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ABSTRACT: The first catalytic enantioselective ruthenium-catalyzed carbonyl
reductive couplings of allene pronucleophiles is described. Using an iodide-modified
ruthenium-BINAP-catalyst and O-benzhydryl alkoxyallene 1a, carbonyl (α-alkoxy)-
allylation occurs from the alcohol or aldehyde oxidation level to form enantiomerically
enriched syn-sec,tert-diols. Internal chelation directs intervention of (Z)-σ-alkoxyallyl-
ruthenium isomers, which engage in stereospecific carbonyl addition.

■ INTRODUCTION

Convergent construction of enantiomerically enriched acylic
stereodiads bearing fully substituted carbon stereocenters
remains a persistent challenge in chemical synthesis.1 Among
such motifs, syn-sec,tert-diols appear ubiquitously as substruc-

tures across diverse secondary metabolites, especially type I
polyketides. One approach to their preparation involves
stereospecific aldehyde addition of geometrically defined γ,γ-
disubstituted chiral allylboron reagents through closed chairlike
transition structures (Figure 1).2,3 Corresponding catalytic
enantioselective processes that generate syn-sec,tert-diols from
tractable alkoxyallene pronucleophiles represents an alternate
approach that is hitherto undescribed.3,4 In connection with our
studies of carbonyl reductive coupling via hydrogenation,
transfer hydrogenation, and hydrogen autotransfer,5 which
includes the use of allene pronucleophiles,6,7 an iridium-
catalyzed reductive coupling of 1,1-disubstituted allenes with
fluoral to form acyclic stereodiads bearing quaternary carbon
centers was developed.7 We posited that the enhanced
oxaphilicity of ruthenium8 might enable asymmetric couplings
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Figure 1. Stoichiometric vs catalytic synthesis of enantiomerically
enriched syn-sec,tert-diols, a pervasive substructure among type I
polyketide natural products.

Scheme 1. Potential Multiplicity of Chair-Like Transition
Structures in Ruthenium-Catalyzed Carbonyl (α-
Alkoxy)allylation To Form syn-sec,tert-Diols
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to unactivated aldehydes. In the case of alkoxyallenes, such
oxaphilicity might also result in internal chelation to form (Z)-σ-
allylmetal nucleophiles (Scheme 1).9,10 Hence, to accommodate
aldehyde binding, such chelation must be reversible and, to

preserve syn-diastereoselectivity, carbonyl addition must be fast
relative to (Z)-to-(E)-isomerization of the fluxional allylruthe-
nium intermediates.11 Furthermore, as described by Marek,12

for γ,γ-disubstituted allylmetal nucleophiles gauche interactions
associated with the developing C−C bond can reverse the
equatorial vs axial preference of the aldehyde substituent to
erode or invert diastereoselectivity. Despite these challenges, we
herewith report ruthenium-BINAP-catalyzed syn-diastereo- and
enantioselective carbonyl reductive couplings of O-benzhydryl
3-alkoxy-1,2-butadiene to form syn-sec,tert-diols from primary
alcohol reactants (via hydrogen autotransfer) or aldehyde
reactants (via 2-propanol-mediated reductive coupling).13,14

These processes represent the f irst catalytic enantioselective
ruthenium-catalyzed carbonyl reductive couplings of allene
pronucleophiles.4,6,7,15,16

■ RESULTS AND DISCUSSION

Recently, we found that ruthenium catalysts bearing iodide
counterions17 display enhanced selectivity and productivity in
anti-diastereo- and enantioselective couplings of primary alcohol
proelectrophiles with arylpropynes to form products of aldehyde
(α-aryl)allylation.18 This observation suggested the feasibility of
utilizing chiral ruthenium iodide complexes to catalyze alcohol-
mediated carbonyl reductive couplings of O-benzhydryl 3-
alkoxy-1,2-butadiene 1a. Branch-selective couplings of this type
would generate fully substituted carbon stereocenters in the
form of monoprotected syn-sec,tert-diols. With these thoughts in
mind, a series of experiments were conducted to assess the
influence of counterion in reactions of alkoxy allene 1a with p-
bromo benzyl alcohol 2a using the catalyst assembled from
H2Ru(CO)(PPh3)3 (5 mol %) and (R)-BINAP (5 mol %) in

Table 1. Selected Optimization Experiments in the
Enantioselective Ruthenium-Catalyzed C−C Coupling of
Alkoxyallene 1a with Alcohol 2aa

Entry Solvent [M] Additive T (°C)
3a

(Yield) dr ee

1 CPME [0.4] − 70 18% 4:1 73%
2 CPME [0.4] LiCI 70 50% 6:1 59%
3 CPME [0.4] LiBr 70 76% 7:1 79%
4 CPME [0.4] Lil 70 80% 8.5:1 86%
5c CPME [0.4] − 70 56% 6:1 58%
6c CPME [0.4] Lil 70 65% 8:1 87%
7 THF [0.4] Lil 70 73% 9.5:1 87%
8 THF [0.4] Lil 75 75% 9:1 89%
9 THF [0.3] Lil 75 78% 9:1 (10:1)b 90%
10c THF [0.3] Lil 75 72% 7.5:1 88%

aYields are of material isolated by silica gel chromatography.
Diastereoselectivities were determined by 1H NMR of crude reaction
mixtures. Enantioselectivities were determined by chiral stationary
phase HPLC analysis. bDiastereoselectivity was determined after
chromatographic purification. cHClRu(CO)(PPh3)3 (5 mol %). See
Supporting Information for experimental details.

Table 2. Diastereo- and Enantioselective Ruthenium-Catalyzed C−C Coupling of Alkoxyallene 1a with Benzylic Alcohols 2a−2p
and Aryl Aldehydes 3a−3p To Form Mono-protected syn-sec,tert-Diols 4a−4pa

aYields are of material isolated by silica gel chromatography. Diastereoselectivities were determined by 1H NMR of purified materials.
Enantioselectivities were determined by chiral stationary phase HPLC. Standard conditions: 0.2 mmol scale. See Supporting Information for
experimental details. b10% catalyst. c48 h.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c03480
J. Am. Chem. Soc. 2021, 143, 8849−8854

8850

https://pubs.acs.org/doi/10.1021/jacs.1c03480?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c03480/suppl_file/ja1c03480_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c03480?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c03480?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c03480/suppl_file/ja1c03480_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c03480?fig=tbl2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c03480?rel=cite-as&ref=PDF&jav=VoR


cyclopentyl methyl ether (CPME) solvent at 70 °C. In the
absence of added halide ion, the anticipated product of (α-
alkoxy)crotylation 4a was formed in 18% yield with an
enantiomeric enrichment of 73% (Table 1, entry 1). Notably,
a 4:1 mixture of diastereomers in favor of the syn-isomer was
observed. Under these conditions, the introduction of the halide
additives LiX = Cl, Br, I (10 mol %) led to progressively higher
yields and stereoselectivities (Table 1, entries 2−4), with the
iodide-bound catalyst providing 4a in 80% yield, 8.5:1
diastereomeric ratio, and 86% ee (Table 1, entry 4). The
selectivities obtained using HClRu(CO)(PPh3)3 as precatalyst
(for which chloride is preinstalled) are in excellent alignment

with the outcome observed using H2Ru(CO)(PPh3)3 and LiCl
(Table 1, entry 2 vs 5). The stereoselectivities obtained upon
addition of LiI to either H2Ru(CO)(PPh3)3 or HClRu(CO)-
(PPh3)3 are also strikingly similar (Table 1, entry 4 vs 6),
corroborating efficient formation of the halide-modified catalyst.
As slightly better performance was observed using H2Ru(CO)-
(PPh3)3, subsequent optimization focused on this precatalyst.
Conducting the reaction in THF (Table 1, entry 7), increasing
temperature (Table 1, entry 8), and slightly decreasing
concentration were all beneficial, enabling formation of 4a in
78% yield with excellent control of syn-diastereo- and
enantioselectivity (Table 1, entry 9). The catalyst derived
fromHClRu(CO)(PPh3)3 and LiI gave 4a in similar, but slightly
lower, yields and selectivities (Table 1, entry 10).
Optimal conditions identified for the formation of 4a were

applied to structurally diverse benzylic and heterobenzylic
alcohols 2b−2p (Table 2). As illustrated by the formation of
adducts 4a−4g, diverse substitution patterns of the benzene
ring, including ortho-substituents, are tolerated. Additionally, as
demonstrated by the formation of adduct 4b, the reaction
conditions are sufficiently mild that pinacol boronates are
tolerated. Adducts 4h−4p derived from heterobenzylic alcohols
incorporating furan, thiophene, benzothiazole, pyrrole, pyrazole,
pyridine, and pyrimidine rings also were formed in an efficient

Table 3. Diastereo- and Enantioselective Ruthenium-Catalyzed Reductive C−C Coupling of Alkoxyallene 1a with Aliphatic
Aldehydes 3q−3jj To Form Mono-protected syn-sec,tert-Diols 4q−4jj Mediated by 2-Propanola

aYields are of material isolated by silica gel chromatography. Diastereoselectivities were determined by 1H NMR of purified materials.
Enantioselectivities were determined by chiral stationary phase HPLC. Standard conditions: 0.2 mmol scale. See Supporting Information for
experimental details. b10% catalyst. c48 h.

Scheme 2. Total Synthesis of (−)-Citreodiol
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and selective manner. The conversion of alcohols 2a−2p to
adducts 4a−4p represent redox-neutral hydrogen autotransfer
processes. The corresponding aldehydes 3a−3p also can be
transformed to adducts 4a−4p via 2-propanol-mediated
reductive coupling under otherwise identical reaction con-
ditions. Notably, reactions conducted from the aldehyde
oxidation level generally displayed slightly higher yields and
stereoselectivities, which is attributed to more efficient capture
of the transient allylruthenium nucleophiles.
Aliphatic alcohols did not react efficiently under the optimal

conditions for the formation of 4a. To facilitate the carbonyl
addition process, the reaction was conducted from the aldehyde
oxidation level at slightly higher catalyst loadings in a less Lewis
basic solvent, DIPE (diisopropyl ether), to promote association
of the aldehyde with the allylruthenium intermediate (see
Supporting Information for selected optimization experiments).
Under these conditions, aliphatic aldehydes 3q−3ee engage in
efficient 2-propanol-mediated reductive coupling with allene 1a
to furnish adducts 4q−4ee (Table 3). syn-Diastereoselectivities
ranging from 8:1 to 15:1 were accompanied by excellent levels of
enantioselectivity (87−99% ee). Additionally, a series of chiral
β-stereogenic aldehydes 3ff, 3gg, 3hh, 3ii, and 3jjwere subjected
to reductive coupling with allene 1a using catalysts modified by
(R)- and (S)-BINAP. In each case, excellent levels of catalyst-
directed asymmetric induction were observed. The utility of this
method is highlighted by conversion of adduct 4r to
(−)-citreodiol, a secondary metabolite of the ascomycetous
fungi Penicillium citreoviride B (Scheme 2).19,20

To corroborate the catalytic mechanism, a series of deuterium
labeling experiments were performed (Scheme 3). Under
standard reaction conditions, d2-3-furfuryl alcohol deuterio-2h
is converted to deuterio-4h-I which completely retains
deuterium at the carbinol position. Deuterium is transferred to
the internal vinylic position (56% 2H at Hc) and the terminal
vinylic position (13% 2H at Ha). These data suggest
dehydrogenation of the primary alcohol is irreversible due to
rapid allene hydroruthenation at the central allene carbon atom,
and that the secondary alcohol product is resistant to
dehydrogenation due to internal coordination of the alkene. In
a related experiment, 3-furfural 3h is subjected to standard
reductive coupling conditions mediated by d8-2-propanol.
Deuterium is transferred to the internal vinylic position (71%
2H at Hc) and the terminal vinylic position (7% 2H at Ha). The
absence of deuterium at the carbinol position again suggests the
secondary alcohol product is inert with respect to dehydrogen-
ation and that allylruthenium generation occurs via hydro-
ruthenation at the central allene carbon atom. In both

experiments, deuterium loss is attributed to H/D-exchange
involving adventitious water and, in the former experiment, the
hydroxyl functional group of the primary alcohol reactant.21 It is
notable that deuterium is incorporated at Ha but not Hb in both
experiments, suggesting strong kinetic stereocontrol in the
allene hydroruthenation event, possibly due to coordination of
ruthenium to the ether oxygen.
Based on these data, the indicated reaction mechanism is

proposed (Scheme 3). Hydroruthenation of alkoxyallene 1a
delivers (Z)-σ-allylruthenium species I in which internal
coordination of the benzhydryl ether oxygen to ruthenium
defines alkene stereochemistry. Aldehyde coordination triggers
carbonyl addition by way of a closed six-centered transition
structure II, resulting in the formation of the homoallylic
ruthenium alkoxide III. Exchange with a primary alcohol
reactant releases product and forms the ruthenium alkoxide
IV, which upon β-hydride elimination generates the aldehyde
and the ruthenium hydride V. That internal chelation defines
(Z)-stereochemistry of the transient allylruthenium intermedi-
ate is corroborated by reactions of alkoxyallenes 1a vs 1b (eq 1).

Alkoxyallene 1b contains a smaller benzyl ether and, hence, is
anticipated to form a more stable chelate than alkoxyallene 1a,
which incorporates a larger benzhydryl ether. Indeed, the
reaction of the less hindered alkoxyallene 1b proceeds with
higher levels of syn-diastereoselectivity but with significantly
lower levels of enantioselectivity. A related bis(1-naphthyl)-
alkoxyallene was prepared, but coupling product was not
observed upon exposure to 3a under standard conditions.
Preparation of tertiary allenic ethers could not be achieved, as
lithiation occurs predominately at the γ-position.22 Attempted
synthesis of the ethyl-substituted allene via lithiation of the
monosubstituted alkoxyallene followed by reaction with ethyl
iodide resulted in incomplete ethylation, possibly due to
competing elimination.

■ CONCLUSIONS
In summary, we report the first enantioselective ruthenium-
catalyzed carbonyl reductive couplings of allene pronucleo-
philes. This method employs an inexpensive ruthenium-BINAP-

Scheme 3. General Catalytic Mechanism As Corroborated by Isotopic Labeling Studies
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catalyst andO-benzhydryl 3-alkoxy-1,2-butadiene 1a, which can
be prepared in 2 steps from benzhydryl alcohol on >15 g scale
(see Supporting Information)attributes that make this
method a practical protocol for the generation of enantiomeri-
cally enriched syn-sec,tert-diols, which appear ubiquitously
among type I polyketide natural products. Two remarkable
effects were uncovered: (a) the enhanced selectivity and
productivity of ruthenium catalysts bearing iodide counter-
ions,17 and (b) the oxaphilicity of the ruthenium(II) center is
sufficient to direct internal chelation to form (Z)-σ-alkoxyallyl-
ruthenium intermediates. The physical basis of the “iodide
effect” remains unclear; however, due to its size and stronger
binding,17,23 we speculate that the iodide counterion may
accentuate energetic differences between diastereomeric tran-
sition structures and suppress catalyst decomposition pathways.
Computational studies aimed at establishing the veracity of this
interpretation are ongoing. This work contributes to a growing
class of catalytic enantioselective carbonyl reductive couplings
beyond premetalated reagents.24
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