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ABSTRACT: Optically active sulfoximines are a promising 
substance in medicinal chemistry. However, a methodology for 
preparing chiral sulfoximines in a stereoselective manner has been 
underdeveloped. Here, we report an asymmetric synthesis of chiral 
sulfoximines having an aryl group by the newly developed sulfur-
selective arylation of easily accessible chiral sulfinamides. The 
utility of the present method is demonstrated by the asymmetric 
synthesis of a key intermediate of a COX-2 inhibitor. 

Sulfoximines contain a hexavalent sulfur atom having one oxygen, 
one nitrogen and two carbon substituents.1 Their sulfur atom is 
stereogenic center in the case where the two carbon substituents are 
not identical. Since chiral sulfoximines have distinctive properties 
such as a basic nitrogen atom and high solubility in polar solvents, 
they have recently been considered as promising bioisosteres in 
medicinal chemistry.2 Some examples of bioactive sulfoximines 
are shown in Figure 1.3 In general, the stereochemistry at the sulfur 
atom largely affects their biological activity. Accordingly, the 
development of a new methodology for a stereoselective synthesis 
of chiral sulfoximines could significantly accelerate an exploration 
of bioactive compounds containing such motifs.
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Figure 1. Examples of bioactive sulfoximines.
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Figure 2. Strategies for the stereoselective synthesis of 
sulfoximines. 

Asymmetric synthesis of chiral sulfoximines mainly relies on a 
stereospecific nitrene-transfer reaction to chiral sulfoxides (path A) 
as shown in Figure 2a.4,5 Enantiomerically enriched chiral 
sulfoximines were also provided through stereospecific oxidation 
of enantioenriched sulfimides (path B), kinetic resolution of 
racemic sulfoxides or sulfoximines (path C) or desymmetrization 
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of prochiral sulfoximines (path D).6-8 Additionally, we have 
recently developed an asymmetric synthesis of sulfoximines via a 
stereospecific S-alkylation of chiral sulfinamides with alkyl halides 
(R2-X) (path E).9 By employing this methodology, various dialkyl 
sulfoximines can be readily prepared in optically pure form. Chiral 
aryl sulfoximines are also important structural motifs in medicinal 
chemistry as shown in Figure1. In this context, we have become 
interested in the asymmetric synthesis of chiral aryl sulfoximines 
in optically pure form through the sulfur atom selective arylation 
of chiral sulfinamides. However, to the best of our knowledge, the 
arylation at the sulfur atom of sulfinamides has never been 
explored, probably because they react at the more nucleophilic 
nitrogen atom preferentially (Figure 2b).10 Herein, we report the 
first sulfur-selective arylation of sulfinamides. A wide variety of 
optically pure sulfoximines can be prepared by the S-arylation of 
readily available (R)- or (S)-tert-butanesulfinamide derivative 1 
with diaryliodonium salts under Cu catalysis (Scheme 2c).11 

Moreover, de-tert-butylation of the obtained chiral sulfoximines 2 
with trifluoroacetic acid (TFA) or KOt-Bu enables the asymmetric 
synthesis of various chiral aryl sulfinamides 3.12,13 The resulting 
sulfinamides 3 were applied to the S-alkylation or the second S-
arylation, affording various optically pure sulfoximines 4 and 5 
with predictable stereochemistry.

Sulfoximines 2 having a tert-butyl group on the sulfur atom are 
known to be unstable under highly basic conditions.12c While the 
nucleophilicity of sulfinamides 1 would be improved by 
deprotonation, a strong base cannot be used in the synthesis of 2. 
Therefore, a combination of a highly electrophilic aryl species and 
a weak base would be suitable to achieve the sulfur-selective 
arylation of a sulfinamide. In this context, we began our 
investigation by examining the sulfur-selective arylation with a 
diaryliodonium salt in the presence of a copper catalyst, because a 
highly reactive Cu(III)-Ar species for less reactive nucleophiles can 
be generated under mild conditions.14 The steric and electronic 
properties of the nitrogen atom of a commercially available (rac)-
tert-butanesulfinamide were tuned by introducing various 
protective groups to prevent the preferential N-arylation. In 1,2-
dichloroethane (DCE) at 40 °C, sulfinamide derivatives (rac)-1 
were treated with 10 mol% of CuI, Ph2IOTf and i-Pr2NEt, and the 
results were shown in Scheme 1. Most protective groups were 
ineffective, and no desired S-arylation product was observed 
(Scheme 1a). In contrast, the reaction of (rac)-1a bearing an N-
benzoyl group gave the S-arylation product in 33% yield albeit with 
low regioselectivity ((rac)-2a/(rac)-6a = 4.1/1) (Scheme 1b).15 To 
our delight, replacement of the benzoyl group with a pivaloyl group 
resulted in the formation of the S-arylation product (rac)-2b 
exclusively. Based on these results, the pivaloyl group was selected 
as the protective group of choice for further studies. 
Scheme 1. Effect of protective groups on the S-arylation 
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Table 1. Optimization of Reaction Conditionsa

N
H

PgS
t-Bu

O

t-Bu
S

Ph

O N Pg

(S)-2b(R)-1b

Base (1.5 equiv)

CuI (10 mol%)

DMSO, 4 Å MS
40 °C, 12 h

(Ar)PhIX (1.2 equiv)

Pg = pivaloyl

entry (Ar)PhIX base yield (%)b

1c Ph2IOTf i-Pr2NEt 26
2d Ph2IOTf i-Pr2NEt 20
3 Ph2IOTf i-Pr2NEt 55
4 Ph2IOTf DTBP 16
5 Ph2IOTf N-Me-pyrrolidine 39
6 Ph2IOTf Cy2NMe 86
7 Ph2IOTf PMP 87
8 Ph2IOTf K2CO3 <5
9 Ph2IOTf NaH <5
10 Ph2IOTf NaH+15-crown-5 33
11 Ph2IBF4 Cy2NMe 85
12 (Mes)PhIOTf Cy2NMe 83
13e Ph2IOTf Cy2NMe 81
14f Ph2IOTf Cy2NMe 94

15f,g Ph2IOTf Cy2NMe <5
aReactions were performed on a 0.1 mmol scale in 1.0 mL of 
DMSO. 4 Å MS were added at a concentration of 1.0 g/mmol. 
bYields were determined by 1H NMR analysis using 1,1,2,2-
tetrachloroethane as an internal standard. cDCE as solvent. dMeCN 
as solvent. eCu(OTf)2 was used instead of CuI. fPerformed with 
Ph2IOTf (1.5 equiv) and Cy2NMe (1.8 equiv) at 60 °C. gWithout 
Cu catalyst. Mes = mesityl.

To improve the yield of 2b, we then investigated effects of 
solvents and bases employing optically pure (R)-1b as a substrate 
(Table 1). Molecular sieves (4 Å) were added to the reaction 
mixture to prevent an unproductive hydrolysis of the 
diaryliodonium salt. Among solvents tested, DMSO was found to 
be optimal in terms of yield (entries 1–3). In these cases, the N-
arylation product was not observed, suggesting that use of the 
pivaloyl group was crucial for achieving high regioselectivity. Use 
of 2,6-di-tert-butylpyridine (DTBP) instead of i-Pr2NEt resulted in 
lower conversion of (R)-1b probably because of its low basicity 
(entry 4). With the less hindered amine such as N-Me-pyrrolidine, 
a diminished yield was observed (entry 5). In contrast, sterically 
hindered amines such as Cy2NMe and 1,2,2,6,6-
pentamethylpiperidine (PMP) promoted the desired reaction to give 
(S)-2b in high yield (entries 6 and 7). Use of inorganic bases led to 
decreased yields (entries 8–10). Similar reactivity was observed, 
with other diaryliodonium salts such as Ph2IBF4 and (Mes)PhIOTf 
instead of Ph2IOTf (entries 11 and 12).  Cu(OTf)2 was also an 
effective catalyst for this S-arylation (entry 13). Finally, increasing 
the equivalents of the diaryliodonium salt and the amine allowed 
the formation of (S)-2b in 94% yield (entry 14). No reaction was 
observed in the absence of the copper catalyst (entry 15). 
Stereochemistry of (S)-2b was determined by single crystal X-ray 
diffraction, suggesting that the configuration at sulfur was retained 
during the sulfur–carbon bond formation. 

We next investigated the scope of the present S-arylation with a 
series of diaryliodonium salts (Table 2). Diaryliodonium salts 
bearing an electron-donating methyl or methoxy group at the para-
position afforded the corresponding sulfoximines in good yields 
(2c and 2d). Halides such as F and Br at the para-position were 
well tolerated, allowing further functionalization by nucleophilic 
aromatic substitution reactions or cross-coupling reactions, 
respectively (2e and 2f).16 Use of symmetrical diaryliodonium salts 
(Ar = Ar´) bearing an electron-withdrawing groups such as CF3, 
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acetyl or an ester group at the para-position gave the products in 
low yields (30–43% yields). On the other hand, employing 
unsymmetrical diaryliodonium salts bearing one bulky mesityl 
ligand (Ar´= Mes) led to improved yields (2g, 2h and 2i). The 
decreased yield with symmetrical diaryliodonium salts might be 
attributed to the formation of an undesired electron donor−acceptor 
(EDA) complex with the amine base or the sulfinamide.17 
Substituents at the meta- or ortho-position were also tolerated, 
albeit in moderate yield for ortho-methoxy group (2j–2n). Despite 
its large steric hindrance, a mesityl group was smoothly introduced 
in 74% yield (2o). Diaryliodonium salts having a 3-thiophenyl or 
1-naphthyl substituent were found to be suitable substrates, giving 
S-arylation products (2p and 2q) in good yields. α,β-Unsaturated 
sulfoximine (2r) was also successfully obtained by using iodonium 
salt 7. Chiral HPLC analysis revealed that this S-arylation 
proceeded stereospecifically without racemization (2c, 2d and 2g). 
The practicability of our method was demonstrated with a 6 mmol 
scale of reaction, providing 1.38 g of (S)-2b in 82% yield without 
racemization.
Table 2. S-Arylation of (R)-1ba

N
H

PgS
t-Bu

O

t-Bu
S

Ar

O N Pg

(R)-1b (S)-2

Cy2NMe (1.8 equiv)

CuI (10 mol%)

DMSO, 4 Å MS
60 °C, 24 h

(Ar')ArIX (1.5 equiv)

Pg = pivaloyl

Me

Me

Me

R

R = H

76%e

61%c

S

Ph

R = Br2b 90%b 76%b

2c
2d
2e

R = Me
R = OMe
R = F

88%c,f

87%d,f

85%d

2f
2g
2h
2i

R = CF3
R = COMe
R = CO2Et

85%c,f

78%c

90%c

R 2j
2k

R = Me
R = OMe

72%d

81%d

2l R = CF3 88%c

R

2m
2n

R = Me
R = OMe

90%d

53%d

2o 74%b

2q 72%d

2p

Ph
I

7(R)-2r

OTf
Me

aReactions were performed on a 0.1 mmol scale in 1.0 mL of 
DMSO. bAr2IOTf as (Ar')ArIX. c(Mes)ArIOTf as (Ar')ArIX. 
dAr2IBF4 as (Ar')ArIX. eUse of 7 instead of (Ar')ArIX. Performed 
for 48 h. fNo racemization was confirmed by chiral HPLC.

Having demonstrated the S-arylation of (R)-1b on a range of 
diaryliodonium salts, we then explored de-tert-butylation of the 
arylation products (Scheme 2). De-tert-butylation of sulfoximines 
bearing phenyl, 4-methylphenyl or 4-trifluoromethylphenyl groups 
was carried out in the presence of TFA, and the corresponding 
sulfinamides (3b, 3c and 3g) were produced in high yield 
stereospecifically without racemization. On the other hand, the 
sulfoximine bearing an electron-rich 4-methoxyphenyl group was 
partially decomposed and racemized under above conditions.18 To 
circumvent these undesired reactions, de-tert-butylation under 
basic conditions was examined, and treatment with KOt-Bu was 
found to give the corresponding product (3d) in high yield without 
racemization.

   With these sulfinamides (S)-3 having an aromatic group on the 
sulfur atom, we then investigated the asymmetric synthesis of 
chiral diaryl sulfoximines via the S-arylation (Table 3). Among 

amine bases tested, i-Pr2NEt was found to be optimal for the S-
arylation of (S)-3 (details are provided in the Supporting 
Information). A range 
Scheme 2. De-tert-butylation of (S)-2
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S
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O

(S)-2 (S)-3

(R = Me) 87% (Conditions A)

85% (Conditions B)
85% (Conditions A)
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(R = H) 72% (Conditions A)3b

Conditions A
CF3CO2H, CH2Cl2
rt, 40 min

Conditions B
KOt-Bu, DMF
80 °C, 2.5 h

Pg = pivaloyl

RR

of diaryliodonium salts were applicable to the present method and 
the S-arylation of sulfinamide (S)-3c (Ar1 = 4-methylphenyl) 
proceeded smoothly, affording the corresponding sulfoximines 
(4a–4i) in optically pure form. Notably, this method enables 
asymmetric synthesis of diaryl sulfoximines ((S)-4a) bearing 
sterically and electronically similar two aryl groups on the sulfur 
atom. The electron-rich para-methoxyphenyl group was readily 
introduced ((R)-4b). Use of diaryliodonium salts having the 
electron-withdrawing trifluoromethyl or ester group at the para-
position resulted in good yields of (R)-4c and (R)-4d. Our method 
is compatible with the synthesis of a diaryl sulfoximine ((R)-4e) 
with a haloalkyl group, providing a platform for further 
functionalization. Methyl group at the ortho- or meta-position was 
also tolerated ((R)-4f and (R)-4g). Other aryl sulfinamides bearing 
phenyl, 4-methoxyphenyl or 4-trifluoromethylphenyl group were 
also applicable to the present method, and reactions with (Mes)(4-
Me-C6H4)IOTf afforded the corresponding sulfoximines ((R)-4a, 
(S)-4b and (S)-4c) in optically pure form, respectively. 
Accordingly, a sequence consisting of the first S-arylation, de-tert-
butylation and the second S-arylation was successfully applied to 
transform (R)-1b into various chiral diaryl sulfoximines, and either 
enantiomer can be formed by employing two diaryliodonium salts 
in reverse order.

Table 3. S-Arylation of (S)-3a

N
H

PgS
Ar1

O

Ar2 S
Ar1

O N Pg

(S)-3 4

i-Pr2NEt (1.8 equiv)

Cu(OTf)2 (10 mol%)

DMSO, 4 Å MS
60 °C, 24 h

(Ar')Ar2IX (1.5 equiv)

Pg = pivaloyl

R = H

(R)-4h 87%b (R)-4i 68%c

82%b,e

73%c,e

78%d,e

90%d

79%d

R = 4-OMe
R = 4-CF3
R = 4-CO2Et
R = 4-(CH2)3Cl

R = H 91%d,e

89%d,e

86%d,e
R = OMe
R = CF3

(S)-4a
(R)-4b
(R)-4c
(R)-4d
(R)-4e

(R)-4a
(S)-4b
(S)-4c

S
O N Pg

S
O N Pg

Me R

Me
R

S
O N Pg

Me

S
O N Pg

MeMeMe

Me

R = 2-Me 84%c

86%cR = 3-Me
(R)-4f
(R)-4g
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aReactions were performed on a 0.1 mmol scale in 1.0 mL of 
DMSO. bAr2

2IOTf as (Ar')Ar2IX. cAr2
2IBF4 as (Ar')Ar2IX. 

d(Mes)Ar2IOTf as (Ar')Ar2IX. eNo racemization was confirmed by 
chiral HPLC.

By using a combination of the present S-arylation and our 
previously reported S-alkylation,9 a variety of chiral sulfoximines 
bearing both aryl and alkyl groups can be prepared in essentially 
complete optical purity (Scheme 3). (S)-p-Toluenesulfinamide (S)-
3c was prepared by the S-arylation of (R)-tert-butanesulfinamide 
(R)-1b and the following TFA-mediated de-tert-butylation. The S-
alkylation of the resulting sulfinamide (S)-3c with ethyl iodide gave 
(S)-sulfoximine (S)-5.9 Remarkably, the application of the same 
chiral source (R)-1b to the S-alkylation and the subsequent S-
arylation allowed the formation of the opposite enantiomer (R)-5. 
This result suggests that the present S-arylation is also applicable 
to sulfinamides with an alkyl group other than the tert-butyl group.

Scheme 3. Access to both enantiomers of sulfoximine 5 from the 
same chiral source 
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While the deprotection of the pivaloyl group can be achieved by 
hydrolysis under acidic or basic conditions, the competing de-tert-
butylation of sulfoximines readily occurs.12 On the other hand, 
treatment of sulfoximine (S)-2c with LiAlH4 was found to give the 
N-unprotected sulfoximine (S)-10 in high yield without loss of tert-
butyl group on the sulfur atom (Scheme 4).9

Scheme 4. Removal of the pivaloyl group with LiAlH4 

t-Bu
S

Ar

O N Pg

t-Bu
S

Ar

O NH

81%Pg = pivaloyl
(S)-2c (S)-10

THF, 0 °C, 20 min

LiAlH4 (3 equiv)

Ar = 4-Me-C6H4

To demonstrate the synthetic utility of the present S-arylation, 
the asymmetric synthesis of VioxxⓇ analog (R)-15 was conducted 
(Scheme 5). Sulfoximine (rac)-15 has a COX inhibitory activity 
with high COX-2 selectivity.3a,3b Generally, the biological activity 
of chiral sulfoximines is significantly affected by its absolute 
configuration. By employing our present method, enantiomerically 
pure (R)-15 can be readily synthesized without an optical 
resolution. An N-unprotected sulfoximine (R)-13 was prepared by 
the S-arylation of sulfinamide (S)-11 and the subsequent basic 
hydrolysis.15 An N-cyanation of the obtained sulfoximine (R)-13 
provided the known intermediate (R)-14.19 Since racemic 14 was 
an intermediate in previous total synthesis of VioxxⓇ analog 15 by 
Bolm and co-workers, this work contributes to its formal 
asymmetric synthesis.3a

Scheme 5. Asymmetric synthesis of VioxxⓇ analog

N
H

PgS
Me

O

(S)-11
Me

S
Ar

O N Pg

74%

Me
S

Ar

O NH

Me
S

O N-CN

(R)-12

73%75%

Ar = 4-Ac-C6H4

(R)-13 (R)-14

ref 3a

Me

O

Vioxx analog
(COX-2 inhibitor)

O

O

O N-CN

Me
S

(R)-15

Cu(OTf)2

DMSO, 4 Å MS
40 °C, 20 h

PMP

THF-MeOH
rt, 12 h

50% KOH aq.

CH2Cl2
rt, 14 h

DMAP
BrCN

Pg = pivaloyl

(Mes)ArIOTf

In summary, we have developed an unprecedented S-arylation of 
the chiral sulfinamide derivatives having an alkyl or an aryl group 
by using the combination of the Cu(I) catalyst and diaryliodonium 
salts. Various chiral aryl sulfinamides are also obtained by the 
present arylation of tert-butanesulfinamide derivative, followed by 
de-tert-butylation under acidic or basic conditions. Additionally, 
the asymmetric synthesis of diaryl sulfoximines having sterically 
and electronically similar two aryl groups are also achieved by the 
second S-arylation of the obtained sulfinamides. By employing our 
present method, various chiral sulfoximines, including biologically 
active one, can be readily synthesized in optically pure form 
without an optical resolution. 
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