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ABSTRACT: The concept of “umpolung” reactivity of π-allylmetal
complexes has been developed as a powerful method for the
allylation of aldehydes. This paper describes the photocatalytic
umpolung strategy for the synthesis of nucleophilic allylcobalt
complexes through a single-electron-transfer (SET) process. This
strategy enables the metallaphotoredox allylation of carbonyls with
allyl acetate using organic N,N-diisopropylethylamine as the
terminal reductant bypassing the use of a stoichiometric amount
of metals. Ultraviolet−visible spectroscopy was used to monitor the
redox changes of cobalt in the reaction.
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Homoallylic alcohols and their derivatives are essential
synthetic intermediates for the preparation of numerous

natural products and medicine.1,2 The concept of “umpolung”
reactivity of π-allylmetal complexes has been developed as a
powerful approach for carbonyl allylation with high regio- and
diastereo-selectivity control (Scheme 1a).3−5 Such “reverse
reactivity” of π-allylmetal complexes can be controlled by the
modification of their electronic environment through the use of
additives and ligands. For example, π-allylpalladium complexes
are known to be electrophilic and can react with a wide range of
nucleophiles (Tsuji−Trost reaction), while nucleophilic π-
allylpalladium complexes are also well documented to catalyze
the umpolung allylation of carbonyls and imines.6 However, an
excess of metal reductants such as Et2Zn and Et3B is usually
required for such a “reactivity switch” process.
Cobalt is an earth-abundant low-cost first-row transition

metal and generally of low toxicity.7 π-Allylcobalt complexes
show similar “amphiphilic character” in organic reactions. Mita
and Sato reported the nucleophilic addition of π-allylcobalt/
Xantphos complexes to ketones and carbon dioxide using excess
AlMe3 as the reductant, in which the low-valent π-allylcobaltI

complexes generated through reductive elimination were
proposed to be the key intermediates.8,9 Co-catalyzed allylic
alkylation and amination were reported by the groups of
Kojima/Matsunaga and Li, respectively, in which the key
electrophilic π-allylcobaltIII species was generated in situ via
oxidative addition of allyl acetate to a low-valent CoI

complex.10,11 However, the photocatalytic conversion of
electrophilic π-allylcobalt to nucleophilic π-allylcobalt remains
an understudied topic.12−16

Metallaphotoredox catalysis is a new and rapidly growing
research field.17−25 Recently, the combination of photoredox
and cobalt catalysis has been developed as a distinct new option
in the field of metallaphotoredox catalysis and has found
numerous applications in synthetic chemistry.26−44 Given that
photoredox processes can directly modify the oxidation state of
transition metals by single electron transfer (SET), we wonder
whether the photoredox system can convert an electrophilic π-
allylcobaltIII species to a nucleophilic π-allylcobaltII species. If so,
a novel dual photoredox and cobalt-catalyzed allylation of
carbonyls based on a 2e− (oxidative addition) and a 1e− (SET)
relay process is anticipated (Scheme 1b). In this paper, we report
the first photocatalytic generation of nucleophilic π-allylcobalt
complexes for carbonyl allylation through an umpolung strategy.
We selected 4-methoxybenzaldehyde 1a and allyl acetate as

the standard substrates to optimize the reaction conditions
(Table 1). Following the rapid screening of different reaction
conditions, we were able to identify the conditions of CoBr2 (10
mol %), the photocatalyst Ir(ppy)2(dtbbpy)PF6 (Ir-1), 4,4′-di-
tert-butyl-2,2′-dipyridyl L3 (10 mol %), N,N-diisopropylethyl-
amine (DIPEA) (3 equiv), and allyl acetate (3 equiv) mixed in
dimethylformamide (DMF) at room temperature. The obtained
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mixture was irradiated with a 450 nm LED lamp for 32 h and
afforded the product 2a in 58% yield (entry 1). Various solvents
such as acetonitrile, tetrahydrofuran, and dichloroethane were
tested, generally producing low yields in the 10−20% range. The
use of Hantzsch ester as an organic electron donor instead of
DIPEA resulted in no product (entry 2). Further screening of
various photocatalysts, including 4CzIPN, [Ir(dF(CF3)-
ppy)2(dtbbpy)]PF6 (Ir-2), and Ru(bpy)3(PF6)2 (Ru-1),
revealed that they are less efficient for allylation (entries 3−5).
Different ligands such as 4,7-diphenyl-1,1-phenanthroline L1,
1,10-phenanthroline L2, and 1,2-bis(diphenylphosphino)-
ethane L4 (entries 6−8), were tested as replacements of L3.
These ligands were less efficient for catalysis. Further testing of
various cobalt salts showed that CoSO4·H2O gave the best
results and increased the yield up to 80% (entries 9−13).
Additive effects were tested but did not increase the yield
(entries 14 and 15). Additionally, the reaction did not occur in
the absence of either light, Co, DIPEA, or photocatalyst (entries
16−19). The reaction is sensitive to low light intensity, H2O,
and high oxygen concentration, as shown by the condition-
based sensitivity testing (Supporting Information S7).45

After optimizing the reaction conditions, we evaluated the
scope of aldehydes for the allylation reactions (Table 2). It was
clear that the reactions worked smoothly with lots of aromatic
and aliphatic aldehydes producing various trans-alcohols in
generally decent yields. The substituent effect of the aromatic
ring has little effect on the allylation reaction. Both the electron-
rich groups and electron-withdrawing groups, including
methoxy 2a and fluorine 2l, gave homoallylic alcohols in
reasonable yields. The reaction of sterically hindered mesitalde-
hyde 2e was also successful. Heteroatoms did not impede the
catalytic cycle, including oxygens 2g and 2u and the protected
amine 2x. Besides, various heteroarenes, which are widely used
as core structures in medicinal synthesis, were also suitable
substrates for this photoredox and cobalt catalysis, including
furans 2q and 2r and thiophene 2p. Due to the extremely mild
photocatalytic conditions, reactions showed excellent compat-
ibility with many synthetically important and valuable functional
groups that include the free alcohol 2j, alkene 2w, ether 2h,
bromobenzene 2k, and chlorobenzene 2o. Allylation of the acid-
sensitive citronellal 2w substrate was also successful without
forming a cyclization byproduct. The synthetic potential of this
dual photoredox and cobalt catalysis was demonstrated by the
late-stage functionalization of complicated structure molecules,

such as indomethacin, probenecid, and lithocholic acid
derivatives, and the desired products 3a−3c were obtained in
a decent yield.
The regio- and diastereo-selectivity of the new catalysis

system was further explored using cinnamyl alcohol as the
coupling substrate. It was found that tert-butyl cinnamyl
carbonate 4 is more reactive than cinnamyl acetate for the
allylation of various aldehydes, as shown in Table 3. Only
branched products 5a−5l were obtained in favor of trans-
diastereoselectivity with moderate to good yields. The highest
diastereoselectivity (d.r. > 20:1) was achieved with cyclo-
hexanecarboxaldehyde (5h), albeit in somewhat low yield. The
trans-diastereoselectivity can be elucidated based on the
Zimmerman−Traxler transition state, where the oxygen atom
of the carbonyls coordinates with the cobalt. The aryl group of
the π-allylcobalt complexes and the R group of the aldehyde
preferentially adopt an equatorial orientation, resulting in the
generation of an anti-isomer of the corresponding homoallylic
alcohols.14

The scalability of the reaction was determined by the
synthesis of 5a in a gram-scale under standard conditions.
Gratifyingly, product 5a was obtained in decent 83% isolated
yield. The use of earth-abundant cobalt, wide compatibility with
various sensitive functional groups, and easy to operate
conditions of this reaction are appealing features for laboratory
and industrial applications.
Stern−Volmer luminescence quenching studies were con-

ducted (Supporting Information S2) and showed that DIPEA
can readily quench the excited photocatalyst Ir-1 at the rate of
3.42 × 108 L M−1 s−1. Then, a series of experiments were
performed to probe the different π-allylcobalt species in the
catalytic cycle. First, CoBr2, L3, and Ir-1 were added to a
solution of DIPEA in DMF (Figure 1C(a)). The resulting
mixture was exposed to 450 nm LED irradiation. In the first SET
process, the color of the reaction changed from green to blue
(Figure 1C(b)). The ultraviolet−visible (UV−vis) spectro-
scopic analysis of the reaction was also performed. A broad
absorption band at 550−700 nm gradually appeared within 30
min, indicating the formation of CoI 7 species, which is
consistent with previous reports (Figure 1A(b)).27,46,47 Then,
the allyl acetate was added to the resulting reaction system in the
dark, and the color changed to brown (Figure 1C(c)). At the
same time, UV−vis spectroscopic analysis of the reaction
revealed the rapid disappearance of absorption of CoI 7, and a

Scheme 1. (a) Concept of “Umpolung” Reactivity of π-Allylmetal Complexes and (b) Conversion of Electrophilic π-AllylCoIII to
Nucleophilic π-AllylCoII via SET
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new strong absorption band appeared at 380−550 nm,
suggesting the formation of π-allylcobaltIII 8 via the oxidative
addition of allyl acetate to a low-valent CoI complex (Figure
1B(c)). The resulting 8 is known to react with various
nucleophiles but not with aldehydes.10,11 It was reported that
π-allylcobaltIII can be further reduced to π-allylcobaltII by a

photocatalyst under irradiation.41 In fact, when the reaction was
further exposed to irradiation, the absorption band of the
proposed CoIII 8 disappeared and a new absorption band
appeared at 360−450 nm, indicating the generation of π-
allylcobaltII 9 (Figure 1B(d)). Thus, the allylation indeed
occurred with irradiation and 2a was smoothly obtained (Figure

Table 1. Optimization of the Reaction Conditionsa

entry variation from standard conditions yield (%)

1 none 58
2 HE instead of DIPEA 0
3 Ir-2 instead of Ir-1 trace
4 Ru-1 instead of Ir-1 trace
5 4CzIPN instead of Ir-1 trace
6 L1 instead of L3 34
7 L2 instead of L3 37
8 L4 instead of L3 25
9 Co(BF4)2·6H2O instead of CoBr2 61
10 Co(OAc2)2·4H2O instead of CoBr2 75
11 Co(NO3)2·4H2O instead of CoBr2 <5
12 Co(acac)3 instead of CoBr2 17
13 CoSO4·H2O instead of CoBr2 80
14 CoSO4·H2O, CF3COOH 42
15 CoSO4·H2O, K2CO3 40
16 no Co catalyst 0
17 no DIPEA 0
18 no photocatalyst 0
19 no light 0

aReaction conditions: 1a (0.5 mmol scale). Yields were determined by 1H NMR spectroscopy vs an internal standard.
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1C(d)). This finding indicated that the nucleophilic π-
allylcobaltII 9 (dark orange) was formed via SET and most
likely is the key active intermediate toward the aldehydes.48,49 In
addition, the quantum yield was determined to be 0.012,
suggesting that the radical-chain mechanism is not likely
(Supporting Information S4).

According to previous reports in the literature and the results
of this study, we tentatively propose a catalytic cycle, as shown in
Figure 2. Initial excitation of the Ir-1 photocatalyst produces the
photoexcited *Ir-1III species. The *Ir-1III catalyst (E1/2

red [*IrIII/
IrII] = +0.66 V vs SCE in CH3CN) is reduced by DIPEA (Eox

(DIPEA) = +0.65 V) via SET to produce a reducing Ir-1II

species and [DIPEA]•+. Reduction of the ligand-coordinated
Ln−CoII 6 by Ir-1II (E1/2

red [IrIII/IrII] = −1.51 V vs SCE in
CH3CN) affords Ln−CoI 7 species and Ir-1III. Then, Ln−CoI 7
reacts with the allylic acetate by oxidative addition and generates
the electrophilic π-allylcobaltIII 8 species that is readily reduced
by another Ir-1II photocatalyst to the key nucleophilic π-
allylcobaltII 9 species. The addition of 9 to aldehydes forms a
new C−C bond in the alkoxycobalt product. Hydrolysis of the
oxygen−Co bond releases Ln−CoII 6 and the alcohol product.
Finally, Ir-1 can regenerate Ln−CoI 7 for the next catalytic cycle.

■ CONCLUSIONS
In summary, this work reports a novel photocatalytic allylation
of carbonyls through dual cobalt and photoredox catalysis. This
eco-friendly photoredox reaction enables the allylation of
numerous aldehydes with easily available allyl acetate using
organic DIPEA as the terminal reductant and bypassing the use
of the stoichiometric amount of metals. The success of the

Table 2. Scope of Aldehydes in Allylation Reactionsa

aReaction conditions: 1a (0.5 mmol scale). Yields were determined
by 1H NMR spectroscopy vs an internal standard.

Table 3. Scope of Substituted Allyl Carbonates in Allylation
Reactionsa

aReaction conditions: 1a (0.5 mmol scale). Yields were determined
by 1H NMR spectroscopy vs an internal standard. Diastereomeric
ratios were determined by 1H NMR spectroscopy. btert-Butyl prenol
carbonate was used.
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reaction relies on the generation of nucleophilic allylcobaltII

complexes based on the photocatalytic umpolung strategy.
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