si3, 969.6486; found, 969.6493.

Methyl Acetal 34. To a solution of ketone 33 (427.3 mg, 0.4407 mmol) in CH₂Cl₂/MeOH (1:1, v/v, 44 mL) was added CSA (53.9 mg, 0.232 mmol), and the resultant solution was stirred at room temperature for 23 h. The reaction was quenched with Et_3N (0.3) mL). The mixture was concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 30 to 40% EtOAc/hexanes) gave methyl acetal 34 (282.7 mg, 85%) as a colorless oil: $[\alpha]_D^{25.7}$ -63.2 (c 0.99, CHCl₃); IR (neat): 3464, 2944, 2866, 1456, 1379, 1115, 1071, 883, 735, 697, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.35–7.21 (m, 10H), 4.54 (d, J = 11.5 Hz, 1H), 4.49-4.43 (m, 2H), 4.37 (d, J = 11.5 Hz, 1H), 3.78 (dd, J = 11.9, 5.0 Hz, 1H), 3.71 (dd, J = 6.0, 4.1 Hz, 1H), 3.67–3.62 (m, 2H), 3.51 (dd, J = 11.5, 5.5 Hz, 1H), 3.46 (dd, J = 11.5, 6.4 Hz, 1H), 3.40-3.33 (m, 2H), 3.24 (s, 3H), 2.06 (dd, J = 12.4, 5.0 Hz, 1H), 1.88 (m, 1H), 1.85–1.70 (m, 7H), 1.68–1.55 (m, 5H), 1.50 (m, 1H), 1.29 (s, 3H), 1.25 (s, 3H), 1.19 (s, 3H), 1.12-1.06 (m, 21H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 138.7, 138.6, 128.26 (2C), 128.18 (2C), 127.8 (2C), 127.5 (2C), 127.36, 127.34, 97.7, 79.5, 78.9, 77.9, 76.1, 72.9, 72.8, 72.7, 72.6, 70.9, 70.4, 64.2, 48.3, 41.6, 35.9, 30.8, 28.9, 28.2, 24.7, 24.3, 20.6, 18.50 (3C), 18.48, 18.43 (3C), 13.9, 13.6 (3C); HRMS (FAB) m/z: $[M + Na]^+$ calcd for C44H70O8SiNa, 777.4732; found, 777.4736.

LMN-Ring Fragment **9**. To a solution of methyl acetal **34** (282.7 mg, 0.3744 mmol) in acetone (38 mL) at 0 °C was added Sc(OTf)₃ (56.5 mg, 0.115 mmol), the resultant yellow solution was stirred at 0 °C for 1 h 20 min. The reaction was quenched with Et₃N (0.3 mL). The mixture was concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 5 to 10 to 20% EtOAc/hexanes) gave LMN-ring fragment 9 (237.5 mg, 81%) as a colorless oil: $[\alpha]_{D}^{26.0}$ –60.4 (*c* 0.74, CHCl₃); IR (neat): 2944, 2866, 1455, 1381, 1114, 1067, 1036, 984, 883, 734, 697, 679 cm⁻¹; ¹H

pubs.acs.org/joc

NMR (600 MHz, CDCl₃): δ 7.34–7.21 (m, 10H), 4.54 (d, *J* = 11.5 Hz, 1H), 4.48–4.43 (m, 2H), 4.37 (d, *J* = 11.5 Hz, 1H), 3.93 (d, *J* = 8.3 Hz, 1H), 3.91 (dd, *J* = 10.6, 5.0 Hz, 1H), 3.78 (dd, *J* = 11.9, 4.6 Hz, 1H), 3.70 (dd, *J* = 5.9, 4.1 Hz, 1H), 3.69 (d, *J* = 8.3 Hz, 1H), 3.67 (dd, *J* = 11.0, 4.6 Hz, 1H), 3.40–3.33 (m, 2H), 2.06 (dd, *J* = 12.4, 4.6 Hz, 1H), 1.92–1.85 (m, 2H), 1.84–1.71 (m, 4H), 1.70–1.54 (m, 6H), 1.50 (s, 3H), 1.50 (m, 1H, overlapped), 1.40 (s, 3H), 1.26 (s, 3H), 1.19 (s, 3H), 1.12–1.05 (m, 21H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 138.7, 138.6, 128.3 (2C), 128.2 (2C), 127.8 (2C), 127.5 (2C), 127.36, 127.34, 111.1, 103.0, 79.5, 79.0, 77.9, 76.0, 74.6, 73.5, 72.8, 72.7, 72.6, 70.9, 70.4, 41.6, 37.1, 30.9, 30.4, 28.3, 27.2, 26.8, 24.7, 24.5, 20.6, 18.6, 18.5 (3C), 18.4 (3C), 14.0, 13.6 (3C); HRMS (FAB) *m/z*: [M + Na]⁺ calcd for C₄₆H₇₂O₈SiNa, 803.4889; found, 803.4893.

Diol 35. To a solution of bis-benzyl ether 9 (441.1 mg, 0.5647 mmol) in THF (18 mL) at -78 °C was added LiDBB (ca. 0.4 M solution in THF, 15 mL, 6.0 mmol) dropwise over 5 min. The resultant solution was stirred at -78 °C for 1 h, then allowed to warm to -50 °C and stirred for 45 min. The reaction was quenched with the saturated aqueous NH₄Cl solution (15 mL). The resultant mixture was warmed to room temperature, extracted with EtOAc (150 mL), and the organic layer was washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 30 to 50% EtOAc/hexanes) gave diol 35 (337.3 mg, 99%) as a colorless amorphous powder: $[\alpha]_{D}^{22.5}$ -5.5 (c 0.55, CHCl₃); IR (neat): 3477, 2947, 2869, 1464, 1382, 1209, 1118, 1065, 1036, 985, 756 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 3.92 (d, J = 8.5 Hz, 1H), 3.90–3.85 (m, 2H), 3.74 (dd, J = 11.9, 5.0 Hz, 1H), 3.69 (d, J = 8.5 Hz, 1H), 3.62 (m, 1H), 3.59 (dd, J = 11.5, 4.6 Hz, 1H), 3.41 (s, 1H), 1.96–1.85 (m, 3H), 1.84-1.59 (m, 10H), 1.56 (M, 1H), 1.51 (s, 3H), 1.40 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H), 1.23 (s, 3H), 1.15-1.08 (m, 21H), one proton missing due to H/D exchange; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 111.1, 103.0, 82.3, 78.5, 77.3, 76.0, 74.5, 73.5, 73.0, 72.6, 63.2, 43.8, 36.9, 31.1, 30.3, 29.9, 27.3, 26.7, 24.7, 24.3, 20.2, 18.5, 18.2 (3C), 18.1 (3C), 13.5 (3C), 10.1; HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₃₂H₆₀O₈SiNa, 623.3950; found, 623.3952.

Lactone 36. To a solution of diol 35 (337.3 mg, 0.5613 mmol) in CH₂Cl₂ (18 mL) were added sequentially PhI(OAc)₂ (549.2 mg, 1.705 mmol) and TEMPO (9.1 mg, 0.058 mmol), and the resultant solution was stirred at room temperature for 16.5 h. The reaction was quenched with the saturated aqueous NaHCO3 solution/saturated aqueous $Na_2S_2O_3$ solution (1:1, v/v, 20 mL), and the resultant mixture was stirred at room temperature for 30 min. The mixture was extracted with EtOAc (100 mL), and the organic layer was washed with the saturated aqueous NaHCO3 solution (20 mL) and brine (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 10 to 20% EtOAc/hexanes) gave lactone 36 (315.3 mg, 94%) as a colorless amorphous powder: $[\alpha]_D^{23.1}$ +15.1 (c 0.52, CHCl₃); IR (neat): 2945, 2868, 1741, 1382, 1262, 1120, 1037, 984, 883, 756 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 4.68 (dd, J = 12.4, 5.9 Hz, 1H), 3.95 (br d, J = 3.7 Hz, 1H), 3.93 (d, J = 8.7 H, 1H), 3.89 (dd, J = 13.3, 3.7 Hz, 1H), 3.69 (d, J = 8.7 Hz, 1H), 3.61 (dd, J = 10.6, 3.7 Hz, 1H), 3.13 (ddd, J = 14.0, 14.0, 2.3 Hz, 1H), 2.32 (dd, J = 14.0, 5.7 Hz, 1H), 2.03 (dd, *J* = 12.8, 5.9 Hz, 1H), 1.94 (dd, *J* = 14.0, 14.0 Hz, 1H), 1.92–1.85 (m, 2H), 1.81 (dd, J = 12.8, 12.4 Hz, 1H), 1.80–1.65 (m, 7H), 1.50 (s, 3H), 1.40 (s, 3H), 1.33 (s, 3H), 1.26 (s, 3H), 1.14 (s, 3H), 1.12–1.06 (m, 21H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 174.9, 111.0, 102.9, 77.4, 76.1, 74.5, 73.8, 73.6, 73.0, 70.4, 42.4, 36.8, 30.2, 27.9, 27.2, 26.9, 26.7, 24.6, 24.3, 19.9, 18.5, 18.3 (3C), 18.2 (3C), 14.6, 12.9 (3C), one oxygenated quaternary carbon missing due to overlapping with CDCl₃ signals; HRMS (ESI) m/z: $[M + H]^+$ calcd for C32H56O8SiNa, 619.3637; found, 619.3636.

Enol Phosphate 7. To a solution of lactone 36 (171.6 mg, 0.2875 mmol), which was azeotropically dried with toluene (\times 3), in THF (6 mL) were added HMPA (0.20 mL, 1.15 mmol) and (PhO)₂P(O)Cl (0.18 mL, 0.871 mmol). To this solution at -78 °C was added slowly KHMDS (0.5 M solution in toluene, 1.8 mL, 0.90 mmol), and the resultant solution was stirred at -78 °C for 3 h. The reaction was

quenched with 3% aqueous NH₄OH solution (8 mL). The mixture was allowed to warm to room temperature and stirred for 20 min. The resultant mixture was extracted with EtOAc (60 mL), and the organic layer was washed with H_2O (8 mL) and brine (8 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 20% EtOAc/hexanes) gave enol phosphate 7 (230.9 mg, 97%) as a colorless amorphous powder, which was unstable and used immediately in the next Suzuki–Miyaura reaction without further purification.

Alcohol 40. To a solution of TBS ether 38 (1.57 g, 6.32 mmol) and 2-(4-methoxybenzyloxy)-4-methylquinoline 39 (3.56 g, 12.7 mmol) in CH₂Cl₂ (30 mL) was added CSA (147.4 mg, 0.6346 mmol), and the resultant solution was stirred at room temperature for 91 h. The mixture was poured into the saturated aqueous NaHCO₃ solution (40 mL) and extracted with EtOAc (160 mL). The organic layer was washed with 1 M aqueous HCl solution $(3 \times 30 \text{ mL})$, the saturated aqueous NaHCO3 solution (30 mL), and brine (30 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was roughly purified by column chromatography (silica gel, 5 to 10 to 25% EtOAc/hexanes) gave PMB ether 40 (2.30 g) as a colorless oil, which was contaminated by some impurities and used in the next reaction without further purification: ¹H NMR (600 MHz, $CDCl_3$): δ 7.26–7.23 (m, 2H), 6.88–6.85 (m, 2H), 4.58 (d, J = 11.0 Hz, 1H), 4.54 (d, J = 11.0 Hz, 1H), 3.94 (m, 1H), 3.81 (s, 3H), 3.70 (dd, J = 10.6, 5.3 Hz, 1H), 3.67 (s, 3H), 3.56 (dd, J = 10.6, 6.2 Hz,1H), 2.63 (dd, J = 15.5, 4.8 Hz, 1H), 2.51 (dd, J = 15.5, 7.8 Hz, 1H), 0.89 (s, 9H), 0.05 (s, 6H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 172.2, 159.2, 130.5, 129.4 (2C), 113.8 (2C), 76.4, 72.2, 64.7, 53.3, 51.6, 37.4, 25.9 (3C), 18.3, -5.4, -5.5.

To a solution of the above PMB ether 40 (2.30 g) in THF (40 mL) at -40 °C was added LiAlH₄ (281.7 mg, 7.423 mmol), and the resultant solution was stirred at -40 °C for 1 h. The reaction was quenched with the saturated potassium sodium tartrate solution (20 mL). The resultant mixture was diluted with EtOAc (15 mL) and the saturated potassium sodium tartrate solution (10 mL), and vigorously stirred at room temperature for 75 min. The mixture was extracted with EtOAc (100 mL), and the organic layer was washed with brine (40 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 20 to 33% EtOAc/hexanes) gave alcohol 41 (1.44 g, 67% in two steps) as a colorless oil: $[\alpha]_{D}^{22.5}$ -34.2 (c 1.85, CHCl₃); IR (neat): 3419, 2953, 2929, 2857, 1613, 1514, 1464, 1302, 1250, 1173, 1090, 1034, 837, 777, 668 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.28–7.25 (m, 2H), 6.90–6.86 (m, 2H), 4.66 (d, J = 11.0 Hz, 1H), 4.51 (d, J = 11.0 Hz, 1H), 3.80 (s, 3H), 3.77 (dd, J = 10.1, 5.0 Hz, 1H), 3.73 (t, J = 5.5 Hz, 2H), 3.66 (m, 1H), 3.63 (dd, J = 10.1, 5.5 Hz, 1H), 1.91 (br, 1H), 1.85–1.72 (m, 2H), 0.91 (s, 9H), 0.07 (s, 6H); $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (150 MHz, CDCl₃): δ 159.3, 130.5, 129.5 (2C), 113.9 (2C), 78.6, 71.9, 65.4, 60.4, 55.3, 34.3, 25.9 (3C), 18.3, -5.41, -5.44; HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{18}H_{32}O_4SiNa$, 363.1962; found, 363.1962.

lodide 37. To a solution of imidazole (126.9 mg, 1.864 mmol) in CH₂Cl₂ (10 mL) were sequentially added PPh₃ (334.2 mg, 1.274 mmol) and I_2 (338.7 mg, 1.335 mmol), and the resultant solution was stirred at room temperature for 20 min. To this solution was added a solution of alcohol 41 (391.1 mg, 1.148 mmol) in CH_2Cl_2 (7 + 3 mL rinse) dropwise over 8 min. The resultant solution was stirred at room temperature for 40 min. The reaction was quenched with the saturated aqueous $Na_2S_2O_3$ solution (20 mL). The mixture was extracted with EtOAc (80 mL), and the organic layer was washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 5 to 10% EtOAc/hexanes) gave iodide 37 (436.0 mg, 84%) as a colorless oil: $[\alpha]_D^{22.4}$ -53.5 (c 1.91, CHCl₃); IR (neat): 2953, 2929, 2856, 1613, 1514, 1464, 1302, 1116, 1038, 837, 777 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): δ 7.25–7.22 (m, 2H), 6.82–6.79 (m, 2H), 4.55 (d, J = 11.5 Hz, 1H), 4.39 (d, J = 11.5 Hz, 1H), 3.55 (dd, J = 9.7, 4.1 Hz, 1H), 3.50-3.43 (m, 2H), 3.31 (s, 3H), 3.09 (ddd, J = 9.5, 8.7, 7.3 Hz, 1H), 3.02 (ddd, J = 9.5, 6.9, 5.0 Hz, 1H),

1.95–1.84 (m, 2H), 0.96 (s, 9H), 0.035 (s, 3H), 0.031 (s, 3H); ¹³C{¹H} NMR (150 MHz, C_6D_6): δ 159.8, 131.4, 129.6 (2C), 114.1 (2C), 79.3, 72.3, 65.0, 54.8, 36.5, 26.0 (3C), 18.4, 3.1, -5.3 (2C); HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{18}H_{31}IO_3SiNa$, 473.0979; found, 473.0982.

Enol Ether 6. To a solution of iodide 37 (296.5 mg, 0.6583 mmol) and β -methoxy-9-borabicyclo[3.3.1]nonane (β -MeO-9-BBN) (1.0 M solution in *n*-hexane, 1.3 mL, 1.3 mmol) in Et₂O (6 mL) at -78 °C was added t-BuLi (1.62 M solution in pentane, 0.95 mL, 1.54 mmol) at once. The resultant mixture was stirred at -78 °C for 10 min and then diluted with THF (6 mL). The mixture was allowed to warm to room temperature and stirred for 1 h to generate alkylborate 8. The resultant solution was treated with 3 M aqueous Cs₂CO₃ solution (0.65 mL, 1.95 mmol) and stirred at room temperature for 20 min. To this mixture were sequentially added a solution of the above enol phosphate 7 (230.9 mg, 0.2785 mmol) in DMF (6 mL + 2 × 1 mL rinse) and a solution of Pd(PPh₃)₄ (50.6 mg, 0.0438 mmol) in THF (1 + 1 mL rinse), and the resultant mixture was stirred at 50 °C (oil bath) for 17 h 15 min. The reaction was quenched with H₂O at room temperature. The mixture was extracted with EtOAc (50 mL), and the organic layer was washed with $H_2O(10 \text{ mL})$ and brine (2 × 10 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, first round: 5 to 10 to 20% EtOAc/hexanes, second round: 5 to 7 to 10% EtOAc/hexanes) gave enol ether 6 (203.2 mg, 81%) as a pale yellow 25.4 +12.6 (c 1.17, CHCl₃); IR (neat): 2948, 2865, 1514, 1464, oil: $\left[\alpha\right]_{D}^{25}$ 1381, 1249, 1119, 1063, 1036, 837, 777, 677 cm⁻¹; ¹H NMR (600 MHz, C_6D_6): δ 7.36–7.31 (m, 2H), 6.85–6.81 (m, 2H), 4.70 (d, J =11.5 Hz, 1H), 4.58–4.54 (m, 2H), 4.32–4.24 (m, 2H), 3.96 (d, J = 8.3 Hz, 1H), 3.87 (m, 1H), 3.81–3.74 (m, 2H), 3.64 (dd, *J* = 10.3, 4.3 Hz, 1H), 3.58 (m, 1H), 3.51 (d, J = 8.3 Hz, 1H), 3.32 (s, 3H), 2.40-2.21 (m, 5H), 2.14-2.02 (m, 3H), 1.96-1.77 (m, 5H), 1.75 (m, 1H), 1.55 (s, 3H), 1.46 (s, 3H), 1.37 (s, 3H), 1.23 (s, 3H), 1.23-1.18 (m, 21H), 1.17-1.09 (m, 2H), 1.06 (s, 3H), 1.01 (s, 9H), 0.104 (s, 3H), 0.095 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, C_6D_6): δ 159.6, 159.3, 132.0, 129.2 (2C), 114.0 (2C), 111.1, 103.5, 101.1, 80.2, 79.2, 78.4, 76.2, 74.9, 74.4, 74.3, 73.5, 72.5, 72.1, 66.2, 54.7, 43.9, 37.6, 32.5, 30.9, 30.6, 29.8, 27.4, 27.1, 26.2 (3C), 25.2, 25.1, 20.7, 18.8, 18.7 (3C), 18.6 (3C), 18.5, 13.7, 13.4 (3C), -5.2 (2C); HRMS (ESI) m/ *z*: $[M + Na]^+$ calcd for $C_{50}H_{86}O_{10}Si_2Na$, 925.5652; found, 925.5652.

Alcohol 42. To a solution of enol ether 6 (201.2 mg, 0.2227 mmol) in THF (5 mL) at 0 °C was added BH₃·THF (0.9 M solution in THF, 0.75 mL, 0.675 mmol). The resultant solution was stirred at 0 °C for 15 min, then allowed to warm to room temperature and stirred for 2 h. The mixture was cooled to 0 $^\circ$ C and treated with 3 M aqueous NaOH solution (0.5 mL, 1.5 mmol) followed by 30% aqueous H₂O₂ solution (0.6 mL, 1.5 mmol). The resultant mixture was stirred at room temperature for 1 h. The mixture was diluted with t-BuOMe (40 mL), washed with H₂O (6 mL) and brine (6 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 15 to 20 to 25% EtOAc/hexanes) gave alcohol 42 (162.7 mg, 79%) as a colorless oil, which was used in the next reaction without further purification: ¹H NMR (600 MHz, CDCl₃): δ 7.30-7.26 (m, 2H), 6.88-6.84 (m, 2H), 4.62 (d, J = 11.5 Hz, 1H), 4.52 (d, J = 11.5 Hz, 1H), 4.12 (m, 1H), 3.93 (d, J = 8.8 Hz, 1H), 3.88 (dd, J = 10.1, 3.7 Hz, 1H), 3.84 (d, J = 5.9 Hz, 1H), 3.79 (s, 3H), 3.71 (dd, J = 10.5, 5.5 Hz, 1H), 3.60-3.54 (m, 3H), 3.45 (m, 1H), 3.23 (m, 1H), 2.08 (dd, J = 13.3, 11.0 Hz, 1H), 1.92-1.79 (m, 4H), 1.78-1.62 (m, 8H), 1.62-1.56 (m, 2H), 1.53 (m, 1H), 1.50 (s, 3H), 1.50-1.44 (m, 2H), 1.40 (s, 3H), 1.26 (s, 3H), 1.24 (s, 3H), 1.16 (s, 3H), 1.12-1.06 (m, 21H), 0.91 (s, 9H), 0.07 (s, 6H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 159.1, 131.2, 129.3 (2C), 113.7 (2C), 111.1, 103.0, 82.6, 79.8, 78.4, 77.9, 75.8, 74.6, 73.7, 73.4, 72.9, 71.7, 69.4, 65.5, 64.6, 55.3, 44.5, 39.7, 37.0, 30.3, 28.5, 28.3, 27.2, 26.7, 26.0 (3C), 24.7, 24.6, 120.3, 18.5, 18.4 (6C), 18.3, 15.7, 12.8 (3C), -5.30, -5.34.

Ketone **43**. To a suspension of alcohol **42** (162.7 mg, 0.176 mmol) and NaHCO₃ (80.2 mg, 0.955 mmol) in CH₂Cl₂ (9 mL) at 0 °C was added Dess–Martin periodinane (95%, 199.9 mg, 0.4477 mmol), and the resultant mixture was stirred at room temperature for 1 h. The

reaction was quenched with the saturated aqueous NaHCO3 solution/saturated aqueous Na₂S₂O₃ solution (1:1, v/v, 10 mL). The mixture was stirred at room temperature for 10 min. The mixture was extracted with EtOAc (40 mL), and the organic layer was washed with saturated aqueous NaHCO₃ (6 mL) and brine (6 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 15% EtOAc/hexanes) gave ketone S5 (146.7 mg, 90%) as a colorless oil, which was used in the next reaction without further purification: ¹H NMR (600 MHz, CDCl₃): δ 7.28-7.24 (m, 2H), 6.87-6.84 (m, 2H), 4.60 (d, J = 11.0 Hz, 1H), 4.51 (d, J = 11.0 Hz, 1H), 3.93 (d, J = 8.7 Hz, 1H), 3.93–3.89 (m, 3H), 3.82 (dd, J = 12.8, 5.0 Hz, 1H), 3.79 (s, 3H), 3.72-3.66 (m, 3H), 3.56 (dd, J = 10.6, 5.5 Hz, 1H), 3.43 (m, 1H), 3.04 (d, J = 12.8 Hz, 1H), 2.66 (dd, J = 12.8, 6.9 Hz, 1H), 2.15 (m, 1H), 1.93-1.61 (m, 12H), 1.55 (m, 1H), 1.50 (s, 3H), 1.40 (s, 3H), 1.32 (s, 3H), 1.29 (s, 3H), 1.24 (s, 3H), 1.11-1.05 (m, 21H), 0.90 (s, 9H), 0.06 (s, 6H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 211.5, 159.1, 131.0, 129.3 (2C), 113.7 (2C), 111.1, 103.1, 84.8, 79.7, 78.8, 78.1, 76.0, 74.6, 74.4, 73.5, 73.4, 71.9, 66.0, 65.5, 55.3, 46.5, 43.9, 37.0, 30.3, 28.4, 27.2, 26.7, 26.0 (3C), 24.5, 24.4, 24.3, 20.4, 18.5, 18.3, 18.2 (6C), 14.4, 12.8 (3C), -5.34, -5.30.

To a solution of the above ketone S5 (146.7 mg, 0.1596 mmol) in toluene (8 mL) was added DBU (0.95 mL, 6.36 mmol), and the resultant solution was stirred under reflux (oil bath) for 48 h. The mixture was cooled to room temperature and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 5 to 10 to 20 to 30% EtOAc/hexanes) gave ketone 43 (126.2 mg, 86%) as a colorless oil: $[\alpha]_D^{23.4}$ -64.7 (c 1.10, CHCl₃); IR (neat): 2948, 2866, 1715, 1514, 1464, 1381, 1249, 1116, 1066, 1036, 837, 756 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.27–7.23 (m, 2H), 6.87-6.84 (m, 2H), 4.59 (d, J = 11.0 Hz, 1H), 4.46 (d, J = 11.0 Hz, 1H), 3.94 (br d, J = 6.9 Hz, 1H), 3.93 (d, J = 8.7 Hz, 1H), 3.91 (m, 1H), 3.79 (s, 3H), 3.72-3.67 (m 3H), 3.652 (dd, J = 10.6, 5.7Hz, 1H), 3.647 (dd, J = 12.8, 4.6 Hz, 1H), 3.53 (dd, J = 10.6, 5.4 Hz, 1H), 3.42 (m, 1H), 2.97 (d, J = 13.1 Hz, 1H), 2.60 (dd, J = 13.1, 7.1 Hz, 1H), 1.93-1.85 (m, 2H), 1.83-1.54 (m, 12H), 1.50 (s, 3H), 1.40 (s, 3H), 1.31 (s, 3H), 1.29 (s, 3H), 1.25 (s, 3H), 1.10-1.04 (m, 21H), 0.90 (s, 9H), 0.05 (s, 6H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 213.6, 131.1, 129.3 (3C), 113.7 (2C), 111.1, 103.1, 101.1, 87.0, 79.0, 78.7, 78.1, 76.0, 74.6, 74.3, 73.5 (2C), 71.8, 65.7, 55.3, 45.7, 43.0, 37.1, 30.3, 29.0, 27.4, 27.2, 26.8, 26.0 (3C), 24.5, 24.4, 20.5, 18.5, 18.3, 18.2 (6C), 14.6, 12.8 (3C), -5.4, -5.3; HRMS (ESI) *m/z*: $[M + Na]^+$ calcd for $C_{50}H_{86}O_{11}Si_2Na$, 941.5601; found, 941.5601.

Alcohol 44. To a solution of ketone 43 (17.4 mg, 0.0189 mmol) in CH₂Cl₂ (2 mL) at -78 °C was added DIBALH (1.0 M solution in nhexane, 0.06 mL, 0.06 mmol), and the resultant solution was stirred at -78 °C for 50 min. The reaction was quenched with the saturated aqueous potassium sodium tartrate solution (1 mL). The mixture was diluted with EtOAc (2 mL) and vigorously stirred at room temperature for 45 min. The mixture was extracted with EtOAc (15 mL), and the organic layer was washed with brine (4 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (20% EtOAc/hexanes) gave alcohol 44 (8.8 mg, 51%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.27–7.24 (m, 2H), 6.87–6.84 (m, 2H), 4.61 (br d, J = 7.3 Hz, 1H), 4.60 (d, J = 11.2 Hz, 1H), 4.48 (d, J = 11.2 Hz, 1H), 4.10 (br d, J = 5.0 Hz, 1H), 3.93 (d, J = 8.5 Hz, 1H), 3.89 (m, 1H), 3.86 (dd, J = 12.4, 5.0 Hz, 1H), 3.81-3.77 (m, 4H), 3.69 (d, J = 8.5 Hz, 1H), 3.68-3.62 (m, 3H), 3.55 (dd, J = 10.3, 4.8 Hz, 1H), 3.44 (m, 1H), 2.21 (ddd, J = 15.5, 5.5, 5.5 Hz, 1H), 1.92-1.84 (m, 3H), 1.82-1.52 (m, 11H), 1.50 (s, 3H), 1.45 (m, 1H), 1.40 (s, 3H), 1.32 (s, 3H), 1.25 (s, 3H), 1.20-1.09 (m, 24H), 0.90 (s, 9H), 0.05 (s, 6H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 159.0, 131.2, 129.3 (2C), 113.7 (2C), 111.0, 103.1, 86.2, 79.3, 78.6, 78.4, 77.8, 76.5, 75.9, 74.6, 73.5, 73.3, 71.8, 71.6, 65.9, 55.3, 43.6, 37.1, 32.0, 30.7, 30.4, 27.7, 27.2, 26.8, 26.0 (3C), 24.5, 24.4, 20.6, 18.5, 18.4 (4C), 18.3 (3C), 15.4, 12.8 (3C), -5.4, -5.3.

Acetate 45. To a solution of alcohol 44 (8.8 mg, 0.0095 mmol), Et₃N (20 μ L, 0.144 mmol), and a catalytic amount of DMAP in CH₂Cl₂ (1 mL) was added Ac₂O (10 μ L, 0.106 mmol), and the

resultant solution was stirred at room temperature for 1.5 h. The mixture was diluted with EtOAc (12 mL), washed with the saturated aqueous NaHCO₃ solution (4 mL) and brine (4 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 10 to 20% EtOAc/hexanes) gave acetate 45 (9.0 mg, 98%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 7.27-7.24 (m, 2H), 6.87-6.83 (m, 2H), 4.77 (ddd, J = 9.2, 9.2, 3.2 Hz, 1H), 4.62 (d, J = 11.3 Hz, 1H), 4.47 (d, J = 11.3 Hz, 1H), 3.94 (dd, J = 4.6, 2.8 Hz, 1H), 3.93 (d, J = 8.8 Hz, 1H), 3.90 (dd, J = 11.0, 3.7 Hz, 1H), 3.87 (dd, J = 13.3, 4.1 Hz, 1H), 3.84 (m, 1H), 3.79 (s, 3H), 3.68 (d, J = 8.8 Hz, 1H), 3.673 (dd, J = 10.6, 6.0 Hz, 1H), 3.669 (dd, J = 11.0, 4.6 Hz, 1H), 3.57 (dd, J = 10.6, 4.8 Hz, 1H), 3.42 (m, 1H), 2.51 (ddd, J = 16.0, 9.2, 2.8 Hz, 1H), 1.96 (s, 3H), 1.91-1.84 (m, 2H), 1.84-1.56 (m, 12H), 1.49 (s, 3H), 1.40 (s, 3H), 1.34 (s, 3H), 1.28 (m, 1H), 1.25 (s, 3H), 1.11 (s, 3H), 1.11-1.07 (m, 21H), 0.91 (s, 9H), 0.061 (s, 3H), 0.058 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 170.2, 159.0, 131.3, 129.2, (2C), 113.7 (2C), 111.1, 103.1, 81.0, 79.3, 79.2, 78.3, 76.3, 76.0, 74.6, 74.5 (2C), 73.36, 73.34, 71.8, 65.9, 55.3, 42.6, 37.3, 37.1, 30.4, 29.2, 27.7, 27.2, 26.8, 26.0 (3C), 24.5, 24.3, 21.1, 20.8, 18.5, 18.4 (3C), 18.3 (4C), 13.6, 12.8 (3C), -5.3, -5.4; HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{52}H_{90}O_{12}Si_2Na$, 985.5863; found, 985.5861.

Diol 46. To a solution of ketone 43 (59.7 mg, 0.0649 mmol) in CH₂Cl₂ (3 mL) at -78 °C was added DIBALH (1.0 M solution in nhexane, 0.4 mL, 0.4 mmol). The resultant solution was stirred at -78 $^{\circ}$ C for 1 h, and then allowed to warm to -20 $^{\circ}$ C and stirred for 3 h. The reaction was quenched with the saturated aqueous potassium sodium tartrate solution (5 mL). The resultant mixture was diluted with EtOAc (5 mL) and vigorously stirred at room temperature for 1 h. The mixture was extracted with EtOAc (10 mL, 6 mL), and the combined organic layers were washed with brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (1 to 2 to 4% MeOH/CHCl₃) gave diol 46 (39.8 mg, 76%) as a colorless oil: $[\alpha]_{D}^{22.6}$ -18.1 (c 0.39, CHCl₃); IR (neat): 3449, 2944, 2867, 1514, 1464, 1381, 1248, 1092, 1035, 985, 755, 678 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.28–7.24 (m, 2H), 6.90–6.86 (m, 2H), 4.54 (d, J = 11.5 Hz, 1H), 4.45 (d, J = 11.5 Hz, 1H), 4.11 (br d, J = 5.0 Hz, 1H), 3.93 (d, J = 8.7 Hz, 1H), 3.92–3.86 (m, 2H), 3.2–3.78 (m, 4H), 3.69 (d, J = 8.7 Hz, 1H), 3.68-3.62 (m, 3H), 3.55-3.48 (m, 2H), 2.22 (ddd, J = 15.4, 5.5, 5.5 Hz, 1H), 1.92–1.85 (m, 3H), 1.82–1.62 (m, 10H), 1.55 (m, 1H), 1.50 (s, 3H), 1.49 (m, 1H), 1.39 (s, 3H), 1.33 (s, 3H), 1.25 (s, 3H), 1.14 (s, 3H), 1.13-1.09 (m, 21H), two protons missing due to H/D exchange; ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 159.3, 130.6, 129.4 (2C), 113.9 (2C), 111.1, 103.1, 86.4, 79.0, 78.5, 78.4, 77.8, 76.5, 76.0, 74.6, 73.5, 73.3, 71.8, 71.1, 64.1, 55.3, 43.5, 37.1, 31.9, 30.6, 30.4, 27.2, 27.0, 26.7, 24.5, 24.4, 20.6, 18.5, 18.4 (3C), 18.3 (3C), 15.4, 12.8 (3C); HRMS (ESI) m/z: $[M + Na]^+$ calcd for C44H74O11SiNa, 829.4893; found, 829.4893.

Tosylate 47. To a solution of diol 46 (38.3 mg, 0.0475 mmol), Et₃N (0.07 mL, 0.50 mmol), and DMAP (6.5 mg, 0.053 mmol) in CH₂Cl₂ (2 mL) was added TsCl (27.2 mg, 0.143 mmol), and the resultant solution was stirred at room temperature for 19.5 h. The reaction was quenched with the saturated aqueous NaHCO₃ solution (5 mL). The mixture was extracted with EtOAc (15 and 5 mL), and the combined organic layers were washed with brine (5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (25 to 30 to 40% EtOAc/hexanes) gave tosylate 47 (43.3 mg, 95%) as a colorless oil: $[\alpha]_{D}^{22.1}$ -24.0 (c 0.85, CHCl₃); IR (neat): 3444, 2945, 2868, 1514, 1464, 1368, 1248, 1177, 1095, 1035, 983, 756, 667 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.80-7.76 (m, 2H), 7.34-7.30 (m, 2H), 7.19-7.15 (m, 2H), 6.86-6.82 (m, 2H), 4.47 (d, J = 11.5 Hz, 1H), 4.39 (d, J = 11.5 Hz, 1H), 4.09 (br d, J = 4.6 Hz, 1H), 4.03–3.97 (m, 2H), 3.93 (d, J = 8.7 Hz, 1H), 3.90 (dd, J = 8.3, 6.8 Hz, 1H), 3.84 (dd, J = 12.4, 5.0 Hz, 1H), 3.81–3.79 (m, 4H), 3.73 (m, 1H), 3.69 (d, *J* = 8.7 Hz, 1H), 3.65 (dd, *J* = 11.0, 4.1 Hz, 1H), 3.63–3.56 (m, 2H), 2.44 (s, 3H), 2.19 (ddd, J = 15.1, 5.5, 5.5 Hz, 1H), 1.93-1.57 (m, 12H), 1.50 (s, 3H), 1.48 (m, 1H), 1.43-1.32 (m, 2H, overlapped), 1.40 (s, 3H), 1.32 (s, 3H), 1.26 (s, 3H), 1.20–1.08 (m, 24H); $^{13}C{^{1}H}$ NMR (150 MHz, CDCl₃): δ 159.2, 144.7, 133.0, 130.2, 129.8 (2C), 129.4 (2C), 128.0 (2C), 113.8 (2C), 111.1, 103.1, 85.8, 78.5, 78.4, 77.8, 76.4, 76.0, 75.7, 74.6, 73.5, 73.2, 71.8, 71.7, 71.6, 55.3, 43.6, 37.1, 31.8, 30.40, 30.37, 27.7, 27.2, 26.8, 24.5, 24.4, 21.6, 20.6, 18.5, 18.4 (3C), 18.3 (3C), 15.4, 12.8 (3C); HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₅₁H₈₀SO₁₃SiNa, 983.4981; found, 983.4984.

Epoxide 48. To a solution of tosylate 47 (41.8 mg, 0.0435 mmol) in CH₂Cl₂ (2.5 mL)/pH 7.0 phosphate buffer (5:1, v/v, 3 mL) was added DDQ (29.6 mg, 0.130 mmol), and the mixture was stirred at room temperature for 2 h. The reaction was quenched with the saturated aqueous NaHCO3 solution/saturated aqueous Na2S2O3 solution (1:1, v/v, 10 mL). The mixture was extracted with EtOAc (20 mL, 10 mL), and the combined organic layers were washed with the saturated aqueous NaHCO₃ solution (6 mL) and brine (6 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (10 to 30 to 40% EtOAc/hexanes) gave diol S6 (38.1 mg): $[\alpha]_{D}^{23.3}$ -15.9 (c 1.50, CHCl₃); IR (neat): 3442, 2945, 1463, 1368, 1177, 1118, 1096, 1035, 983, 756, 667 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.82-7.99 (m, 2H), 7.38–7.34 (m, 2H), 4.11 (br d, J = 5.5 Hz, 1H), 3.97–3.87 (m, 4H, overlapped), 3.93 (d, J = 8.7 Hz, 1H), 3.81-3.76 (m, 2H), 3.69 (d, J = 8.7 Hz, 1H), 3.67 (m, 1H), 3.64 (dd, J = 10.5, 4.1 Hz, 1H),2.45 (s, 3H), 2.23 (ddd, J = 15.6, 5.5, 5.5 Hz, 1H), 1.92-1.83 (m, 3H), 1.80-1.58 (m, 11H), 1.49 (s, 3H), 1.48 (m, 1H), 1.39 (s, 3H), 1.39 (m, 1H, overlapped), 1.32 (s, 3H), 1.25 (s, 3H), 1.19-1.08 (m, 25H), one proton missing due to H/D exchange; ${}^{13}C{}^{1}H$ NMR (150 MHz, C₆D₆): δ 144.9, 132.8, 129.9 (2C), 128.0 (2C), 111.0, 103.0, 86.2, 78.4, 78.2, 77.7, 76.3, 76.0, 74.6, 73.7, 73.5, 73.3, 71.7, 69.4, 43.3, 37.0, 31.5, 31.2, 30.4, 29.7, 27.2, 26.7, 24.5, 24.3, 21.6, 20.5, 18.5, 18.34 (3C), 18.28 (3C), 15.4, 12.7 (3C); HRMS (ESI) m/z: M + Na]⁺ calcd for $C_{43}H_{72}SO_{12}SiNa$, 863.4406; found, 863.4406.

To a solution of the above diol S6 (38.1 mg) in CH₂Cl₂/MeOH (2:1, v/v, 3 mL) was added K₂CO₃ (30.2 mg, 0.219 mmol), and the resultant solution was stirred at room temperature for 45 min. To this mixture was added MeOH (1 mL), and the mixture was stirred for further 45 min. The reaction was quenched with the saturated aqueous NH₄Cl solution (3 mL). The mixture was extracted with CH_2Cl_2 (3 × 6 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (30 to 40% EtOAc/hexanes) gave epoxide 48 (24.5 mg, 84% in two steps) as a colorless oil: $[\alpha]_{\rm D}^{21.4}$ -31.2 (c 0.98, CHCl₃); IR (neat): 3456, 2945, 2868, 1464, 1382, 1247, 1209, 1098, 1065, 1035, 985, 882, 755, 679 cm⁻¹; ¹H NMR (600 MHz, CDCl₂): δ 4.60 (d, J = 7.8 Hz, 1H), 4.11 (br d, J = 5.5 Hz, 1H), 3.93 (d, J = 8.2 Hz, 1H), 3.91-3.86 (m, 2H), 3.80 (m, 1H), 3.70 (ddd, J = 9.7, 3.7, 3.2 Hz, 1H), 3.69 (d, J = 8.2 Hz, 1H), 3.66 (dd, J = 11.0, 4.6 Hz, 1H), 2.92 (m, 1H), 2.74 (dd, J = 5.0, 4.1 Hz, 1H), 2.47 (dd, J = 5.0, 2.7 Hz, 1H), 2.22 (ddd, J = 15.6, 5.5, 5.5 Hz, 1H), 1.94–1.84 (m, 3H), 1.82– 1.62 (m, 8H), 1.62-1.53 (m, 3H), 1.50 (s, 3H), 1.47 (m, 1H), 1.39 (s, 3H), 1.33 (s, 3H), 1.25 (s, 3H), 1.21-1.09 (m, 21H, overlapped), 1.14 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 111.1, 103.1, 85.5, 78.6, 78.4, 77.8, 76.5, 76.0, 74.6, 73.5, 73.3, 71.7, 51.9, 47.2, 43.5, 37.1, 32.0, 31.3, 30.4, 28.8, 27.2, 26.7, 24.5, 24.4, 20.6, 18.5, 18.4 (3C), 18.3 (3C), 15.3, 12.8 (3C); HRMS (ESI) m/z: [M + Na]⁺ calcd for C₃₆H₆₄O₉SiNa, 691.4212; found, 691.4212.

Alcohol **49**. To a solution of epoxide **48** (16.1 mg, 0.0241 mmol) in toluene (2 mL) was added silica gel (100 mg), and the resultant mixture was stirred at 50 °C (oil bath) for 13 h 40 min. The mixture was filtered through a cotton plug, and the filter cake was washed with EtOAc. The filtrate was concentrated under reduce pressure to give alcohol **49** (16.3 mg, quantitative) as a colorless oil: $[\alpha]_{D}^{28.1}$ –39.1 (*c* 0.32, CHCl₃); IR (neat): 3465, 2944, 2867, 1464, 1381, 1259, 1209, 1092, 1036, 754 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): δ 4.26 (dd, *J* = 9.9, 4.8 Hz, 1H), 4.22 (dd, *J* = 12.8, 4.6 Hz, 1H), 4.00 (dd, *J* = 3.7, 3.2 Hz, 1H), 3.96 (d, *J* = 8.5 Hz, 1H), 3.83 (dd, *J* = 11.0, 4.6 Hz, 1H), 3.77 (ddd, *J* = 10.1, 9.6, 4.6 Hz, 1H), 3.50 (d, *J* = 8.5 Hz, 1H), 3.29 (ddd, *J* = 11.0, 2.7 Hz, 1H), 3.05 (m, 1H), 2.32 (ddd, *J* = 16.1, 9.2, 4.1 Hz, 1H), 2.24 (dd, *J* = 12.8, 4.1 Hz, 1H), 2.20 (ddd, *J* = 12.4, 11.9,

7.4 Hz, 1H), 2.05 (dd, J = 12.8, 12.8 Hz, 1H), 1.97–1.90 (m, 2H), 1.90–1.70 (m, 5H), 1.55 (s, 3H), 1.52–1.42 (m, 3H), 1.49–1.39 (m, 2H, overlapped), 1.45 (s, 3H), 1.31 (m, 1H), 1.27–1.10 (m, 26H), 0.96 (s, 3H), one proton missing due to H/D exchange; ¹³C{¹H} NMR (150 MHz, C_6D_6): δ 111.2, 103.5, 80.1, 80.0, 78.7, 77.6, 77.3, 76.9, 76.4, 74.9, 74.0, 73.8, 73.2, 65.8, 43.8, 38.7, 37.7, 31.8, 30.8, 27.4, 27.1, 27.0, 25.1, 24.9, 21.2, 18.8, 18.6 (3C), 18.5 (3C), 13.4, 13.2 (3C); HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{36}H_{64}O_9$ SiNa, 691.4212; found, 691.4213.

JKLMN-Ring Fragment 5. To a solution of alcohol 49 (17.3 mg, 0.0259 mmol) in THF (2 mL) was added TBAF (1.0 M solution in THF, 0.26 mL, 0.26 mmol), and the resultant solution was stirred at 50 °C (oil bath) for 3.5 h. The reaction was quenched with the saturated aqueous NH₄Cl solution (3 mL) at room temperature. The mixture was extracted with EtOAc (8 mL, 2×4 m L), and the combined organic layers were washed with brine (4 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, first round: 2 to 4% MeOH/CHCl₃, second round: 15 to 20 to 25 to 30% acetone/benzene) gave JKLMN-ring fragment 5 (11.6 mg, 87%) as a colorless oil: $[\alpha]_D^{22.0}$ -44.0 (c 1.13, CHCl₃); IR (neat): 3466, 2986, 2948, 2873, 1458, 1382, 1209, 1090, 1036, 984, 909, 865, 756, 666 cm⁻¹; ¹H NMR (600 MHz, C₆D₆): δ 4.20 (dd, J = 11.0, 3.7 Hz, 1H), 3.96 (d, J = 8.5 Hz, 1H), 3.93 (dd, J = 12.8, 1.6 Hz, 1H), 3.75-3.69 (m, 2H), 3.51 (d, J = 8.5 Hz, 1H), 3.39 (br dd, J = 11.2, 3.2 Hz, 1H), 3.34 (dd, J = 11.2, 6.4 Hz, 1H), 3.28 (ddd, J = 10.6, 9.7, 4.6 Hz, 1H), 3.15 (ddd, J = 9.7, 8.3, 6.9 Hz, 1H), 3.05 (m, 1H), 2.79 (m, 1H), 2.38 (ddd, J = 15.5, 6.9, 6.4 Hz, 1H), 2.18 (ddd, J = 13.7, 13.3, 5.9 Hz, 1H), 2.15 (dd, J = 12.8, 4.6 Hz, 1H), 2.03 (ddd, J = 15.5, 8.3, 4.1 Hz, 1H), 1.96 (dd, J = 12.8, 12.8 Hz, 1H), 1.90–1.75 (m, 4H), 1.71 (ddd, J = 13.3, 4.6, 2.7 Hz, 1H), 1.55 (s, 3H), 1.52–1.42 (m, 3H), 1.36 (s, 3H), 1.27 (m, 1H), 1.25 (s, 3H), 1.21 (s, 3H), 1.17-1.06 (m, 2H), 0.93 (s, 3H), one proton missing due to H/D exchange; $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (150 MHz, C₆D₆): δ 111.2, 103.5, 79.3, 79.0, 78.8, 78.1, 77.6, 76.4, 74.9, 74.4, 74.0, 73.5, 72.6, 65.7, 44.0, 37.9, 37.7, 31.2, 30.8, 27.4, 27.0, 26.8, 25.1, 24.8, 20.5, 18.8, 15.2; HRMS (ESI) m/z: [M + Na^{+} calcd for $C_{27}H_{44}O_{0}Na$, 535.2878; found, 535.2881.

Tetrahydroxy JKLMN-Ring Fragment 50. A solution of 5 (3.1 mg, 0.00605 mmol) in THF/H2O/TFA (5:1:1, v/v, 0.8 mL) was stirred at 50 °C (oil bath) for 15 h 20 min. The reaction was quenched with 3% aqueous NH₄OH solution (1 mL) at 0 °C. The mixture was extracted with CH_2Cl_2 (5 × 2 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 5 to 10% MeOH/ CHCl₃) gave tetrahydroxy JKLMN-ring fragment **50** (2.7 mg, 94%) as a colorless amorphous powder: $[\alpha]_{D}^{22.1}$ –23.6 (*c* 0.59, CHCl₃); IR (neat): 3418, 2950, 2874, 1716, 1456, 1382, 1260, 1217, 1086, 1038, 752, 666 cm⁻¹; ¹H NMR (600 MHz, pyridine- d_5): δ 6.99 (s, 1H), 6.44 (m, 1H), 6.20 (m, 1H), 5.95 (d, J = 2.5 Hz, 1H), 4.58 (dd, J = 11.5, 2.8 Hz, 1H), 4.44 (dd, J = 13.0, 4.7 Hz, 1H), 4.08 (m, 1H), 3.97-3.88 (m, 4H), 3.88 (m, 1H), 3.81 (m, 1H), 3.63-3.54 (m, 2H), 2.65 (ddd, J = 15.5, 8.1, 5.3 Hz, 1H), 2.47 (ddd, J = 13.5, 13.3, 4.6 Hz, 1H), 2.29–2.21 (m, 2H), 2.16–2.08 (m, 2H), 2.07 (dd, J = 12.6, 12.4 Hz, 1H), 2.04-1.94 (m, 2H), 1.94-1.85 (m, 3 H), 1.80-1.70 (m, 2H), 1.59-1.48 (m, 2H, overlapped), 1.50 (s, 3H), 1.43 (s, 3H), 1.20 (s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, pyridine- d_5): δ 96.3, 80.1, 79.8, 78.9, 78.6, 78.3, 77.4, 74.8, 73.7, 72.9, 72.5, 69.6, 65.7, 44.2, 38.5, 37.1, 32.0, 29.8, 28.0, 25.5, 25.2, 20.8, 18.9, 14.1; HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₂₄H₄₀O₉Na, 495.2565; found, 495.2565.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.0c03031.

Comparison of NMR chemical shifts for compound **50** with the data for Caribbean ciguatoxin C-CTX-1 and copies of ¹H and ¹³C NMR spectra of all new compounds (PDF)

pubs.acs.org/joc

AUTHOR INFORMATION

Corresponding Author

Makoto Sasaki – Graduate School of Life Sciences, Tohoku University, Sendai, Japan; o orcid.org/0000-0003-2964-7986; Email: masasaki@tohoku.ac.jp

Authors

Kotaro Iwasaki – Graduate School of Life Sciences, Tohoku University, Sendai, Japan

Keisuke Arai – Graduate School of Life Sciences, Tohoku University, Sendai, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.0c03031

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by JSPS KAKENHI Grant Numbers JP16H03278 and JP20H029190. We are grateful to Dr. Masahiro Hirama (Emeritus Professor of Tohoku University) for his encouragement. We also thank Daisuke Unabara and Yuka Taguchi (Tohoku University) for FAB and ESI-TOF mass measurements.

REFERENCES

(1) (a) Lewis, R. J. The Changing Face of Ciguatera. *Toxicon* 2001, 39, 97–106. (b) Yasumoto, T. The Chemistry and Biological Function of Natural Marine Toxins. *Chem. Rec.* 2001, 1, 228–242. (c) Scheuer, P. J. Ciguatera and Its Off-Shoots – Chance Encounters En Route to a Molecular Structures. *Tetrahedron* 1994, 50, 3–18. (d) Yasumoto, T.; Murata, M. Marine Toxins. *Chem. Rev.* 1993, 93, 1897–1909.

(2) For recent reviews, see: (a) Pasinszki, T.; Lako, J.; Dennis, T. E. Advances in Detecting Ciguatoxins in Fish. *Toxins* **2020**, *12*, 494. (b) Soliño, L.; Costa, P. R. Differential Toxin Profiles of Ciguatoxins in Marine Organisms: Chemistry, Fate and Global Distribution. *Toxicon* **2018**, *150*, 124–143. (c) Friedman, M. A.; Fernandez, M.; Backer, L. C.; Dickey, R. W.; Bernstein, J.; Schrank, K.; Kibler, S.; Stephan, W.; Gribble, M. O.; Bienfang, P.; Bowen, R. E.; Degrasse, S.; Flores Quintana, H. A.; Loeffler, C. R.; Richard Weisman, R.; Blythe, D.; Berdalet, E.; Ram Ayyar, R.; Clarkson-Townsend, D.; Swajian, K.; Ronald Benner, R.; Brewer, T.; Fleming, L. E. An Updated Review of Ciguatera Fish Poisoning: Clinical, Epidemiological, Environmental, and Public Health Management. *Mar. Drugs* **2017**, *15*, 72. , and references cited therein

(3) (a) Boada, L. D.; Zumbado, M.; Luzardo, O. P.; Almeida-González, M.; Plakas, S. M.; Granade, H. R.; Abraham, A.; Jester, E. L. E.; Dickey, R. W. Ciguatera Fish Poisoning on the West Africa Coast: An Emerging Risk in the Canary Islands (Spain). *Toxicon* **2010**, *56*, 1516–1519. (b) Dickey, R. W.; Plakas, S. M. Ciguatera: A Public Health Perspective. *Toxicon* **2010**, *56*, 123–136. (c) Aligizaki, K.; Nikolaidis, G.; Fraga, S. Is Gambierdiscus Expanding to New Areas ? Harmful Algae News **2008**, *36*, 6–7.

(4) (a) Murata, M.; Legrand, A. M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. Structures and Configurations of Ciguatoxin from the Moray Eel Gymnothorax javanicus and Its Likely Precursor from the Dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc. 1990, 112, 4380–4386. (b) Yasumoto, T.; Nakajima, I.; Bagnis, R.; Adachi, R. Finding of a Dinoflagellate as a Likely Culprit of Ciguatera. Bull. Jpn. Soc. Sci. Fish. 1971, 43, 1021–1026. (c) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida, T. Ciguatoxin: Isolation and Chemical Nature. Science 1967, 155, 1267–1268.

(5) Satake, M.; Murata, M.; Yasumoto, T. The structure of CTX3C, a Ciguatoxin Congener Isolated from Cultured Gambierdiscus toxicus. *Tetrahedron Lett.* **1993**, *34*, 1975–1978.

(6) (a) Yogi, K.; Oshiro, N.; Inafuku, Y.; Hirama, M.; Yasumoto, T. Detailed LC-MS/MS Analysis of Ciguatoxins Revealing Distinct Regional and Species Characteristics in Fish and Causative Alga from the Pacific. *Anal. Chem.* **2011**, *83*, 8886–8891. (b) Yasumoto, T.; Igarashi, T.; Legrand, A.-M.; Cruchet, P.; Chinain, M.; Fujita, T.; Naoki, H. Structural Elucidation of Ciguatoxin Congeners by Fast-atom Bombardment Tandem Mass Spectroscopy. *J. Am. Chem. Soc.* **2000**, *122*, 4988–4989 and references cited therein.

(7) (a) Yamashita, S.; Takeuchi, K.; Koyama, T.; Inoue, M.; Hayashi, Y.; Hirama, M. Practical Route to the Left Wing of CTX1B and Total Syntheses of CTX1B and 54-DeoxyCTX1B. Chem.-Eur. J. 2015, 21, 2621-2628. (b) Yamashita, S.; Ishihara, Y.; Morita, H.; Uchiyama, J.; Takeuchi, K.; Inoue, M.; Hirama, M. Stereoselective 6exo Radical Cyclization Using cis-Vinyl Sulfoxide: Practical Total Synthesis of CTX3C. J. Nat. Prod. 2011, 74, 357-364. (c) Inoue, M.; Miyazaki, K.; Ishihara, Y.; Tatami, A.; Ohnuma, Y.; Kawada, Y.; Komano, K.; Yamashita, S.; Lee, N.; Hirama, M. Total Synthesis of Ciguatoxin and 51-HydroxyCTX3C. J. Am. Chem. Soc. 2006, 128, 9352-9354. (d) Inoue, M.; Miyazaki, K.; Uehara, H.; Maruyama, M.; Hirama, M. First- and Second-Generation Total Synthesis of Ciguatoxin CTX3C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12013-12018. (e) Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Practical Total Synthesis of Ciguatoxin CTX3C by Improved Protective Group Strategy. Org. Lett. 2002, 4, 4551-4554. (f) Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. Total Synthesis of Ciguatoxin CTX3C. Science 2001, 294, 1904-1907.

(8) (a) Tsumuraya, T.; Fujii, I.; Hirama, M. Preparation of Anti-Ciguatoxin Monoclonal Antibodies Using Synthetic Haptens: Sandwich ELISA Detection of Ciguatoxins. J. AOAC Int. 2014, 97, 373-379. (b) Tsumuraya, T.; Takeuchi, K.; Yamashita, S.; Fujii, I.; Hirama, M. Development of a Monoclonal Antibody against the Left Wing of Ciguatoxin CTX1B: Thiol Strategy and Detection Using a Sandwich ELISA. Toxicon 2012, 60, 348-357. (c) Tsumuraya, T.; Fujii, I.; Hirama, M. Production of Monoclonal Antibodies for Sandwich Immunoassay Detection of Pacific Ciguatoxins. Toxicon 2010, 56, 797-803. (d) Tsumuraya, T.; Fujii, I.; Inoue, M.; Tatami, A.; Miyazaki, K.; Hirama, M. Production of Monoclonal Antibodies for Sandwich Immunoassay Detection of Ciguatoxin 51-HydroxyCTX3C. Toxicon 2006, 48, 287-294. (e) Oguri, H.; Hirama, M.; Tsumuraya, T.; Fujii, I.; Maruyama, M.; Uehara, H.; Nagumo, Y. Synthesis-Based Approach toward Direct Sandwich Immunoassay for Ciguatoxin CTX3C. J. Am. Chem. Soc. 2003, 125, 7608-7612.

(9) (a) Dickey, R. W.; Granade, H. R.; Bencsath, F. A.; Martin, G. E. In *Proceedings of the International Symposium on Ciguatera and Marine Natural Products*; Hokama, Y., Scheuer, P. J., Yasumoto, T., Eds.; Characterization of Polyether Biotoxins from Caribbean Barracuda (*Sphyraena barracuda*) and Horse-Eye Jack (*Caranx latus*); Asian Pacific Research Foundation, 1995; p 292. (b) Crouch, R. C.; Martin, G. E.; Musser, S. M.; Ray Grenade, H.; Dickey, R. W. Improvements in the Sensitivity of Inverse-Detected Heteronuclear Correlation Spectra Using Micro Inverse Probes and Micro Cells: HMQC and HMBC Spectra of Caribbean Ciguatoxin – Preliminary Structural Inferences. *Tetrahedron Lett.* **1995**, *36*, 6827–6830.

(10) Vernoux, J.-P.; Lewis, R. J. Isolation and Characterisation of Caribbean Ciguatoxins from the Horse-Eye Jack (*Caranx latus*). *Toxicon* **1997**, 35, 889–900.

(11) Lewis, R. J.; Vernoux, J.-P.; Brereton, I. M. Structure of Caribbean Ciguatoxin Isolated from Caranx latus. J. Am. Chem. Soc. **1998**, 120, 5914–5920.

(12) Synthetic studies on the M-ring of C-CTX-1 by the Hirama group, see: (a) Yamashita, S.; Iijima, N.; Shida, T.; Hirama, M. Stereoselective Synthesis of Caribbean Ciguatoxin M-Ring Using [2+2] Photocyclization. *Heterocycles* **2010**, *82*, 761–774. (b) Yoshi-kawa, K.; Inoue, M.; Hirama, M. Synthesis of the LMN-Ring Fragment of the Caribbean Ciguatoxin C-CTX-1. *Tetrahedron Lett.* **2007**, *48*, 2177–2180.

(13) Estevez, P.; Castro, D.; Manuel Leao, J.; Yasumoto, T.; Dickey, R.; Gago-Martinez, A. Implementation of Liquid Chromatography

Tandem Mass Spectrometry for the Analysis of Ciguatera Fish Poisoning in Contaminated Fish Samples from Atlantic Coasts. *Food Chem.* **2019**, *280*, 8–14.

(14) (a) Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. Fe-Catalyzed C–C Bond Construction from Olefins via Radicals. J. Am. Chem. Soc. 2017, 139, 2484–2503. (b) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Functionalized Olefin Cross-Coupling to Construct Carbon–Carbon Bonds. Nature 2014, 516, 343–348. (c) Lo, J. C.; Yabe, Y.; Baran, P. S. A Practical and Catalytic Reductive Olefin Coupling. J. Am. Chem. Soc. 2014, 136, 1304–1307.

(15) Sasaki, M.; Iwasaki, K.; Arai, K. Studies toward the Total Synthesis of Caribbean Ciguatoxin C-CTX-1: Synthesis of the LMN-Ring Fragment through Reductive Olefin Cross-Coupling. *Org. Lett.* **2018**, *20*, 7163–7166.

(16) For selected reviews on Suzuki-Miyaura coupling, see: (a) Seidel, G.; Fürstner, A. Suzuki Reactions of Extended Scope: the "9-MeO-9-BBN Variant" as a Complementary Format for Cross-Coupling. *Commun* **2012**, 48, 2055-2070. (b) Suzuki, A. Cross-Coupling Reactions of Organoboranes: An Easy Way To Construct C-C Bonds (Nobel Lecture). *Angew. Chem., Int. Ed.* **2011**, 50, 6722-6737. (c) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. The B-Alkyl Suzuki-Miyaura Cross-Coupling Reaction: Development, Mechanistic Study, and Applications in Natural Product Synthesis. *Angew. Chem., Int. Ed.* **2001**, 40, 4544-4568. (d) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. *Chem. Rev.* **1995**, 95, 2457-2483.

(17) For reviews on Suzuki–Miyaura coupling in the synthesis of polycyclic ethers, see: (a) Fuwa, H. Total Synthesis of Structurally Complex Marine Oxacyclic Natural Products. *Bull. Chem. Soc. Jpn.* **2010**, *83*, 1401–1420. (b) Sasaki, M.; Fuwa, H. Convergent Strategies for the Total Synthesis of Polycyclic Ether Marine Metabolites. *Nat. Prod. Rep.* **2008**, *25*, 401–426. (c) Sasaki, M. Development and Application of a Convergent Strategy for the Total Synthesis of Polycyclic Ether Natural Products. *Bull. Chem. Soc. Jpn.* **2007**, *80*, 856–871. (d) Sasaki, M.; Fuwa, H. Total Synthesis of Polycyclic Ether Natural Products Based on Suzuki–Miyaura Cross-Coupling. Synlett **2004**, *2004*, 1851–1874.

(18) For recent applications of HAT based reductive olefin coupling in natural product synthesis, see: (a) Xu, G.; Wu, J.; Li, L.; Lu, Y.; Li, C. Total Synthesis of (–)-Daphnezomines A and B. J. Am. Chem. Soc. **2020**, 142, 15240–15245. (b) Hu, Y.; Bai, M.; Yang, Y.; Tian, J.; Zhou, Q. Rapid Access to Tetracyclic Core of Wortmannin via an Intramolecular Reductive Olefin Coupling Strategy. Org. Lett. **2020**, 22, 6308–6312. (c) Godfrey, N. A.; Schatz, D. J.; Pronin, S. V. Twelve-Step Asymmetric Synthesis of (–)-Nodulisporic Acid C. J. Am. Chem. Soc. **2018**, 140, 12770–12774. (d) Lu, Z.; Zhang, X.; Guo, Z.; Chen, Y.; Mu, T.; Li, A. Total Synthesis of Aplysiasecosterol A. J. Am. Chem. Soc. **2018**, 140, 9211–9218. (e) George, D. T.; Kuenstner, E. J.; Pronin, S. V. A Concise Approach to Paxilline Indole Diterpenes. J. Am. Chem. Soc. **2015**, 137, 15410–15413.

(19) (a) For a review, see: Wirth, T. Organoselenium Chemistry in Stereoselective Reactions. *Angew. Chem., Int. Ed.* **2000**, *39*, 3740–3749. (b) Reich, H. J. Organoselenium Chemistry. Synthetic Transformations Based on Allyl Selenide Anions. *J. Org. Chem.* **1975**, *40*, 2570–2572. (c) Evans, D. A.; Andrews, G. C. Allylic Sulfoxides. Useful Intermediates in Organic Synthesis. *Acc. Chem. Res.* **1974**, *7*, 147–155.

(20) (a) Sun, H.; Roush, W. R. Synthesis of (+)-B-Allyldiisopinocampheylborane and Its Reaction with Aldehydes. Org. Synth. 2011, 88, 87–101. (b) Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. Chiral Synthesis via Organoboranes. 6. Asymmetric Allylboration via Chiral Allyldialkylboranes. Synthesis of Homoallylic Alcohols with Exceptionally High Enantiomeric Excess. J. Org. Chem. 1986, 51, 432–439. (c) Brown, H. C.; Jadhav, P. K. Asymmetric Carbon-Carbon Bond Formation via B-Allyldiisopinocampheylborane. Simple Synthesis of Secondary Homoallylic Alcohols with Excellent Enantiomeric Purities. J. Am. Chem. Soc. 1983, 105, 2092–2093. (21) (a) Keck, G. E.; Krishnamurthy, D. Catalytic Asymmetric Allylation Reactions: (S)-1- (Phenylmethoxy)-4-Penten-2-ol. *Org. Synth.* **2003**, 75, 12. (b) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. Catalytic Asymmetric Allylation of Aldehydes. *J. Am. Chem. Soc.* **1993**, *115*, 8467–8468.

(22) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. Enantioselective Syntheses with Titanium Carbohydrate Complexes. Part 7. Enantioselective Allyltitanation of Aldehydes with Cyclopentadienyldialkoxyallyltitanium Complexes. *J. Am. Chem. Soc.* **1992**, *114*, 2321–2336.

(23) Mori, Y.; Yaegashi, K.; Furukawa, H. A New Strategy for the Reiterative Synthesis of *trans*-Fused Tetrahydropyrans via Alkylation of Oxiranyl Anion and 6-endo Cyclization. J. Am. Chem. Soc. **1996**, *118*, 8158–8159.

(24) Kotsuki, H.; Kadota, I.; Ochi, M. An Efficient Method for the Alkylation of Chiral Triflates with Alkynyllithium Reagents. A Highly Concise Total Synthesis of (+)-Panaxacol. *Tetrahedron Lett.* **1990**, *31*, 4609–4612.

(25) (a) Dess, D. B.; Martin, J. C. Readily Accessible 12-I-5 Oxidant for the Conversion of Primary and Secondary Alcohols to Aldehydes and Ketones. J. Org. Chem. **1983**, 48, 4155–4156. (b) Dess, D. B.; Martin, J. C. A Useful 12-I-5 Triacetoxyperiodinane (the Dess-Martin Periodinane) for the Selective Oxidation of Primary or Secondary Alcohols and a Variety of Related 12-I-5 Species. J. Am. Chem. Soc. **1991**, 113, 7277–7287.

(26) (a) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K. Synthesis of the ABC Ring System of Brevetoxin B. J. Am. Chem. Soc. **1989**, 111, 6666–6675. (b) Ashby, E. C.; Laemmle, J. T. Stereochemistry of Organometallic Compound Addition to Ketones. Chem. Rev. **1975**, 75, 521–546.

(27) (a) Iwabuchi, Y. Discovery and Exploitation of AZADO: The Highly Active Catalyst for Alcohol Oxidation. *Chem. Pharm. Bull.* **2013**, *61*, 1197–1213. (b) Shibuya, M.; Sasano, Y.; Tomizawa, M.; Hamada, T.; Kozawa, M.; Nagahama, N.; Iwabuchi, Y. Practical Preparation Methods for Highly Active Azaadamantane-Nitroxyl-Radical-Type Oxidation Catalysts. *Synthesis* **2011**, *2011*, 3418–3425. (c) Iwabuchi, Y. Exploration and Exploitation of Synthetic Use of Oxoammonium Ions in Alcohol Oxidation. *J. Synth. Org. Chem., Jpn.* **2008**, *66*, 1076–1084.

(28) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. A Rapid Esterification by Means of Mixed Anhydride and Its Application to Large-Ring Lactonization. *Bull. Chem. Soc. Jpn.* **1979**, 52, 1989–1993.

(29) The use of lactone-derived enol phosphates in Stille coupling was pioneered by the Nicolaou group, see: Nicolaou, K. C.; Shi, G.-Q.; Gunzner, J. L.; Gärtner, P.; Yang, Z. Palladium-Catalyzed Functionalization of Lactones via Their Cyclic Ketene Acetal Phosphates. Efficient New Synthetic Technology for the Construction of Medium and Large Cyclic Ethers. J. Am. Chem. Soc. 1997, 119, 5467–5468.

(30) (a) Danheiser, R. L.; Romines, K. R.; Koyama, H.; Gee, S. K.; Johnson, C. R.; Medich, J. R. A Hydroxymethyl Anion Equivalent: Tributyl [(Methoxymethoxy)methyl]stannane. *Org. Synth.* **2003**, *71*, 133. (b) Seitz, D. E.; Carroll, J. J.; Cartaya M, C. P.; Lee, S.-H.; Zapata, A. Efficient Synthesis of Derivatives of Tributylstannylmethanol. *Synth. Commun.* **1983**, *13*, 129–134.

(31) (a) Lu, Z.; Li, H.; Bian, M.; Li, A. Total Synthesis of Epoxyeujindole A. J. Am. Chem. Soc. **2015**, 137, 13764–13767. (b) Shen, L.; Zhang, M.; Wu, Y.; Qin, Y. Efficient Assembly of an Indole Alkaloid Skeleton by Cyclopropanation: Concise Total Synthesis of (\pm) -Minfiensine. Angew. Chem., Int. Ed. **2008**, 47, 3618–3621. (c) Yasuda, N.; Yang, C.; Wells, K. M.; Jensen, M. S.; Hughes, D. L. Preparation of Crystalline p-Nitrobenzyl 2-Hydroxymethyl Carbapenem as a Key Intermediate for the Anti-MRS Carbapenem L-786,392. Tetrahedron Lett. **1999**, 40, 427–430. (d) Kosugi, M.; Sumiya, T.; Ohhashi, K.; Sano, H.; Migita, T. Novel Hydroxymethylation of Aryl Bromides by Means of Organotin Reagents. Chem. Lett. **1985**, 14, 997–998.

pubs.acs.org/joc

(32) Grieco, P. A.; Gilman, S.; Nishizawa, M. Organoselenium Chemistry. A Facile One-Step Synthesis of Alkyl Aryl Selenides from Alcohols. J. Org. Chem. **1976**, *41*, 1485–1486.

(33) (a) Martin, S. F.; Dodge, J. A. Efficacious Modification of the Mitsunobu Reaction for Inversions of Sterically Hindered Secondary Alcohols. *Tetrahedron Lett.* **1991**, *32*, 3017–3020. (b) Mitsunobu, O. The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. *Synthesis* **1981**, *1981*, 1–28. (c) Mitsunobu, O.; Yamada, M. Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts. Bull. Chem. Soc. Jpn. **1967**, *40*, 2380–2382.

(34) (a) Bates, R. W.; Song, P. Tetrahydropyran Synthesis by Intramolecular Conjugate Addition to Enones: Synthesis of the Clavosolide Tetrahydropyran Ring. *Synthesis* 2010, 2010, 2935–2942.
(b) Lu, K.; Huang, M.; Xiang, Z.; Liu, Y.; Chen, J.; Yang, Z. Development of a Concise and Diversity-Oriented Approach for the Synthesis of Plecomacrolides via the Diene-Ene RCM. *Org. Lett.* 2006, *8*, 1193–1196.

(35) Obradors, C.; Martinez, R. M.; Shenvi, R. A. Ph(*i*-PrO)SiH₂: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers. J. Am. Chem. Soc. **2016**, 138, 4962–4971.

(36) (a) Inoue, M.; Sasaki, M.; Tachibana, K. A Convergent Synthesis of the Decacyclic Ciguatoxin Model Containing the F–M Ring Framework. J. Org. Chem. 1999, 64, 9416–9429. (b) Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H. Scandium Trifluoromethanesulfonimide and Scandium Trifluoromethanesulfonate as Extremely Active Acetalization Catalysts. Synlett 1996, 1996, 839– 841. (c) Fukuzawa, S.-I.; Tsuchimoto, T.; Hotaka, T.; Hiyama, T. Direct Synthesis of Chiral Acetals from Carbonyl Compounds and Chiral Diols: Sequential One-Pot Asymmetric Silylcyanation Reaction Catalyzed by Scandium(III) Triflate. Synlett 1995, 1995, 1077–1078.

(37) (a) Hill, R. R.; Rychnovsky, S. D. Generation, Stability, and Utility of Lithium 4,4'-Di-*tert*-Butylbiphenylide (LiDBB). J. Org. Chem. 2016, 81, 10707–10714. (b) Ireland, R. E.; Smith, M. G. 3-Acyltetramic Acid Antibiotics. 2. Synthesis of (+)-Streptolic Acid. J. Am. Chem. Soc. 1988, 110, 854–860. (c) Freeman, P. K.; Hutchinson, L. L. Alkyllithium Reagents from Alkyl Halides and Lithium Radical Anions. J. Org. Chem. 1980, 45, 1924–1930.

(38) Ebine, M.; Suga, Y.; Fuwa, H.; Sasaki, M. Highly Efficient Synthesis of Medium-Sized Lactones via Oxidative Lactonization: Concise Total Synthesis of Isolaurepan. *Org. Biomol. Chem.* **2010**, *8*, 39–42.

(39) Szpilman, A. M.; Cereghetti, D. M.; Wurtz, N. R.; Manthorpe, J. M.; Carreira, E. M. Synthesis of 35-Deoxy Amphotericin B Methyl Ester: A Strategy for Molecular Editing. *Angew. Chem., Int. Ed.* **2008**, 47, 4335–4338.

(40) (a) Nwoye, E. O.; Dudley, G. B. Synthesis of *para*-Methoxybenzyl (PMB) Ethers under Neutral Conditions. *Chem. Commun.* 2007, 1436–1437. (b) Stewart, C. A.; Peng, X.; Paquette, L. A. An Efficient Means for Generating *p*-Methoxybenzyl (PMB) Ethers under Mildly Acidic Conditions. *Synthesis* 2008, 433–437.

(41) Roush, W. R.; Champoux, J. A.; Peterson, B. C. Diastereoselective Synthesis of the *cis*-Octahydronaphthalene Nucleus of Superstolides A and B. *Tetrahedron Lett.* **1996**, *37*, 8989–8992.

(42) Marshall, J. A.; Bourbeau, M. P. Total Synthesis of (-)-Callystatin A. J. Org. Chem. 2002, 67, 2751-2754.

(43) For a closely related example of hydroboration of enol ethers, see: Sittihan, S.; Jamison, T. F. Total Synthesis of the Marine Ladder Polyether Gymnocin B. J. Am. Chem. Soc. **2019**, *141*, 11239–11244.

(44) (a) Kuranaga, T.; Ohtani, N.; Tsutsumi, R.; Baden, D. G.; Wright, J. L. C.; Satake, M.; Tachibana, K. Total Synthesis of (-)-Brevisin: A Concise Synthesis of a New Marine Polycyclic Ether. Org. Lett. 2011, 13, 696-699. (b) Kuranaga, T.; Ishihara, S.; Ohtani, N.; Satake, M.; Tachibana, K. Chemoselective Deprotection of Silyl Ethers by DIBALH. Tetrahedron Lett. 2010, 51, 6345-6348. (c) Corey, E. J.; Jones, G. B. Reductive Cleavage of tert-Butyldimethylsilyl Ethers by Diisobutylaluminum Hydride. J. Org. Chem. 1992, 57, 1028-1029. (45) (a) Sasaki, M.; Inoue, M.; Takamatsu, K.; Tachibana, K. Stereocontrolled Synthesis of the JKLM Ring Fragment of Ciguatoxin. *J. Org. Chem.* **1999**, *64*, 9399–9415. (b) Sasaki, M.; Inoue, M.; Tachibana, K. Synthetic Studies toward Ciguatoxin. Stereocontrolled Construction of the KLM Ring Fragment. *J. Org. Chem.* **1994**, *59*, 715–717. (c) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C. K. Activation of 7-endo over 6-exo Epoxide Openings. Synthesis of Oxepane and Tetrahydropyran Systems. *J. Am. Chem. Soc.* **1989**, *111*, 5335–5340.

(46) For an example of silica gel-promoted cyclization, see: Egger, J.; Bretscher, P.; Freigang, S.; Kopf, M.; Carreira, E. M. Discovery of a Highly Potent Anti-Inflammatory Epoxyisoprostane-Derived Lactone. J. Am. Chem. Soc. **2014**, 136, 17382–17385.

(47) The comparison table for the 1 H and 13 C NMR chemical shifts for compound **50** and the natural product is furnished in the Supporting Information.

(48) Although observed ¹³C NMR chemical shift for C43 significantly deviated from that for the natural product, we inferred that this difference may be influenced by the presence or absence of the left-hand I-ring structure. The reason for the significant discrepancy of the ¹³C NMR chemical shift observed for C62 is not clear, but upon careful examination of the HMQC spectra of C-CTX-1 in refs 9b and 11, the originally assigned ¹³C NMR chemical shift for C62 might be incorrect.