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A B S T R A C T   

Multi-stimuli-responsive materials, which can show color/fluorescence change in response to external chemical 
or physical stimuli, have received increasing attention due to the capacities for facile realization of multifunc-
tional sensing. Herein, we presented a Et2N-substituted salicylaldehyde Schiff base compound (DDHAC) with 
multi-stimuli-responsive behaviors. An investigation of the photophysical properties in solution demonstrated 
DDHAC was an excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) 
active molecule. Owing to structural flexibility from salicylaldehyde Schiff base, the compound displayed 
reversible mechanochromic and thermochromic behavior, which were associated with the crystalline-to- 
amorphous and crystalline-to-crystalline, respectively. Moreover, the Et2N group endowed DDHAC with the 
capability that response of protonation. Due to its protonation effect, DDHAC could serve as a unique optical 
probe for discriminating CHCl3 from organic solvents assisted by UV irradiation. The selectivity was attributed to 
the interaction of DPPTP with HCl gas from photodecomposition product of chloroform.   

1. Introduction 

Organic stimuli-responsive molecules can change their chemical or 
physical structures upon external stimuli and exhibit tunable emission 
and/or absorption properties. The smart materials have aroused enor-
mous interest owing to their promising practical applications in detec-
tion of mechanical force [1–14], heat [15–22], acid/base [23–30], 
organic solvent [31–35] and so on. To date, a series of stimuli-responsive 
materials have been developed, and whereas most of which typically 
exhibit only single environmental stimuli response. Samples possessing 
multi-stimuli-responsive (MSR) capabilities are much less frequently 
reported. Normally, the integration strategy that installing distinct 
stimuli-responsive moieties and fluorophore into one system is 
employed to construct MSR polymers [36–43]. For example, Song and 
co-workers developed a novel MSR macromolecule through 

incorporation of diethylamino (pH/CO2-responsive group) and acryl-
amide (thermoresponsive moiety) into homopolymer [41]. By tagging 
multi-function unit of cyanoethylene to a polymer, a smart mechano- 
and thermoresponsive material was achieved by Lavrenova and 
co-workers [42]. In most instances, however, the MSR polymeric ma-
terials always raise additional synthetic challenges [39]. By contrast, 
small organic molecules with simple structure could be preferred 
[44–48]. 

Salicylaldehyde-based Schiff base compound is a type of potential 
stimuli-responsive material because (1) it is easily synthesized and pu-
rified; (2) it often shows AIE attribute [49–54], which is suitable for 
monitoring stimuli-induced chromism in solid state; (3) more impor-
tantly, its structural flexibility [55,56] is beneficial to phase transition 
from one to another states and resultant tunable emission upon external 
stimuli. Indeed, its derivatives have been extensively used for detection 
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of mechanical force, heating, cations, anions and enzymes [12–16, 
57–62]. However, little effort has been made to exploit their capacity in 
multi-parameter sensing. 

In this study, we reported a multi-stimuli-responsive compound 
DDHAC with Et2N-substituted salicylaldehyde Schiff base skeleton 
(Scheme 1). Due to the structural flexibility from salicylaldehyde Schiff 
base, this molecule showed mechanochromism and thermochromism 
behavior. Moreover, the introduction of the Et2N group endowed 
DDHAC with the capability that response of protonation, further 
allowed it to discriminate CHCl3 from organic solvents assisted by UV 
irradiation. 

2. Experimental 

2.1. Measurements and material 

All reagents and solvents were purchased from commercial sources 
and used as received without further purification. 1H and 13C NMR 
spectra were recorded on a Bruker AV III HD 600 spectrometer. LRMS 
and HRMS were obtained on Bruker micrOTOF-Q-II and Bruker SolariX- 
70FT mass spectrometer, respectively. UV–Vis spectra were recorded on 
a Purkinje TU-1950 spectrophotometer. Photoluminescence (PL) spectra 
were recorded on an Agilent Cary Eclipse fluorescence spectrophotom-
eter. The fluorescence quantum yields in solutions were measured by 
comparing a standard (fluorescein in 0.1 N NaOH aqueous solution, QF 
= 0.79). The absolute fluorescence quantum yields of solids were 
measured on a Hamamatsu C9920-02G spectrometer. The X-ray 
diffraction (XRD) measurements were carried out on a Skyray DX-2600 
X-ray diffractometer. The emission spectra were measured under exci-
tation at 415 nm. The photographic images were taken under a 365 nm 
UV lamp. 

Preparation of the samples for photophysical properties study. The 
UV–Vis absorption and PL spectra of DDHAC in various organic solvents 
were measured using freshly prepared 1.0 × 10− 5 M solutions. The 
CH3CN/water (or THF/CH3OH) mixtures (concentration of 1.0 × 10− 5 

M) with different water (or CH3OH) fractions were prepared by slowly 
adding distilled water into the CH3CN (or THF) solution of sample under 
ultrasound at room temperature. 

2.2. Synthesis 

Synthesis of 7-diethylamino-3-nitrocoumarin. 4-diethylamino-2- 
hydroxybenzaldehyde (2.50 g, 13 mmol) was dissolved in n-BuOH (40 
mL), ethyl nitroacetate (2.39 g, 18 mmol) and piperidine (0.4 mL) was 
added, and the mixture was refluxed for 12 h. After cooling to room 
temperature, orange crystals precipitated out from the mixture and they 
were filtered off and washed with cold n-BuOH and diethyl ether to yield 
7-diethylamino-3-nitrocoumarin as orange solid (1.89 g, 56 %), m. p. 
205.4–206.1 ◦C. 1H NMR (600 MHz, CDCl3) δ 8.67 (s, 1H), 7.43–7.40 
(m, 1H), 6.69 (dd, J = 9.1, 2.4 Hz, 1H), 6.44 (d, J = 2.3 Hz, 1H), 3.48 (q, 
J = 7.2 Hz, 4H), 1.25 (t, J = 7.2 Hz, 6H). 13C NMR (151 MHz, CDCl3) δ 
158.82, 154.71, 153.57, 143.43, 132.71, 126.69, 111.35, 106.29, 96.81, 

77.37, 77.16, 76.95, 45.65, 12.49. IR (KBr pellet): 2979(w), 1745(s), 
1629(s), 1507(m), 1326(m), 1255(m), 823(w) cm− 1. HRMS (ESI): m/z 
[M+H]+ calcd. for [C13H15N2O4]+ 263.1032, found 263.1019. 

Synthesis of 3-amino-7-diethylaminocoumarin. Stannous chloride 
dihydrate (11.36 g, 50.33 mmol) was added in conc. HCl (35 mL). To 
this suspension 7-diethylamino-3-nitrocoumarin (1.76 g, 6.7 mmol) was 
added at 0 ◦C in small portions, over a period of 1 h. The mixture was 
stirred for 4 h at room temperature and then diluted in iced water (300 
mL). The pH was adjusted to 8 with NaOH and the mixture was extracted 
three times with ethyl acetate (100 mL) at a time. The combined organic 
layers were dried over Na2SO4 and the solvent was evaporated in vac-
uum to obtain 3-amino-7-diethylaminocoumarin as pale yellow solid 
(1.29 g, 83 %), m. p. 90.4–91.2 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.09 (d, 
J = 8.7 Hz, 1H), 6.69 (s, 1H), 6.56 (d, J = 8.5 Hz, 1H), 6.51 (s, 1H), 3.90 
(s, 2H), 3.35 (q, J = 7.1 Hz, 4H), 1.16 (t, J = 7.1 Hz, 6H). 13C NMR (151 
MHz, CDCl3) δ 160.42, 151.66, 147.48, 127.65, 126.05, 114.52, 109.83, 
109.47, 98.10, 44.75, 12.55. IR (KBr pellet): 3372 (double, w), 2970(w), 
1697(s), 1623(s), 1589(m), 1326(m), 1129(m), 816(w) cm− 1. HRMS 
(ESI): m/z [M+H]+ calcd. for [C13H17N2O2]+ 233.1290, found 
233.1277. 

Synthesis of DDHAC. To a stirred solution of 3-amino-7-diethylami-
nocoumarin (464 mg, 2 mmol), 4-(diethylamino)-2-hydrox-
ybenzaldehyde (425 mg, 2.2 mmol) in EtOH (16 mL) were added 
CH3COOH (0.5 mL). The mixture was stirred for 2 h at room tempera-
ture and then filtered off to obtain red solid. Further purification was 
performed by recrystallization from THF to yield DDHAC as yellow solid 
(627 mg, 77 %), m. p. 238.2–238.8 ◦C. 1H NMR (600 MHz, DMSO‑d6) δ 
13.63 (s, 1H), 8.94 (s, 1H), 7.81 (s, 1H), 7.44 (d, J = 8.9 Hz, 1H), 7.26 (d, 
J = 8.9 Hz, 1H), 6.73 (dd, J = 8.9, 2.3 Hz, 1H), 6.57 (d, J = 2.2 Hz, 1H), 
6.31 (dd, J = 8.9, 2.3 Hz, 1H), 6.06 (d, J = 2.2 Hz, 1H), 3.47–3.35 (m, 
8H), 1.12 (td, J = 7.0, 4.6 Hz, 12H). 13C NMR (151 MHz, DMSO) δ 
163.41, 160.61, 158.79, 154.14, 151.49, 149.67, 133.92, 129.22, 
129.05, 126.94, 109.41, 108.82, 108.22, 103.95, 96.93, 96.47, 44.06, 
43.92, 12.57, 12.37. IR (KBr pellet):3441 (br, m), 2971(w), 1700(s), 
1615(s), 1511(m), 1343(m), 1238(m), 1129, 819(w) cm− 1. HRMS (ESI): 
m/z [M+H]+ calcd. for [C24H30N3O3]+ 408.2287, found 408.2259. 

3. Results and discussion 

3.1. Synthesis and characterization 

The synthetic routes were illustrated in Scheme S1. The reaction of 
starting compound 4-diethylamino salicylaldehyde with ethyl nitro-
acetate in the presence of piperidine as catalyst gave 7-diethylamino-3- 
nitro coumarin, which was further reduced by stannous chloride to 3- 
amino-7-diethylamino coumarin [63]. Compound 3-amino-7-diethyla-
mino coumarin could be easily converted to target compound DDHAC 
by condensation reaction with 4-diethylamino salicylaldehyde. 1H NMR, 
13C NMR and MS-ESI were carried out to confirm the molecular 
structures. 

3.2. ESIPT properties 

Owing to the rotation of central C–C single bond connecting the 
phenyl and imino group, there were two species for compound DDHAC 
in solution including open-enol and hydrogen-bonded enol forms [64] 
(Scheme 2). The former displayed normal emission; the latter could 
undergo the excited-state intramolecular proton transfer (ESIPT) pro-
cess after photoexcitation, and exhibited keto-form emission based on a 
keto-enol tautomerization. Therefore, the dual emission bands were 
observed for DDHAC in solution (Table 1). For example, clearly 
double-peaked bands were found in PL spectra in n-hexane, toluene, 
tetrahydrofuran, ethyl acetate and chloroform (Fig. 1b). One was the 
normal emission in short-wavelength region, and the other was the 
keto-form emission after the ESIPT process in long-wavelength region. 
However, only single-peaked broad emission bands were observed in Scheme 1. The molecular structure and multi-stimuli responses of DDHAC.  
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acetone and acetonitrile. It was because the intramolecular hydrogen 
bonding (-OH…N-) could be interrupted by polar solvents [64], and the 
open-enol form of DDHAC was the dominant species. It was noted that 
DDHAC emitted weak fluorescence in the majority of organic solvents, 
and non-radiative relaxation of excited states from the intramolecular 
rotation [51] or solvent relaxation [65] could account for the phe-
nomenon. Furthermore, DDHAC displayed dual absorption peaks in 

n-hexane, toluene, tetrahydrofuran, ethyl acetate and chloroform 
(Fig. 1a), where the shorter absorption band was ascribed to coumarin 
structure and the longer absorption band was assigned to the coupling 
between coumarin and the hydroxyphenyl ring. 

3.3. AIE properties 

To investigate the fluorescent behavior of DDHAC in aggregation 
state, the emission spectra in CH3CN/water mixtures with different 
fractions of water (fw) were performed (Fig. 2a). DDHAC emitted a weak 
emission in strong polar solvent CH3CN. However, the fluorescence was 
enhanced gradually by increasing the fw, and reached the intensity 
maximum at 0.4 of water content, revealing the AIE characteristic of 
DDHAC. From 0.4 to 0.9 of fw, DDHAC displayed reduction of emission 
intensity, which could be attributed to the formation of nanoparticles in 
a higher water faction. The aggregation of DDHAC in CH3CN/water 
system was supported by absorption spectra and dynamic light scat-
tering (DLS) measurements. As shown in Fig. 2c, in the absorption 
spectra, a level-off tail in the long-wavelength region could be obviously 
observed in 40 % water/THF (v/v) solution, which was caused by light 
scattering effect of aggregate suspensions. DLS measurements revealed 
that the particle size was around 100 nm (Fig. 2c inset). Additionally, 

Scheme 2. General representation of the ESIPT Process.  

Table 1 
Photophysical data of DDHAC in various solvents.  

Solvent λAbs (nm) λPL (nm) ΦF (%) 

n-hexane 425, 451 468, 500 3.87 
toluene 437, 460 490, 508 8.28 
ethyl acetate 436, 455 493, 509 7.88 
tetrahydrofuran 439, 459 495, 516 9.65 
chloroform 442, 464 513, 550 21.24 
acetone 458 513 8.11 
acetonitrile 458 536 7.51 
methanol 469 561 36.28 

a Only the absorption/emission peaks wavelengths were shown. 
b Emission spectra were performed upon excitation at 415 nm. 

Fig. 1. (a) Normalized absorption spectra and (b) PL spectra and photographic images (inset) of DDHAC in various solvents.  
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AIE properties of DDHAC were examined in THF-CH3OH systems with 
different methanol fractions (fM) (Fig. 2b and d). In a good solvent of 
THF, DDHAC exhibited very weak fluorescence. After the addition of 
MeOH, a poor solvent for Schiff base dye, into the THF solution, the 
emission intensity enhanced gradually, and reached the maximum at 
0.90 of fM. Similarly, absorption spectra and DLS of CH3OH solution also 
indicated that the aggregates were generated. The AIE properties could 
be attributed to restriction of the intramolecular rotation (RIR) and 
torsion effect [53,66]. 

3.4. Mechanochromism and thermochromism behavior 

Considering that structural flexibility of salicylaldehyde imine, the 
mechanochromism and thermochromism behavior of DDHAC were 
performed. As shown in Fig. 3a, the pristine powders obtained by 
crystallization in THF solution emitted bright yellow emission (ΦF =

11.7 %) with double peaks at 566 nm and 587 nm (black line). Once 
original powders were ground using a pestle and mortar, the resultant 
samples showed weak fluorescence (ΦF = 2.8 %) with single peak 
located at 597 nm (red line). The fluorescence could be recovered to its 
original state by fuming with THF (pink line), suggesting the reversible 
mechanical stimuli-response behavior. Furthermore, by heating pristine 

Fig. 2. Fluorescence spectra and emission images (insets) of DDHAC in (a) CH3CN/water and (b) THF/CH3OH mixtures; absorption spectra and DLS results (insets) 
of DDHAC in (c) 40 % CH3CN/water (v/v) mixture and (d) CH3OH. 

Fig. 3. (a) Emission spectra and (b) XRD patterns of the corresponding samples for DDHAC. Inset: natural and fluorescent images of DDHAC in different states.  
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samples at 180 o C for 30 s and cooling to room temperature, the resultant 
annealed samples presented single emission peak at 599 nm with weaker 
intensity (ΦF = 1.5 %) compared to that of ground powders (blue line); 
the emission of annealed powders also returned to original state by 
wetting with THF (green line), indicative of reversible thermal stimuli- 
response behavior. 

Powder X-ray diffraction (PXRD) measurements were carried out to 
understand the mechanical and thermal effects on the material (Fig. 3b). 
The diffraction curves of original powder displayed sharp and intense 
reflections, indicating well crystalline order. The diffraction peaks of 
ground samples were obviously diminished or disappeared relative to 
those of original powder, implying disordered molecular packing [7,9, 
14]. In the case of annealed powders, the PXRD pattern still revealed 
obvious crystalline structure features, but it was quite different from 
origin. These results demonstrated that annealing treatment should 
result in another crystalline formation of DDHAC [67]. Differential 
scanning calorimetry (DSC) measurements further proved this inference 
(Fig. S1). DSC curves of origin powder showed an endothermic transi-
tion peak at 176 ◦C before the melting point at 238 ◦C, By contrast, 
melting peak shifted to 236 ◦C and first endothermic peak vanished for 
annealing powder, suggesting the formation of new crystalline phase 
unlike that of origin [16]. When the ground and annealed powders were 
treated with THF, both of XRD patterns were in line with those of origin 
state. Given the above information, we deduced the mechanochromism 
and thermochromism behavior were ascribed to 
crystalline-to-amorphous and crystalline-to-crystalline, respectively. 

3.5. Discrimination of CHCl3 assisted by UV irradiation 

During the study of DDHAC in CHCl3 solution, the photoinduced 
absorption and fluorescence changes were noticed. The double absorp-
tion peaks of DDHAC appeared at 442 nm and 464 nm in CHCl3. In sharp 
contrast, after 120 s of exposure to UV lamp with 254 nm, the absorption 
band shifted to longer wavelength peaked at 484 nm and 515 nm with 
visible color change from yellow to pink (Fig. 4a). Meanwhile, distinct 
fluorescence change was also observed. The PL spectrum in CHCl3 
showed the emission maximum at 513 nm, with a further peak at 550 
nm. Upon UV irradiation, a significantly weakened emission band 
peaked at 547 and 585 nm was monitored, leading to fluorescence 
change from green to faint pink (Fig. 4b). However, the photophysical 
properties of DDHAC in toluene, tetrahydrofuran, ethyl acetate, acetone, 
acetonitrile and methanol solutions were almost unchanged upon UV 
irradiation of 15 min. The comparison experiment indicated that the 
apparent changes of DDHAC in CHCl3 solution under UV light could be 
triggered by CHCl3 solvent. It was known that HCl can be generated 

upon exposure CHCl3 to UV light [68], which would lead to protonation 
of the N atom from -NEt2 group in the molecular structure [69]. 
Therefore, red shift of spectral bands of DDHAC in CHCl3 after UV 
irradiation could be assigned to the interaction of this molecule with 
HCl. To prove the point, DDHAC in CHCl3 solution toward HCl were 
conducted (Fig. 4). After 10 s of saturated HCl vapor fuming, the 
changing trends of the absorption and emission bands matched well 
with UV light irradiation results, further confirming the formation of 
DDHAC-H+. These demonstrated DDHAC possessed promising 
CHCl3-responsive property, and thereby it could be applied to discrim-
inate CHCl3 from organic solvents assisted by UV irradiation. 

3.6. Protonation effect 

Then the response of DDHAC in CH3OH to HCl was tested (Fig. 5a). 
Upon 10 s of HCl fuming, distinct changes were found in Abs and PL 
spectra, corresponding to color change from orange to pink and fluo-
rescence change from bright yellow to weak red. After being fumed with 
triethylamine (TEA), the color and fluorescence were recovered due to 
releasing of DDHAC molecule (Fig. S2 and Fig. 5a inset). Similar to so-
lution state, DDHAC in solid state also exhibited sensitivity to HCl vapor 
(Fig. 5b). HCl fuming toward original samples resulted in strong fluo-
rescence quenching, which could almost revert to original fluorescent 
intensity when the materials were treated with TEA. However, the TEA- 
fumed powders showed single emission peak. These results verify that 
DDHAC had a pronounced protonation effect. 

4. Conclusions 

In conclusion, we developed a multi-stimuli-responsive compound 
DDHAC based on Et2N-substituted salicylaldehyde Schiff base with AIE 
and ESIPT characteristics. Owing to structural flexibility, the molecule 
showed mechanochromism and thermochromism. XRD results indicated 
that crystalline-to-amorphous and crystalline-to-crystalline conversions 
should be responsible for visible chromism response to mechanical and 
thermal stimuli, respectively. Additionally, protonation of the -NEt2 
group in DDHAC occurred upon HCl stimuli, resulting in acdichromism. 
This feature enabled DDHAC to differentiate of CHCl3 from organic 
solvents assisted by UV irradiation, because CHCl3 could generate HCl 
when exposed to UV light. We anticipated that the sample Et2N- 
substituted salicylaldehyde Schiff base molecule would provide a new 
paradigm in design of multi-stimuli-responsive materials. 

Fig. 4. (a) Absorption and (b) PL spectra of DDHAC in CHCl3 with different stimuli. Inset: the photographs of DDHAC in CHCl3 (left) and in CHCl3 upon UV 
irradiation (right). 
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