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ABSTRACT: We report an effective, operationally simple, and
environmentally friendly system for the synthesis of tertiary amides by
the oxidative coupling of aromatic or aliphatic aldehydes with amines
mediated by riboflavin tetraacetate (RFTA), an inexpensive organic
photocatalyst, and visible light using oxygen as the sole oxidant. The
method is based on the oxidative power of an excited flavin catalyst and
the relatively low oxidation potential of the hemiaminal formed by amine
to aldehyde addition.

Amides are not only the building blocks of natural peptides
but also the key intermediates in the synthesis of

polymers, agrochemicals, and 25% of modern pharmaceut-
icals.1 To date, great efforts have been made to develop new
and efficient approaches to amide formation as commonly used
methods suffer from inherent disadvantages.2 The direct
thermal condensation of carboxylic acids and amines is the
simplest method for the preparation of amides. However, this
pathway is restricted to simple substrates because it requires
harsh temperature conditions. Amides are traditionally
synthesized from activated carboxylic acids or their derivatives
and amines (Figure 1A),2b,3 alternatively by the Beckmann
rearrangement,4 Schmidt reaction,5 Staudinger ligation reac-
tion,6 and other reactions.7 However, many of these strategies
suffer from the production of large quantities of waste and
byproducts. Thus, amide synthesis avoiding poor atom
economy reagents remains one of the main challenges for
organic chemistry.8 As a consequence, new catalytic
approaches for amide bond formation are of great interest
from an industrial and academic point of view.9

As an alternative to the traditional methods, the transition-
metal-catalyzed coupling of aldehydes with amines as well as
metal-free oxidative amidation of aldehydes have achieved a
breakthrough in amide synthesis (Figure 1B).9−11 Nontoxic
aldehydes are readily available and offer the possibility of
starting the transformation from substrates other than
carboxylic acids. Nevertheless, the majority of methods starting
from aldehydes are characterized by disadvantages such as
expensive catalysts/reagents, high temperatures, oxidizing
agents other than oxygen, and, in some cases, low tolerance
to secondary amines.9 Recently, researchers directed their
attention to photocatalytic procedures which usually offer mild
and green alternatives to conventional approaches.12 Among
previously known photocatalytic systems for oxidative coupling
of aldehydes and amines to amides are those requiring a
stoichiometric additive as oxidant13 or an electron- or oxygen-

transfer reagent.14 Alternatively, there are also simple method-
ologies using only a photocatalyst, like a phenazinium salt,15

Rose Bengal16 or anthraquinone,17 and molecular oxygen
(Figure 1C). Nevertheless, there are still limitations in
substrate scope and effectiveness of photocatalytic aldehyde-
amine couplings, namely, relatively long reaction times (20 h
and more) and missing procedures for amides of aliphatic
acids.
Derivatives of riboflavin (vitamin B2) are readily available

blue-light-absorbing photocatalysts well suited to oxidative
chemistry.18 In addition to their ability to oxidize highly
difficult substrates,19 some flavins have been shown to provide
delicate chemoselective oxidations.20 In aprotic solvents,
riboflavin tetraacetate (RFTA) was shown to behave as a
two-electron oxidant in oxidation of 4-methoxybenzyl alcohol
to benzaldehyde.21 Considering all of the aforementioned
factors and the photooxidation ability of flavin derivatives, we
developed the first flavin-based photocatalytic approach to
amide synthesis using RFTA as a catalyst. This system involves
oxidative coupling of an aldehyde and a secondary amine using
oxygen as a terminal oxidant and visible light. Amide formation
proceeds under mild conditions without the need for an
additional hydrogen/electron acceptor. RFTA is available in a
single step from cheap commercially available riboflavin
(Figure 1D).
The implementation of our strategy commenced with the

model reaction of 4-chlorobenzaldehyde (1a) and piperidine
(2a) in the presence of 5 mol % RFTA under blue light
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irradiation. Molecular sieves (MS), known to decompose
hydrogen peroxide (byproduct of flavin reoxidation, see
Scheme 1D) to oxygen and water were used, thereby
prolonging the lifetime of the flavin catalyst.19b,c The initial
studies showed that the desired amide 3aa formed in all the
tested solvents, including acetonitrile (ACN) and dimethyl-
formamide (DMF), which are routinely used in flavin oxidative
catalysis, as well as in the less polar solvents, trifluorome-
thylbenzene (BTF), dichloromethane (DCM), ethyl acetate
(EA), and tetrahydrofuran (THF) (Table 1, entries 1−6). The
formation of byproducts arising from RFTA photocatalysis
(see mechanistic studies below): carboxylic acid 4a, formed by
4-chlorobenzaldehyde (1a) oxidation, and 1-formylpiperidine
(5a) formed from piperidine (2a) were also observed.
Therefore, the quantities of the byproducts became an
important criterion for solvent selection. In addition, the
practical aspects of developing a method suitable for
preparative-scale synthesis were considered.22

Amidation reactions in DCM and DMF occurred avoiding
carboxylic acid 4a formation (Table 1, entries 2, 3). However,
the use of these solvents was rejected because of difficulties in
pilot plant preparative experiments: problems with removal of
DMF traces from the reaction mixtures and the volatility of
DCM at slightly elevated temperatures, which was shown to
promote amide formation (Table 1, cf. entries 2, 5, 6 with 7−
9).23 Moreover, in DCM, an undesirable polymerization
reaction was observed. Finally, ACN and THF, being the
most suitable solvents not promoting formation of the
byproduct, 1-formylpiperidine (5a) were selected. Moreover,
oxidation to carboxylic acid 4a can be suppressed by the
addition of more amine (Table 1, entries 10−15), although an

excess of amine should be adjusted to avoid 5a formation
(Table 1, entries 12, 15). Blank experiments confirmed the
essential role of light and catalyst as well as the beneficial effect
of molecular sieves in amidation (Table 1, entries 16−18).
In parallel, the mechanism of amidation and byproduct

formation was investigated. First, an experiment with 13C/
deuterium-labeled benzaldehyde was performed (Scheme 1A).
As expected, amide 3ba and carboxylic acid 4b contained
exclusively 13C in the carboxylic function (see mass
spectrometry analysis in Supporting Information S6). How-
ever, 1-formylpiperidine (5a) did not contain a 13C atom
demonstrating that benzaldehyde was not the source of the
formyl group. The role of the solvent in formylation can also
be excluded as formation of 1-formylpiperidine (5a) was
observed in all tested solvents, including THF and BTF. Most
probably, 5a was formed by the oxidative cleavage of the
piperidine dimer (I) whose formation was possible under
oxidative conditions from piperidine (Scheme 1B, see
Supporting Information S7 for mechanistic details).24 Indeed,
1-formylpiperidine (5a) was formed when piperidine alone was
irradiated in THF or ACN in the presence of RFTA.
Analogous photocatalytic amine formylation has been
described with Rose Bengal.25 Regarding the other byproduct,
benzoic acid 4a was not formed by amide hydrolysis but by
benzaldehyde oxidation as was proven by independent
experiments (Scheme 1C, see Supporting Information S9).
Electron transfer from benzaldehyde to excited RFTA is

Figure 1. Development of amide synthesis using the standard
approach starting from carboxylic acids (A) to novel methodologies
starting from aldehydes (B) and those using aerobic metal-free
photocatalysis (C,D).

Table 1. Optimizing Conditions for Amidationsa,b

yield [%]c

entry solvent conditions alternation 1a 3aa 4a 5a

1 BTF 18 65 17 21
2 DCM 40 °C 27 73 0 10
3 DMF 13 87 0 17
4 EA 15 60 25 4
5 ACN 7 63 30 0
6 THF 12 60 28 0
7 DCM 25 °C, 48 h 38 62 0 20
8 ACN 25 °C 51 43 6 5
9 THF 25 °C 51 49 0 8
10 ACN 1.2 equiv of 2a 31 51 18 0
11 ACN 3 equiv of 2a 2 80 18 0
12 ACN 4 equiv of 2a 9 91 0 45
13 THF 1.2 equiv of 2a 23 25 37 15
14 THF 3 equiv of 2a 13 87 0 0
15 THF 4 equiv of 2a 0 100 0 38
16 ACN no MS 13 51 36 0
17 ACN no RFTA 29d 0 0 0
18 ACN no light 39d 0 0 0

aSelected data; for further experiments, see Supporting Information
S4. bConditions: 1a (0.14 mmol), 2a (0.28 mmol), RFTA (5 mol %),
MS 3 Å (15 mg), solvent (250 μL), 448 nm, 45 °C, oxygen (balloon),
24 h. cDetermined by 1H NMR; yield of 5a is related to amount of 2a.
dAdduct 6 is formed from 1a.

Organic Letters pubs.acs.org/OrgLett Letter

https://doi.org/10.1021/acs.orglett.1c02391
Org. Lett. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c02391/suppl_file/ol1c02391_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c02391/suppl_file/ol1c02391_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c02391/suppl_file/ol1c02391_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c02391?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c02391?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c02391?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c02391?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c02391?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c02391/suppl_file/ol1c02391_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c02391/suppl_file/ol1c02391_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c02391?fig=tbl1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://doi.org/10.1021/acs.orglett.1c02391?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


thermodynamically disfavored; thus, one can expect oxidation
by singlet oxygen,26 which is known to be produced by RFTA
sensitization.27 Alternatively, autocatalytic oxidative process
with triplet oxygen can be involved as slow oxidation of 4-
chlorobenzaldehyde (1a) to acid 4a was also observed in the
absence of RFTA.28

The proposed mechanism for amidation (Scheme 1D) is
based on the already known behavior of RFTA in photo-
oxidations21 and on our own experiments. In the presence of
an amine, aldehyde reversibly forms the corresponding aminal
(II) as monitored by 1H NMR and HR-MS spectrometry (see
Supporting Information S8). Interestingly, the diamino-species
(III) can be slowly formed if the aminal (II) is not consumed,
for example, in the absence of light or catalyst (Table 1, entries
17, 18). The aminal (II) has a substantially lower oxidation
potential compared with the aldehyde (and even the amine, Eox
(2a) = 1.3 V29 vs saturated calomel electrode (SCE)) which
makes electron transfer (ET) to an excited RFTA feasible,
regardless of whether it is in a singlet or triplet excited state
(see Scheme 1D for the electrochemical data). Additionally,
the possibility of ET between RFTA* and (II) was confirmed
by efficient RFTA fluorescence quenching with 1-[methoxy-
(phenyl)methyl]piperidine (II′), an isolatable model of (II)
(see Supporting Information S8). After ET, hydrogen atom
transfer (HAT) occurs between (II)•+ and RFTA•−.
Alternatively, proton transfer to form the aminal (II)•-
RFTA• radical pair followed by HAT can occur.21a Finally,
the reduced flavin is reoxidized by oxygen from its reduced
form under formation of hydrogen peroxide as the side
product according to the analogy with other flavin-based
photooxidations.18a,e Hydrogen peroxide is immediately

decomposed by MS and thus cannot be involved in an
oxidative process.19c

Scheme 1. Experiments with Isotope-Labelled Substrate
(A), Other Control Experiments (B,C), the Proposed
Mechanism of Oxidative Amidation with RFTA and the
Corresponding Electrochemical (vs SCE) and Spectral Data
in ACN (D)a

aThe position of the unpaired electron in (II)•+ and the oxidation
potentials were obtained by quantum chemical calculations (see
Supporting Information S3, S10−S12).

Table 2. Scope of Amidation with RFTAa

aConditions: substrate (1 mmol), RFTA (5 mol %), MS 3 Å (125−
150 mg), THF (2 mL), 448 nm, ambient temp., oxygen (balloon); see
Supporting Information S2 for details. bAcetonitrile instead of THF.
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On the basis of the findings from the analytical experiments
and mechanistic studies, conditions for preparative experi-
ments on a 1 mmol scale were devised and a substrate scope
was investigated. THF was predominantly used as the solvent,
nevertheless reactions could be performed in ACN with similar
yields (see Supporting Information S5). Aldehydes containing
an electron-donating group were observed to be less reactive
than those containing an electron-withdrawing group, which
was demonstrated by a decreased tendency of electron-rich
aldehydes to form the adduct (II). Moreover, very electron
-rich aldehydes like 4-methoxybenzaldehyde (1i) underwent
ET photooxidation with RFTA.21a To eliminate this side
oxidation and to support adduct formation, more amine
equivalents were used for less-reactive amines. Under these
optimized conditions, the desired aromatic amides 3 were
obtained in good to high preparative yields after 2−5 h
irradiation (Table 2). Interestingly, beside para-substituted
benzaldehydes (Table 2, entries 1−9), the reaction can be
performed with meta- and ortho-substituted benzaldehydes
(Table 2, entries 10, 11) and heteroaromatic derivatives (Table
2, entries 12, 13). The method was found to be applicable to
aliphatic aldehydes (Table 2, entries 14−17). The method was
also demonstrated to be useful for other secondary amines
(Table 2, entries 18−20) including benzylic and acyclic
amines. Reactions with primary amines afforded only imines
via aldehyde-amine condensation reaction (data not shown).
In many cases, complete conversion of the aldehyde was
observed according to TLC and 1H NMR; however,
preparative yields were lower. This was predominantly true
for the amides of aliphatic aldehydes because of significant
losses during workup and by their decomposition. Interest-
ingly, formation of carboxylic acids 4 was not observed by 1H
NMR in the reaction mixtures after preparative experiments
done under optimized conditions.
In summary, it has been shown that the photooxidative

properties of flavins could be helpful in the oxidative coupling
of aldehydes with secondary amines. On the basis of these
properties, a novel and fast metal-free procedure was
developed which used a readily available riboflavin (vitamin
B2) derivative, oxygen as terminal oxidant and could be used
effectively for a broad range of aldehydes (including aliphatic),
thus distinguishing it from already known aerobic catalytic
methodologies.
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