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a b s t r a c t

There are many drugs described with very different affinity to a large number of receptors. In this work,
we selected Drug-Target pairs (DTPs/nDTPs) of drugs with high affinity/non-affinity for different targets
like proteins. Quantitative StructureeActivity Relationships (QSAR) models become a very useful tool in
this context to substantially reduce time and resources consuming experiments. Unfortunately, most
QSAR models predict activity against only one protein. To solve this problem, we developed here a multi-
target QSAR (mt-QSAR) classifier using the MARCH-INSIDE technique to calculate structural parameters
of drug and target plus one Artificial Neuronal Network (ANN) to seek the model. The best ANN model
found is a Multi-Layer Perceptron (MLP) with profile MLP 32:32e15e1:1. This MLP classifies correctly
623 out of 678 DTPs (Sensitivity ¼ 91.89%) and 2995 out of 3234 nDTPs (Specificity ¼ 92.61%), corre-
sponding to training Accuracy ¼ 92.48%. The validation of the model was carried out by means of
external predicting series. The model classifies correctly 313 out of 338 DTPs (Sensitivity ¼ 92.60%) and
1411 out of 1534 nDTP (Specificity ¼ 91.98%) in validation series, corresponding to total
Accuracy ¼ 92.09% for validation series (Predictability). This model favorably compares with other LDA
and ANN models developed in this work and Machine Learning classifiers published before to address
the same problem in different aspects. These mt-QSARs offer also a good opportunity to construct drug
eprotein Complex Networks (CNs) that can be used to explore large and complex drugeprotein receptors
databases. Finally, we illustrated two practical uses of this model with two different experiments. In
experiment 1, we report prediction, synthesis, characterization, and MAO-A and MAO-B pharmacological
assay of 10 rasagiline derivatives promising for anti-Parkinson drug design. In experiment 2, we report
sampling, parasite culture, SEC and 1DE sample preparation, MALDI-TOF MS and MS/MS analysis,
MASCOT search, MM/MD 3D structure modeling, and QSAR prediction for different peptides of hemo-
globin found in the proteome of the human parasite Fasciola hepatica; which is promising for anti-
parasite drug targets discovery.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

The fast and accurate prediction of interactions between drugs
and target proteins is a keystone piece on the combination of
do).

son SAS. All rights reserved.
bioinformatics and proteome research toward drug discovery.
Therefore, there is a strong incentive to develop new methods
capable of detecting these potential drug-target interactions effi-
ciently [1]. In this sense, graphs and complex network theory may
play an important role at different stages of modeling process with
different degrees of organization of matter [2e9]. In a first stage, we
can use molecular graphs to represent and calculate structural
parameters for drugs sometimes called Topological Indices (TIs) but
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also estimate physicochemical parameters based on a graph
method, see our recent reviews [10]. At a higher level we can use
graphs to represent structure of the drug-target proteins and
calculate characteristic TIs and/or physicochemical parameters of
proteins structure or protein interactions networks, see for instance
the works of Giuliani [11e17], or our recent reviews [18,19]. Next,
we can develop a kind of computer programwith network topology
called Artificial Neural Networks (ANNs) that after adequate
training learn predicts target proteins for a given drug. It means,
ANNs are network-like software that may use as inputs TIs and/or
physicochemical parameters calculated in the previous steps to
predict which network-like molecular structures present or not
a desire property, see for instance the works after Caballero and
Fernandez et al. [20e23] with applications to both drugs and
proteins or works of Zbilut et al. [24,25]. In particular, using the
parameters of the drug and the target ANNsmay select Drug-Target
pairs of drugs with high affinity (DTPs) out of those pairs for drugs
with none affinity for different targets (nDTPs). In general, this
technique (using or not ANNs) lie within the kind of studies called
Quantitative StructureeActivity Relationships (QSAR) models and
may become a very useful tool in this context to substantially
reduce time and resources consuming experiments. In a last step,
the prediction of all possible DTPs/nDTPs in the global set of rela-
tionships between protein targets and all drugs form the complex
network of drugs and/or targets. For instance, Yildirim and Goh
et al. [26] have built a bipartite graph composed of US Food and
Drug Administration (US FDA) approved drugs and proteins linked
by drug-target binary associations. The resulting network connects
most drugs into a highly interlinked giant component, with strong
local clustering of drugs of similar types according to Anatomical
Therapeutic Chemical classification. Topological analyses of this
network quantitatively showed an overabundance of ‘follow-on’
drugs, that is, drugs that target already targeted proteins.

In a previous work, our group have reported a QSAR model base
on the MARCH-INSIDE method to predict a large network of DTPs
[27]. However, evenwhen this model is useful to predict targets for
many proteins it lack of availability for public research due to it was
not implemented as an online web server. The problem with many
QSAR models is more serious because many of them work only for
one target protein or for a limited family of organic compounds. We
then develop new statistical methods to predict simultaneously on
a large scale unknown DTPs from chemical structure and 3D
structure of target proteins. In principle, we can select between
more than 1600 different molecular descriptors to solve the former
problem [28]. However, not many methods offer one unique soft-
ware platform to calculate parameters for both drugs and protein
structures based on unified theoretic background more easily to
rationalize. Our group has introduced elsewhere a Markov Chain
Model (MCM) method named MARkov CHains Invariants for
Network SImulation and DEsign (MARCH-INSIDE). The MARCH-
INSIDE approach makes use of the same MCM theoretic formula-
tion to calculate the average values of different molecular TIs and
physicochemical properties from 2D, 3D, and/or sequence chemical
structures including drugs, DNA, RNA, and proteins, see a recent
review [29]. MARCH-INSIDE parameters not only offer these
advantages but also may used as inputs to train ANNs with the
software STATISTICA (e.g.) [30e35].

In this work, we developed a multi-target QSAR (mt-QSAR)
classifier using theMARCH-INSIDE technique to calculate structural
parameters of drug and target plus one ANN to seek the model. The
validation of the model was carried out by means of external pre-
dicting series. We also compare this model with other ANNmodels
developed in this work and Machine Learning (ML) classifiers
published before to address the same problem. A very good
MARCH-INSIDE-QSAR model was obtained, and the subsequent
combined QSAR-CN analysis may become of major importance for
the prediction of the activity of new compounds against different
targets or the discovery of new targets. In this sense we reported
two illustrative experiments that combine both experimental and
theoretical studies to show how to use this model in practical
situations. In experiment 1, we report by first timemt-QSAR and CN
prediction, synthesis, characterization, and MAO-A and MAO-B
pharmacological assay of 8 rasagiline derivatives. In experiment 2,
we report sampling, parasite culture, sample preparation, 2-DE,
MALDI-TOF and -TOF/TOF MS, MASCOT search, MM/MD 3D struc-
ture modeling, and QSAR prediction of CN for peptidome of
hemoglobin found in parasite Fasciola hepatica. In Fig. 1 we depict
a flowchart with the main steps given in this work to train and
validate the ANN classifier.
2. Materials and methods

2.1. Computational methods

2.1.1. MARCH-INSIDE technique
Entropy parameters for drug graphs. The MARCH-INSIDE

approach applied to drugs (D) is based on the calculation of the
different physicochemical molecular properties as an average of
atomic properties for all the molecules or groups of atoms (G)
[10,19,29]. For instance, it is possible to derive average estimations
of information about molecular structure using entropy indices
Dqk(G) [36,37].

DqkðGÞ ¼ �
X
j˛G

kpjðGÞ$log
h
kpjðGÞ

i
(1)

It is possible to consider isolated atoms (k ¼ 0) in the estimation of
the molecular properties Dq0(G). In this case the probabilities 0p(qj)
are determined without considering the formation of chemical
bonds (simple additive scheme). However, it is possible to consider
the gradual effects of the neighboring atoms at different distances
(k > 0) in the molecular backbone. In order to reach this goal the
method uses an MM, which determines the absolute probabilities
pk(qj) with which the atoms placed at different distances k affect the
contribution of the atom j to the molecular property in question.
Finally, it is interesting to note that one can sum only the atoms
included in a specific group of atoms (G) rather than all atoms. In
this way we can approach specific classes of average properties
such as average entropy for sp3 carbon atoms (Csp3

) or average
entropy for heteroatoms (Het). All calculations were performed
using the programMARCH-INSIDE [10,19,29], whichwas developed
in-house, see recent reviews for details.

Entropy parameters of protein residue networks. In previous
works we have predicted protein function based on different
protein structural parameters derived from a Markov matrix that
account for electrostatic interactions between aminoacid pairs in
the 3D structure of the protein. One of the classes of parameters
used was called the Shannon Entropy Tqk(R) of the markov matrix.
These values are used here as inputs to describe information about
the structure of the drug-target proteins (T) in order to construct
the mt-QSAR models for DTPs. The detailed explanation has been
published before [30,38e45] and reviewed in detail more recently
[29]. As follows we give the formula for Tqk(R) values and some
general explanations:

TqkðRÞ ¼ �
X
j˛R

kpjðRÞ$log
h
kpjðRÞ

i
(2)

Where, kpi(R) values are the absolute probabilities with which the
effect of the electrostatic interaction propagates from the



Fig. 1. Flowchart of all steps given in this work to develop the new model.
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aminoacid ith to other aminoacids jth next to it and returns to ith

after k-steps. These probabilities refer to: aminoacids considered
isolated in the space (k ¼ 0), interaction between aminoacids in
direct contact (k ¼ 1) or spatial (k > 1) indirect interactions
between aminoacids placed at a distance equal to k-times the cut-
off distance (rij ¼ k$rcut-off) in the residue network. Euclidean 3D
space r3 ¼ (x, y, z) coordinates of the Ca atoms of aminoacids listed
in protein PDB files. For calculation, all water molecules and metal
ions were removed [19]. All calculations were carried out with our
in-house software MARCH-INSIDE 2.0 [19]. For the calculation, the
MARCH-INSIDE software always uses the full matrix, never a sub-
matrix, but the last summation term may run either for all ami-
noacids or only for some specific protein regions (R) denoted as: c
for core, i for inner, m for middle, and s for surface regions,
respectively). Consequently, we can calculate different Tqk(R) for the
aminoacids contained in the regions (c, i, m, s, or t) and placed at
a topological distance k each other within this orbit (k is the order)
[32,38,39,46,47]. In this work, we have calculated altogether 5
(types of regions) � 6(orders considered) ¼ 30 Tqk(R) indices for
each protein.

Statistical analysis. Let be Dqk(G) entropy descriptors molecular
that codify information about drug structure and Tqk(R) entropy
descriptors that codify information about drug-target proteins; we
attempt to develop a simple mt-QSAR model in the form of a linear
classifier with the general formula:

SðDTPÞpred ¼
X5

k¼0

aG;k$
DqkðGÞ þ

X5

k¼0

bR;k$
TqkðRÞ þ c0 (3)

We used Linear Discriminating Analysis (LDA) to fit this discrimi-
nant function. The model deals with the classification of
a compound set with or without affinity on different receptors.
A dummy variable Affinity Class (AC) was used as input to codify the
affinity. This variable indicates either high (AC ¼ 1) or low (AC ¼ 0)
affinity of the drug by the receptor. S(DTP)pred or DTP affinity pre-
dicted score is the output of the model and it is a continuous
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dimensionless score that sorts compounds from low to high affinity
to the target coinciding DTPs with higher values of S(DTP)pred and
nDTPs with lowest values. In equation (3), b represents the coeffi-
cients of the classification function, determined by the LDA module
of the STATISTICA 6.0 software package [48]. We used Forward
Stepwise algorithm for a variable selection. The statistical signifi-
cance of the LDA model was determined calculating the p-level (p)
of error with Chi-square test. We also inspected the Specificity,
Sensitivity, and total Accuracy to determine the quality-of-fit to
data in training. Cases for training set were selected at random out
of the cases in full dataset. The remnant cases were used to validate
the model. The validation of the model was corroborated with
these external prediction series; these cases were never used to
train the model. The ration between training/validation set was 2/1
approximately. This procedure to select training and validation sets
is largely known and used to train QSAR models [49e55].

Dataset. The dataset was formed by a set of marketed and/or
reported drugs/receptors (proteins) pairs where affinity of drugs
with the receptors was established taking into consideration the
Drug Bank. The dataset was formed to more than 526 drugs with
respectively 323 protein receptors, so we were able to collect
already 5784 cases (drug/protein receptors) instead of 526 � 323
cases. The dataset were used to perform an LDA model. Overall
model classification accuracy was 88.83% (3475/3912 cases) in
training, 88.51% (1657/1872) in validation. In addition the dataset
was used to develop ANN models to performance the model.
Overall ANN model classification accuracy was 92%. To know if the
model works well, the model used 8 own compounds rasagiline
derivates to predict their protein receptor. The names or codes for
all compounds are depicted in Table 1SM and Table 2SM of the
supplementary material, due to space constraints, as well as the
references consulted to compile the data in this table.

DrugeProtein (DP) network construction. In order to achieve the
drug and protein affinity with a network approach where one node
represents a drug, target, or drug-target pair and the edges express
relationships between pairs of drugs and/or targets [26]. We built
a bipartite graph composed of Drug Bank and Protein Data Bank-
approved drugs and proteins linked by drug-target binary associ-
ations. The resulting network connects most drugs into a highly
interlinked giant component, with strong local clustering of drugs
of similar types. We build two complex networks, a first for the
observed data and the second with the data predicted by the
model. First, using the Excel software in a column we introduce all
the proteins, the drugs used quotation marks in our database. Then
in another column lists all the cases, in total 837 vertices. At the
beginning of this column puts the total number of vertices, there
are currently two columns of the name of drug and protein and
their corresponding number of vertices. At the end of the columns
are placed bows in the first column put the number of vertices for
the drug and in another column corresponding to the protein. The
file was saved as a .txt format file. After we had renamed the .txt file
as a .net file we read it with the CentiBin software [56,57]. Using
CentiBin we can not only represent the network but also highlight
all Drugs and Protein (nodes) connected to a specific DRP. To
analyze the relationships between drug targets, we measured and
calculating closeness parameter, and the centrality. Lastly, the
protein and drug centralities were used as input in STATISTICA in
order to study the distribution of the network and compare it with
other ideal network distributions including normal, exponential.

2.1.2. Theoretical study of hemoglobin peptidome of parasite F.
hepatica

MM/MD. Molecular Mechanics (MM) and Molecular Dynamics
(MD) study. ForMMstudywefirst introduced the sequence of the30
peptides in the HyperChem [58]; the optimization of their
geometries was carried out by the Molecular Mechanics Force Field
BIO þ (CHARMM). In setup we keep the options implemented by
default, but allowing a cut-off switching truncation rin ¼ 15 Å and
rout ¼ 17 Å. We refer here to MD in the sense of MD stochastic
simulation by theMonte Carlo (MC)method, although someauthors
understandMD as only theMD deterministic search. TheMolecular
Dynamics Trajectories (MDTs) or energetic profiles of all the starting
structure of peptides were obtained by means of MC method, with
theHyperChempackage [59,60]. In this sense, the forcefield AMBER
[61] of molecular mechanics was used with distant-dependent
dielectric constant (scale factor 1), electrostatic and van der Waals
values by default and a cut-off switched function with rin ¼ 15 and
rout ¼ 17 Å (see Fig. 2). All the components in the force field were
included and the atom type was recalculated by maintaining the
current charges. Finally,MD simulationwas carried out by use of the
Monte Carlo algorithm in the vacuo at 300 K and 1000 optimization
steps, thus obtaining MDTs with 100 potential energy dEj (j¼ 1, 2, 3,
.100) values for each. We obtained 22 MDTs for 19 peptides. In
order to obtain realistic MDTs we monitored an additional param-
eter inMD algorithms; this is known as the acceptance ratio (ACCR).
It appears as ACCR on the list of possible selections in the MC
AveragesdialogboxofHyperChem(see Fig. 2). TheACCR is a running
average of the ratio of the number of accepted moves to attempted
moves. Varying the step size can have a large effect on the ACCR
value. The step size, Dr, is the maximum allowed atomic displace-
mentused in the generationof trial configurations. Thedefault value
of r in HyperChem is 0.05 Å [59]. For most organic molecules, this
will result in an ACCR of about 0.5 Å, whichmeans that about 50% of
allmoves are accepted. Increasing the size of the trial displacements
may lead to a more complete search of configuration space, but the
acceptance ratio will, in general, decrease. Smaller displacements
generally lead to higher acceptance ratios but result inmore limited
sampling. There has been little research to date as regards the
optimum value of the acceptance ratio.

2.2. Experimental methods

2.2.1. Study of rasagiline analogs
Identification. Melting points are uncorrected and were deter-

mined in a Reichert Kofler Thermopan or in capillary tubes in
a Büchi 510 apparatus. Infrared spectra were recorded in a Per-
kineElmer 1640 FTIR spectrophotometer. 1H NMR spectra
(300 MHz and 500 MHz) and 13C NMR spectra (75 MHz) were
recorded in a Bruker AMX 300 and DRX 500 spectrometer using
TMS as internal reference (chemical shifts in d values, J in Hz). Mass
spectra were recorded on a HP5988A spectrometer. FABMS were
obtained using MICROMASS AUTOSPEC mass spectrometer.
Microanalyses were performed in a PerkineElmer 240B elemental
analyzer by the Microanalysis Service of the University of Santiago
see Table 3SM. Most of reactions were monitored by TLC on pre-
coated silica gel plates (Merck 60 F254, 0.25 mm). Synthesized
products were purified by flash column chromatography on silica
gel (Merck 60, 230e240 mesh) and crystallized if necessary.
Solvents were dried by distillation prior use.

Compound 2. (�)-3-Amino-3-(thiophen-3-yl)propanoic acid. A
solution of thiophen-3-carbaldehyde (2.00 g, 17.83 mmol) in EtOH
(5.5 mL) was added ammonium acetate (2.74 g, 35.58 mmol) and
malonic acid (1.85 g, 17.78 mmol). The reaction mixture was stirred
was refluxed for 7 h. The precipitate formedwasfiltered andwashed
with boiling EtOH (3�10mL) to give 2 (2.20 g, yield 72%) as awhite
solid.Mp223e224 �C. IR (KBr): n¼ 2954, 2152,1532,1403,1101, 992,
925, 786 cm�1. 1H NMR (300 MHz, TFA-d): d ¼ 11.03 (br s, 3H, D2O
exch., OH þ NH2), 6.97e6.91 (m, 2H, 2-Hthiophene and 5-Hthiophene),
6.63e6.61 (m,1H, 4-Hthiophene), 4.58e4.54 (m,1H, 3-H), 2.92 (dd,1H,
J¼ 18.4, 9.6 Hz, 2-HH), 2.72 (dd, 1H, J¼ 18.4, 4.2 Hz, 2-HH) ppm. 13C



Fig. 2. Snapshot of software HyperChem with MM/MD study for one peptide.
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NMR (75 MHz, TFA-d): d ¼ 175.01 (CO), 131.92 (C2thiophene), 126.76
(C4thiophene), 123.48 and 122.45 (C3thiophene and C5thiophene), 47.01
(CH), 34.12 (CH2) ppm. EIMS: m/z (%) ¼ 172 (2) [M þ 1]þ, 171 (17)
[Mþ],112 (100) [Mþ� CH2COOH],111 (3),110 (17), 85 (54), 84 (4), 83
(3) [Mþ � C3H6NO2], 70 (5), 58 (13). Anal. calcd. for C7H9NO2S
(171.21): C 49.10, H 5.30, N 8.18; found C 49.43, H 5.37, N 8.05.

Compound 3. (�)-2,2,2-Trifluoro-N-(5,6-dihydro-6-oxo-4H-
cyclopenta[b]thiophen-4-yl)acetamide. A solution of 2 (9.50 g,
55.49 mmol) in trifluoracetic acid (22 mL) was stirred for 30 min at
room temperature under argon and then trifluoracetic anhydride
(22 mL) was added. The reaction mixture was refluxed for 5 h and
evaporated to dryness and the crude residue (18 g) so obtained was
purified on a silica gel column using 1:1 hexane/EtOAc as eluent, to
giving pure 3 (10.70 g, 77%) as awhite solid. Mp 138e141 �C [Lit. mp
141 �C]. 1H NMR (300 MHz, CDCl3): d ¼ 7.97 (d, 1H, J ¼ 4.9 Hz, 2-H),
7.17 (d,1H, J¼ 4.8 Hz, 3-H), 7.00 (br s,1H, D2O exch., NH), 5.59 (t, 1H,
J ¼ 7.5 Hz, 4-H), 3.50 and 2.83 (AB part of an ABM system, 2H,
J ¼ 18.6, 7.1, 2.2 Hz, 5-H2) ppm. 13C NMR (75 MHz, CDCl3):
d ¼ 192.78 (C6), 165.31 (CO), 143.05 (C6a), 142.57 (C2), 123.82 (C3),
117.93 (C3a), 114.12 (CF3), 48.90 (C5), 46.08 (C4) ppm. EIMS: m/z
(%) ¼ 250 (6) [M þ 1]þ, 249 (49) [Mþ], 232 (3) [Mþ � OH], 180 (17)
[Mþ � CF3], 152 (33), 137 (42) [Mþ � NHCOCF3], 136 (100)
[Mþ � NH2COCF3], 134 (23), 124 (10), 109 (31), 108 (22), 97 (25), 69
(48). Anal. calcd. for C9H6F3NO2S (249.21): C 43.38, H 2.43, N 5.62;
found C 43.67, H 2.65, N 5.49.

Compounds 4a and 4b. (�)-2,2,2-Trifluoro-N-(cis-5,6-dihydro-6-
hydroxy-4H-cyclopenta[b]thiophen-4-yl)acetamide and (�)-2,2,2-
trifluoro-N-(trans-5,6-dihydro-6-hydroxy-4H-cyclopenta[b]thiophe-
n-4-yl)acetamide. NaBH4 (0.60g,15.86mmol) is added to a solutionof
compound 3 (2.00 g, 8.02 mmol) in MeOH (8 mL). The resulting
mixture is stirred at room temperature for 10 min. The solvent was
removed under reduced pressure and the residue so obtained was
partitioned between H2O (100 mL) and EtOAc (75 mL). The aqueous
phasewas extractedwith EtOAc (15� 75mL), and the pooled organic
extracts were dried over Na2SO4, after which removal of the solvent
under reduced pressure afforded 1.72 g of an oily yellow residue that
was fractionated chromatographically on a column of silica gel using
6/1 hexane/acetone as eluent. From the first non-void fractions eluted
the cis-isomer 4a was isolated (0.65 g, 32%). A second group of frac-
tions affordedamixtureof trans/cis-isomers4a/b (0.40g, 20%)and the
last group of fractions afforded the cis-isomer 4b (0.62 g, 31%).

Compound (�)-4a: mp 135e136 �C. IR (KBr): n ¼ 3272, 3093,
2893, 1697, 1555, 1190, 1041, 995, 939 cm�1. 1H NMR (300 MHz,
DMSO-d6): d ¼ 9.78 (d, 1H, D2O exch., J ¼ 7.5 Hz, NH), 7.52 (d, 1H,
J ¼ 4.9 Hz, 2-H), 6.81 (d, 1H, J ¼ 4.9 Hz, 3-H), 5.55 (d, 1H, D2O exch.,
J ¼ 6.2 Hz, OH), 5.11e5.01 (m, 2H, 4-H þ 6-H), 3.15 (dt, 1H, J ¼ 13.3,
7.4 Hz, 5-HH), 2.14 (dt, 1H, J ¼ 13.3, 5.5 Hz, 5-HH) ppm. 13C NMR
(75 MHz, DMSO-d6): d ¼ 148.42 (CO), 145.45 (C6a), 131.74 (C2),
121.74 (C3), 118.19 (C3a), 114.35 (CF3), 69.11 (C6), 48.62 (C4), 46.87
(C5) ppm. EIMS:m/z (%) ¼ 251 (3) [Mþ], 233 (100) [Mþ � H2O], 139
(23) [Mþ � C2HF3NO],138 (17) [Mþ � C2H2F3NO], 137 (31), 136 (49),
121 (20), 110 (43), 97 (10), 69 (31). Anal. calcd. for C9H8F3NO2S
(251.22): C 43.03, H 3.21, N 5.58; found C 43.37, H 3.43, N 5.65.

Compound (�)-4b: mp 118e121 �C. IR (KBr): n ¼ 3299, 2929,
1695, 1550, 1183 cm�1. 1H NMR (300 MHz, DMSO-d6): d ¼ 9.71 (d,
1H, D2O exch., J ¼ 7.6 Hz, NH), 7.53 (d, 1H, J ¼ 4.9 Hz, 2-H), 6.83 (d,
1H, J ¼ 4.9 Hz, 3-H), 5.45 (d, 1H, D2O exch., J ¼ 6.4 Hz, OH),
5.37e5.30 (m, 1H, 6-H), 5.28e5.24 (m, 1H, 4-H), 2.68e2.52 (m, 2H,
5-H2) ppm. 13C NMR (75 MHz, DMSO-d6): d ¼ 148.73 (CO), 146.46
(C6a), 132.01 (C2), 121.80 (C3), 118.19 (C3a), 114.36 (CF3), 69.76 (C6),
49.82 (C4), 47.28 (C5) ppm. EIMS:m/z (%)¼ 233 (1) [Mþ �H2O],139
(16) [Mþ � C2HF3NO], 138 (100) [Mþ � C2H2F3NO], 137 (11), 136
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(11), 121 (8), 110 (18), 69 (22). Anal. calcd. for C9H8F3NO2S (251.02):
C 43.03, H 3.21, N 5.58; found C 43.25, H 3.47, N 5.69.

Compound 5. (�)-cis-4-Amino-5,6-dihydro-4H-cyclopenta[b]
thiophen-6-ol. Compound 4a (0.30 g, 1.19 mmol) was suspended in
amixture ofMeOH/H2O (4.5/2.6mL), and K2CO3 (0.33 g, 2.39mmol)
was added. The mixture was heated to reflux with stirring for 1 h.
The reaction mixture was cooled to room temperature and the
solventswas evaporated to dryness and the residue so obtainedwas
partitioned between H2O (30 mL) and EtOAc (50 mL). The aqueous
phasewas extractedwith EtOAc (4� 50mL). The organic phasewas
separated, dried (Na2SO4), and evaporated to dryness to give 5a as
a waxy yellow solid (0.18 g, 99%). Mp 101e104 �C. IR and 1H NMR
were coincidences with Lit. 13C NMR (75 MHz, CDCl3): d ¼ 151.25
(C6a), 146.56 (C3a), 131.75 (C2), 121.52 (C3), 70.85 (C6), 51.50 (C5),
51.42 (C4) ppm. EIMS: m/z (%) ¼ 155 (2) [Mþ], 138 (22) [Mþ � OH],
137 (15) [Mþ � H2O], 136 (36), 112 (100), 111 (16), 110 (46), 109 (13),
85 (19), 69 (11), 58 (10). Anal. calcd. for C7H9NOS (155.22): C 54.17, H
5.84, N 9.02; found C 54.40, H 5.70, N 9.19.

Compound 5b. (�)-trans-4-Amino-5,6-dihydro-4H-cyclopenta
[b]thiophen-6-ol. Compound 5b was obtained, as the sole product,
as an orange waxy solid in the same way as 5a, from 4b under
slightly different reaction conditions (reflux 6 h). The residue
obtained was fractionated chromatographically on a column of
silica gel using 2/1 CH2Cl2/MeOH as eluent. From the non-void
fractions eluted the trans-isomer 5b, as a orange waxy solid (75%).
IR concordat with Lit. 1H NMR (300 MHz, CDCl3): d ¼ 7.44 (d, 1H,
J¼ 4.9 Hz, 2-H), 6.91 (d, 1H, J¼ 4.9 Hz, 3-H), 5.16e5.14 (m,1H, 6-H),
4.33 (t, 1H, J ¼ 5.8 Hz, 4-H), 3.98e3.23 (br s, 3H, D2O exch.,
OHþNH2), 2.46e2.42 (m,1H, 5-HH), 2.32e1.97 (m,1H, 5-HH) ppm.
13C NMR (75 MHz, CDCl3): d ¼ 152.66 (C6a), 146.07 (C3a), 130.93
(C2), 122.12 (C3), 69.68 (C6), 51.65 (C5), 51.54 (C4) ppm. EIMS: m/z
(%) ¼ 155 (1) [Mþ], 139 (27), 138 (33) [Mþ � OH], 137 (13)
[Mþ �H2O],136 (33),123 (3),121 (8),113 (8),112 (100),110 (57),109
(16), 85 (26), 69 (26). HRMS m/z calcd. for C7H9NOS, 155.0405;
found, 155.0421.

Compounds 6a, 7a. (�)-cis-5,6-Dihydro-4-(prop-2-ynylamino)-
4H-cyclopenta[b]thiophen-6-ol (6a) and (�)-cis-5,6-dihydro-4-
(diprop-2-ynylamino)-4H-cyclopenta[b]thiophen-6-ol (7a). To
a solution of 5a (0.64 g, 4.13mmol) and K2CO3 (0.57 g, 4.13mmol) in
MeCN (13 mL) under argon was added dropwise a solution of
propargyl bromide (0.46 mL, 4.13 mmol). The resulting suspension
was heated to reflux with stirring for 18 h; whereafter most of
volatiles were partitioned between EtOAc (50 mL) and 2 N NaOH
(50 mL), the organic phase was extracted with 2 N NaOH
(2 � 50 mL). The organic phase was separated, dried (Na2SO4), and
evaporated to dryness. The residue (0.64 g) was flash chromato-
graphed on silica gel, using 3/1 and 1/2 hexane/EtOAc as successive
mixtures of eluents. From the first non-void fractions eluted the
compound 7a (0.34 g, 36%) was isolated. A second group of frac-
tions afforded the compound 6a (0.19 g, 24%).

Compound (�)-6a: white solid, mp 59e63 �C. IR (KBr): n ¼ 3290,
3220, 2922, 2850, 1599, 1494, 1429, 1339, 1183, 1113, 1086, 1060,
1012, 954, 762 cm�1. 1H NMR (300 MHz, CDCl3): d ¼ 7.33 (d, 1H,
J ¼ 4.8 Hz, 2-H), 6.92 (d, 1H, J ¼ 5.0 Hz, 3-H), 5.06 (dd, 1H, J ¼ 6.7,
2.0 Hz, 6-H), 4.23 (dd,1H, J¼ 6.7, 2.0 Hz, 4-H), 3.44 (d, 2H, J¼ 2.3 Hz,
CH2), 3.15 (br. s, 2H, D2O exch., OH þ NH), 3.05e2.95 (m, 1H, 5-HH),
2.27 (t, 1H, J ¼ 2.2 Hz, C^CH), 2.09 (dt, 1H, J ¼ 14.5, 2.0 Hz, 5-HH)
ppm.13CNMR (75MHz, CDCl3): d¼ 148.27 (C6a),147.41 (C3a),131.19
(C2), 121.62 (C3), 81.33 (C^CH), 72.20 (C^CH), 70.60 (C6), 55.38
(C4), 47.62 (C5), 35.89 (CH2C^CH) ppm. EIMS: m/z (%) ¼ 193 (3)
[Mþ], 192 (16) [M� 1]þ, 176 (5) [Mþ � OH], 175 (5) [Mþ � H2O], 154
(37) [Mþ � CH2C^CH], 140 (11), 139 (100), 138 (20), 137 (19), 136
(19),135 (4),122 (16),121 (13),111 (18),110 (16),109 (12), 85 (11), 77
(11), 69 (10), 65 (10), 57 (12), 55 (12). Anal. calcd. for C10H11NOS
(193.26): C 62.15, H 5.74, N 7.25; found C 62.36, H 5.92, N, 7.41.
Compound (�)-7a: brown, waxy solid, mp 104e108 �C. IR (KBr):
n¼ 3285, 3269, 3125, 3077, 2970, 2921, 2844, 2824,1444,1333,1122,
1077, 1033, 904 cm�1. 1H NMR (300 MHz, CDCl3): d ¼ 7.34 (d, 1H,
J ¼ 4.9 Hz, 2-H), 7.00 (d, 1H, J ¼ 4.9 Hz, 3-H), 5.09e5.07 (m, 1H, 6-H),
4.19 (dd, 1H, J ¼ 6.9, 2.8 Hz, 4-H), 3.63e3.50 (m, 4H, 2 � CH2),
2.97e2.87 (m, 1H, 5-HH), 2.82 (br s, 1H, D2O exch., OH), 2,45 (dt, 1H,
J¼14.2,2.7Hz,5-HH),2.26 (t, 2H, J¼2.2Hz,2�C^CH)ppm.13CNMR
(75 MHz, CDCl3): d ¼ 147.83 (C6a), 146.77 (C3a), 130.95 (C2), 122.88
(C3), 79.47 (2 � C^CH), 73.50 (2 � C^CH), 70.27 (C6), 60.86 (C4),
43.90 (C5), 39.85 (2� CH2C^CH) ppm. EIMS:m/z (%)¼ 231 (1) [Mþ],
230 (4) [M� 1]þ, 214 (4) [Mþ � OH], 213 (3) [Mþ � H2O],194 (9), 193
(19),192 (100) [Mþ � CH2C^CH],188 (11),174 (19),173 (11),139 (47),
138 (9),137 (14), 136 (13),135 (7),122 (17),121 (13), 111 (21), 110 (17),
85 (16), 84 (12), 71 (16), 57 (17), 55 (10). Anal. calcd. for C13H13NOS
(231.31): C 67.50, H 5.66, N 6.06; found C 67.69, H 5.88, N, 6.13.

Compounds 6b, 7b. (�)-trans-5,6-Dihydro-4-(prop-2-ynyla-
mino)-4H-cyclopenta[b]thiophen-6-ol (6b) and (�)-trans-5,6-
dihydro-4-(diprop-2-ynylamino)-4H-cyclopenta[b]thiophen-6-ol
(7b). Compound 6b and 7bwere obtained in the samewayas 6a and
7a from 5b (0.75 g, 4.84 mmol) but under slightly different reaction
conditions [reflux 4.5 h]. The yellow oil obtained (0.8 g) was frac-
tionated chromatographically on a column of silica gel using 3/1 and
1/2 hexane/EtOAc as successive mixtures of eluents. From the first
non-void fractions eluted the compound 7b (0.49 g, 53%) was iso-
lated. A second group of fractions afforded the compound 6b (0.14 g,
13%).

Compound (�)-6b: mp 71e74 �C. IR (KBr): n ¼ 3268, 3254, 2927,
2853, 1486, 1432, 1336, 1301, 1193, 1115, 1097, 1034 cm�1 1H NMR
(300 MHz, CDCl3): d ¼ 7.34 (d, 1H, J ¼ 4.9 Hz, 2-H), 6.92 (d, 1H,
J¼ 4.9 Hz, 3-H), 5.41e5.38 (m,1H, 6-H), 4.55e4.51 (m,1H, 4-H), 3.46
(d, 2H, J¼2.3Hz, CH2), 2.61e2.56 (m, 2H, 5-H2), 2.26 (t,1H, J¼2.3Hz,
C^CH), 2.11 (br s, 2H, D2O exch., OHþ NH) ppm. 13C NMR (75MHz,
CDCl3): d¼ 149.11 (C6a), 146.44 (C3a), 131.41 (C2), 121.70 (C3), 81.72
(C^CH), 71.86 (C^CH), 71.26 (C6), 56.52 (C4), 49.07 (C5), 36.11
(CH2) ppm. EIMS:m/z (%)¼ 192 (3) [M� 1]þ, 176 (6) [Mþ �OH],175
(2) [Mþ � H2O], 174 (10), 155 (9), 154 (100) [Mþ � CH2C^CH], 150
(15), 139 (11),138 (7), 137 (12), 136 (21),135 (3),111 (8),110 (13), 109
(7), 85 (4), 77 (5), 65 (6). Anal. calcd. for C10H11NOS (193.26): C 62.15,
H 5.74, N 7.25; found C 62.32, H 5.86, N, 7.19.

Compound-(�)-7b: mp 57e59 �C. IR (KBr): n ¼ 3287, 3203,
2949, 2829, 1440, 1419, 1393, 1365, 1126, 1115, 1031 cm�1 1H NMR
(300 MHz, CDCl3): d ¼ 7.37 (d, 1H, J ¼ 4.7 Hz, 2-H), 7.00 (d, 1H,
J ¼ 4.7 Hz, 3-H), 5.49e5.40 (m, 1H, 6-H), 4.64e4.61 (m, 1H, 4-H),
3.55e3.43 (m, 4H, 2 � CH2), 2.97 (ddd, 1H, J ¼ 14.5, 6.7, 3.7 Hz, 5-
HH), 2.45 (ddd, 1H, J¼ 14.5, 7.2, 3.4 Hz, 5-HH), 2.26e2e0.24 (m, 2H,
2 � C^CH), 1.95 (br s, 1H, D2O exch., OH) ppm. 13C NMR (75 MHz,
CDCl3): d¼ 147.47 (C6a), 147.13 (C3a), 131.27 (C2), 122.93 (C3), 79.65
(2 � C^CH), 73.13 (2 � C^CH), 71.41 (C6), 62.08 (C4), 44.25 (C5),
39.51 (2 � CH2) ppm. EIMS: m/z (%) ¼ 232 (1) [M þ 1]þ, 231 (7)
[Mþ], 230 (7) [M � 1]þ, 214 (6) [Mþ � OH], 213 (2) [Mþ � H2O], 194
(18), 193 (39), 192 (100) [Mþ � CH2C^CH], 188 (22), 174 (24), 173
(11), 162 (11),149 (10),148 (15),147 (11),140 (10),139 (69),138 (22),
137 (28), 136 (27), 135 (13), 134 (11), 122 (24), 121 (25), 111 (36), 110
(40), 109 (18), 85 (10), 84 (7), 78 (14), 77 (23), 69 (10), 67 (12), 66
(19), 65 (21), 55 (13). Anal. calcd. for C13H13NOS (231.31): C 67.50, H
5.66, N 6.06; found C 67.77, H 5.81, N, 6.19.

Compound 8a. (�)-cis-4-[(Diprop-2-ynyl)amino]-5,6-dihydro-
4H-cyclopenta[b]thiophen-6-yl acetate. The compound 7a (50 mg,
0.216 mmol) was stirred with Ac2O (0.5 mL) and dry Et3N (0.5 mL)
for 5.5 h under argon at room temperature, the resulting mixture
was concentrated to dryness, and the solid residue was dissolved in
CH2Cl2 (30 mL) and the organic phase was washed successively
with saturated NaHCO3 (3 � 20 mL) and H2O (3 � 20 mL), dried
(Na2SO4), and concentrated under reduced pressure. The resulting
yellow oil (60 mg) was chromatographed on silica gel with 10/1
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hexane/EtOAc as eluent, affording 8a (51 mg, 86%) as a white solid,
mp 59e60 �C. IR (KBr): n¼ 3281, 3262, 2922, 1721, 1428, 1367, 1305,
1245 cm�1 1H NMR (300 MHz, CDCl3): d ¼ 7.38 (d, 1H, J ¼ 5.0 Hz, 2-
H), 6.97 (d, 1H, J ¼ 5.0 Hz, 3-H), 5.83 (dd, 1H, J ¼ 7.6, 2.9 Hz, 6-H),
4.42 (dd,1H, J¼ 7.9, 3.2 Hz, 4-H), 3.60e3.44 (AB system, 2H, J¼ 17.0,
2.3 Hz, CH2), 3.59e3.43 (AB system, 2H, J ¼ 17.0, 2.3 Hz, CH2),
3.11e3.01 (m, 1H, 5-HH), 2.57 (dt, 1H, J ¼ 15.2, 3.2 Hz, 5-HH), 2.24
(t, 2H, J ¼ 2.3 Hz, 2 � C^CH), 2.08 (s, 3H, CH3) ppm. 13C NMR
(75 MHz, CDCl3): d ¼ 171.22 (CO), 148.58 (C6a), 142.62 (C3a), 132.69
(C2), 122.31 (C3), 80.03 (2 � C^CH), 72.98 and 72.51 (2 � C^CH),
72.47 (C6), 61.18 (C4), 39.33 (C5), 38.63 (2� CH2), 21.12 (C7H3) ppm.
EIMS:m/z (%) ¼ 273 (2) [Mþ], 234 (12) [Mþ � CH2C^CH], 230 (62),
215 (15), 214 (79), 213 (98), 212 (100), 200 (11),199 (9),198 (22),192
(16), 186 (11), 176 (13), 175 (28), 174 (94), 173 (26), 148 (14), 147 (16),
139 (48), 138 (13), 137 (23), 136 (24), 135 (13), 134 (10), 123 (21), 122
(93), 121 (90), 111 (18), 110 (9), 109 (11), 92 (28), 77 (12), 66 (15), 65
(11). Anal. calcd. for C15H15NO2S (273.35): C 65.91, H 5.53, N 5.12;
found C 66.05, H 5.70, N, 5.08.

Compound 8b. (�)-trans-4-[(Diprop-2-ynyl)amino]-5,6-dihiy-
dro-4H-cyclopenta[b]thiophen-6-yl acetate. The compound 8bwas
obtained in the same way as 8a from 7b (53 mg, 0.23 mmol) but
under slightly different reaction conditions [room temperature
15 h]. The obtained residue (62 mg) was fractionated chromato-
graphically on a column of silica gel using 10/1 hexane/EtOAc as
eluent. From thenon-void fractions eluted the compound8b (46mg,
74%) as a yellow oil. IR (film): n ¼ 3286, 1726, 1427, 1371, 1235,
1015 cm�1. 1H NMR (300 MHz, CDCl3): d ¼ 7.39 (d, 1H, J ¼ 5.0 Hz, 2-
H), 6.98 (d, 1H, J ¼ 5.0 Hz, 3-H), 6.09e6.07 (m, 1H, 6-H), 4.68 (ddd,
J¼7.2, 4.7,1.5Hz,1H, 4-H), 3.55e3.42 (m, 4H, 2�CH2), 2.97 (ddd,1H,
J¼ 14.6, 7.3, 4.4 Hz, 5-HH), 2,60 (ddd,1H, J¼ 14.6, 7.3, 2.9 Hz, 5-HH),
2.25 (t, 2H, J ¼ 2.3 Hz, 2 � C^CH), 2.04 (s, 3H, CH3) ppm. 13C NMR
(75 MHz, CDCl3): d ¼ 171.21 (CO), 149.09 (C6a), 142.72 (C3a), 132.65
(C2), 122.30 (C3), 79.74 (2 � C^CH), 73.95 (C6), 73.11 (2 � C^CH),
62.32 (C4), 39.59 (C5), 39.32 (2 � CH2), 21.09 (CH3) ppm. EIMS:m/z
(%)¼ 272 (1) [M� 1]þ, 234 (5) [Mþ � CH2C^CH], 230 (34), 215 (10),
214 (49), 213 (100), 212 (58), 199 (6), 198 (15), 192 (10), 186 (7), 176
(8),175 (19),174 (63),173 (18),148 (11),147 (12),139 (31),138 (9),137
(18), 136 (18), 135 (10), 134 (8), 123 (13), 122 (42), 121 (66), 111 (12),
110 (6), 109 (9), 92 (10), 77 (9), 66 (14), 65 (10). HRMSm/z calcd. for
C15H15NO2S, 273.0823; found, 273.0841.

Compound 9a. (�)-cis-4-[(Diprop-2-ynyl)amino]-5,6-dihiydro-
4H-cyclopenta[b]thiophen-6-yl benzoate. The compound 7a
(50 mg, 0.216 mmol) was stirred with BzCl (37.61 mL, 0.324 mmol),
dry Et3N (60.21 mL, 0.432 mmol) and a catalytic amount of DMAP in
MeCN (2.16 mL) for 23 h under argon at room temperature. The
resulting mixture was concentrated to dryness, and the solid
residue was dissolved in EtOAc (30 mL), the solid formed was
collected by filtration and the filtrate was concentrated under
reduced pressure and the resulting orange oil (130 mg) was chro-
matographed on silica gel with 20/1 hexane/EtOAc as eluent,
affording 9a (58 mg, 80%) as a yellow oil. IR (film): n ¼ 3290, 2922,
2818, 1707, 1600, 1584, 1265, 1107, 1069, 1024, 1010, 710 cm�1 1H
NMR (300 MHz, CDCl3): d ¼ 8.04 (d, 2H, J ¼ 7.8 Hz, 2-
Hbencene þ 6-Hbencene), 7.54 (t, 1H, J ¼ 7.3 Hz, 4-Hbencene), 7.44e7.38
(m, 3H, 3-Hbencene þ 5-Hbencene þ 2-H), 6.98 (d, 1H, J ¼ 4.9 Hz, 3-H),
6.09 (dd, J ¼ 7.7, 2.1 Hz, 1H, 6-H), 4.50 (dd, 1H, J ¼ 7.8, 3.1 Hz, 4-H),
3.63e3.49 (AB system, 2H, J ¼ 17.0, 2.6 Hz, CH2), 3.62e3.48 (AB
system, 2H, J ¼ 17.0, 2.6 Hz, CH2), 3.20e3.12 (m, 1H, 5-HH), 2.77 (m,
1H, 5-HH), 2.23 (br s, 2H, 2 � C^CH) ppm. 13C NMR (75 MHz,
CDCl3): d ¼ 166.61 (CO), 148.80 (C6a), 142.61 (C3a), 133.10 (C40),
132.86 (C2), 129.94 (C10), 129.67 and 128.37 (C20 þ C60and
C30 þ C50), 122.28 (C3), 80.07 (2 � C^CH), 73.04 (C6), 72.97
(2� C^CH), 61.32 (C4), 39.32 (2� CH2), 38.59 (C5) ppm. EIMS:m/z
(%)¼ 335 (1) [Mþ], 334 (1) [M� 1]þ, 296 (1) [Mþ � CH2C^CH], 230
(45), 215 (5), 214 (29), 213 (40), 212 (45), 200 (3), 199 (4), 198 (10),
186 (5), 176 (5), 175 (13), 174 (48), 173 (11), 148 (7), 147 (8), 139 (4),
138 (2), 137 (10), 136 (12), 135 (7), 134 (5), 123 (16), 122 (100), 121
(52), 105 (60), 92 (34), 77 (37). HRMS m/z calcd. for C20H17NO2S,
335.0980; found, 335.0996.

Compound 9b. (�)-trans-4-[(Diprop-2-ynyl)amino]-5,6-dihiy-
dro-4H-cyclopenta[b]thiophen-6-yl benzoate. The compound 9b
was obtained in the same way as 9a from 7b (53 mg, 0.23 mmol)
but under slightly different reaction conditions [room temperature
21 h]. The obtained residue (62 mg) was fractionated chromato-
graphically on a column of silica gel using 20/1 hexane/EtOAc as
eluent. From the non-void fractions eluted the compound 9b
(72 mg, 99%) as a yellow oil. IR (film): n ¼ 3290, 2923, 2819, 1707,
1600, 1450, 1266, 1107, 1069, 991 cm�1. 1H NMR (300 MHz, CDCl3):
d ¼ 8.02e7.99 (m, 2H, 2-Hbencene þ 6-Hbencene), 7.55e7.50 (m, 1H,
4-Hbencene), 7.42e7.38 (m, 3H, 3-Hbencene þ 5-Hbencene þ 2-H), 6.99
(d,1H, J¼ 5.1 Hz, 3-H), 6.32 (d, J¼ 6.6 Hz,1H, 6-H), 4.75 (ddd, J¼ 7.4,
4.3,1.2 Hz 1H, 4-H), 3.56e3.47 (AB system, 2H, J¼ 16.8, 2.3 Hz, CH2),
3.55e3.46 (AB system, 2H, J ¼ 16.8, 2.4 Hz, CH2), 3.09 (ddd, 1H,
J¼ 14.6, 7.2, 4.3 Hz, 5-HH), 2.76 (ddd,1H, J¼ 14.6, 7.2, 2.7 Hz, 5-HH),
2.25 (t, 2H, J ¼ 2.3 Hz, 2 � C^CH) ppm. 13C NMR (75 MHz, CDCl3):
d ¼ 166.68 (CO), 149.15 (C6a), 142.78 (C3a), 133.06 (C4bencene),
132.75 (C2), 129.95 (C1bencene), 129.65 and 128.30
[C2bencene þ C3bencene þ C5bencene þ C6bencene], 122.29 (C3), 79.72
(2 � C^CH), 74.57 (C6), 73.10 (2 � C^CH), 62.37 (C4), 39.71 (C5),
39.34 (2 � CH2) ppm. EIMS: m/z (%) ¼ 334 (1) [M � 1]þ, 296 (1)
[Mþ-CH2C^CH], 230 (37), 215 (8), 214 (36), 213 (100), 212 (54), 200
(4), 199 (5), 198 (15), 186 (6), 176 (7), 175 (16), 174 (53), 173 (17), 148
(9), 147 (13), 139 (4), 138 (3), 137 (14), 136 (15), 135 (10), 134 (7), 123
(15), 122 (65), 121 (57), 105 (90), 92 (10), 78 (10), 77 (67). HRMSm/z
calcd. for C20H17NO2S, 335.0980; found, 335.0992.

MAO Inhibition Assay of rasagiline analogs. The potential effects
of the test drugs on hMAO activity were investigated by measuring
their effects on the production of hydrogen peroxide from p-tyra-
mine (a common substrate for both hMAO-A and hMAO-B), using
the 10-acetyl-3,7-dihydroxyphenoxazine as reagent and micro-
somal MAO isoforms prepared from insect cells (BTI-TN-5B1-4)
infected with recombinant baculovirus containing cDNA inserts for
hMAO-A or hMAO-B [36,37]. The production of H2O2 catalyzed by
MAO isoforms can be detected using the previously mentioned
reagent, a nonfluorescent, highly sensitive, and stable probe that
reacts with H2O2 in the presence of horseradish peroxidase to
produce a fluorescent product, resorufin. In this study, hMAO
activity was evaluated using the above method following the
general procedure described previously by us. The tested drugs
(new compounds and reference inhibitors) inhibited the control
enzymatic MAO activities and the inhibition was concentration
dependent. The corresponding IC50 values and MAO-B selectivity
ratios [IC50 (MAO-A)]/[IC50 (MAO-B)] are shown in Table 5. The
assayed compounds themselves do not react directly with the 10-
acetyl-3,7-dihydroxyphenoxazine, which indicates that these drugs
do not interfere with the measurements. In our experiments and
under our experimental conditions, hMAO-A displayed a Michaelis
constant (SEM) of 457.17 (38.62 mM) and a maximum reaction
velocity (SD) of 185.67 (12.06 nmol/min/mg protein), whereas
hMAO-B showed a SEM of 220.33 (32.80 mM and a SD of 24.32,
1.97 nmol/min/mg protein (n ¼ 5)).

2.2.2. Experimental study Fasciola protein fingerprints
2.2.2.1. Experimental methods. Obtaining the ExcretoryeSecretory
Antigens (ESAs) of F. hepatica. ESAs of F. hepatica were obtained as
previously described by Mezo et al. [62]. Briefly, liver adult flukes
collected from bile ducts of naturally infected cows were washed
twice, first in sterile saline solution containing antibiotics (100 IU/
mL penicillin and 100 mg streptomycin) and glucose (2 mg/mL) at
38 �C, and then in RPMI 1640 medium, supplemented with 20 mM
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HEPES, 0.3 g/L L-glutamine, 2 g/L sodium bicarbonate and antibi-
otics at 38 �C under 5% CO2 in air. Flukes were then transferred to
a 75 cm2 tissue culture flask (Iwaki, Sciteck Div. Asahi Techno Glass,
Funabashi City, Chiba, Japan) and mantained in culture medium
(3 mL/fluke) at 38 �C under 5% CO2 in air. After 24 h of incubation,
the medium containing ESAs was removed, the protease activity
inhibited with a protease inhibitor cocktail (SigmaFAST� Protease
Cocktail Tablet, SigmaeAldrich, Madrid, Spain), and centrifuged at
10,000 g for 20 min at 4 �C. Then, the supernatant was passed
through a 0.45 mm pore filter disc, and submitted to a process of
washing/concentration with distilled water using Microsep
Microconcentrators (3000 molecular weight cut-off; Filtron Tech-
nology Corporation, Northborough, Massachusetts) and the
concentrate dried using a vacuum concentrator (SpeedVac, Thermo
Scientific, Barcelona, Spain) and stored at 4 �C until use.

Size-Exclusion Chromatography (SEC). Samples of ESAs of
F. hepaticawere dissolved in PBS at a final protein concentration of
3.5 mg/mL and fractionated by size-exclusion chromatography
using an FPLC system (ÄKTA Basic 10, Amersham Biosciences
Europe BmbH, Barcelona, Spain) equipped with a column of
Superdex 75 HR 10/30 column (Amersham Biosciences) as
described previously [62]. Briefly, 0.5 mL samples were eluted at
a flow rate of 0.3 mL/min and the protein concentration was
monitored at 280 nm. The molecular weight of the eluted proteins
was estimated using a mixture of proteins of known molecular
weight (Gel Filtration LMW Calibration Kit, Amersham Biosci-
ences). Finally, the protein concentration of each peak obtainedwas
measured by Pirogallol Red Method (Sigma) and stored in aliquots
at �80 �C until further analysis.

Polyacrylamide gel electrophoresis (SDS-PAGE). The proteins from
an aliquot of purified F. hepatica ESAs corresponding to peak IV (see
Results Section), obtained as described above by exclusion chro-
matography, were resolved by SDS-PAGE under reducing condi-
tions (2.5 mg of protein per lane) using a mini-vertical gel
electrophoresis unit (Mighty Small II, Hoefer Inc., Holliston, MA).
One-dimensional electrophoresis (1DE) was performed at 200 V
constant current at 20 �C for 1 h using the Laemmli (1970) buffer
system with discontinuous slab gels made up of a 5% poly-
acrylamide stacking gel and a 10e20% linear-gradient poly-
acrylamide resolving gel, of 1 mm of thickness. 1D-SDS-PAGE
molecular weight standards (BioRad) were used to calibrate gels.

Mass Spectrometry (MS). Protein bands in the polyacrylamide
gels were stainedwith Imperial Protein Stain (Pierce) overnight and
the dye excess removed with distilled water. Then the selected
bands (band #2 in this study; see Results Section) were excised
using a scalpel, washed twice with water, shrunk 15 minwith 100%
acetonitrile and dried in a Savant SpeedVac for 30 min. Then, the
samples were reduced with 10 mM dithioerytritol in 25 mM
ammonium bicarbonate for 30 min at 56 �C and subsequently
alkylated with 55 mM iodoacetamide in 25 mM ammonium
bicarbonate for 15 min in the dark. Finally, samples were digested
with 12.5 ng/ml sequencing grade trypsin (Roche Molecular
Biochemicals) in 25 mM ammonium bicarbonate (pH 8.5) over-
night at 37 �C. After digestion, the supernatant was collected and
1 ml was spotted onto a MALDI target plate and allowed to air-dry at
room temperature. Then, 0.4 ml of a 3mg/mL of a-cyano-4-hydroxy-
transcinnamic acid matrix (SigmaeAldrich) in 50% acetonitrile
were added to the dried peptide digest spots and allowed again to
air-dry at room temperature.

MALDI-TOF MS analyses were performed in a 4800 Proteomics
Analyzer MALDI-TOF/TOF mass spectrometer (Applied Biosystems,
Framingham, MA) at the Genomics and Proteomics Center, Uni-
versidad Complutense de Madrid, operated in positive reflector
mode, with an accelerating voltage of 20,000 V. All mass spectra
were calibrated internally using peptides from the auto digestion of
trypsin. The MALDI-TOF/TOF mass spectrometry analysis produces
peptide mass fingerprints. Those observed with a signal-to-noise
greater than 10 were collated and represented as a list of mono-
isotopic molecular weights. Proteins ambiguosly identified by
peptide mass fingerprints, were subjected to MS/MS sequencing
analyses using the 4800 Proteomics Analyzer (Applied Biosystems,
Framingham, MA). The suitable MS spectra precursors for MS/MS
sequencing analyses were selected, and fragmentation was carried
out using the acquisition method in the 1 kV ion reflector mode,
collision induced dissociation (CID) on, and precursor mass
window �5 Da. The plate model & default calibration were opti-
mized for theMSeMS spectra processing. For protein identification,
the non-redundant NCBI database or SwissProt was searched using
MASCOT 2.1 (matrixscience.com) through the Global Protein Server
v3.5 from Applied Biosystems. TheMascot Search Parameters were:
i) Taxonomy: metazoa (animals); ii) Database: SwissProt and
NCBInr; iii) Enzyme: Trypsin, allow up 1 missed trypsin cleavage
site; iv) Modifications: carbamidomethyl cystein as fixed modifi-
cation and oxidizedmethionine as variablemodification; v) Peptide
mass tolerance: 50 ppm (PMF) �100 ppm (MSeMS or Combined
search); vi) Peptide charge state: þ1 MSeMS; vii) Fragments
tolerance: 0.3 Da. The parameters for the combined search (Peptide
mass fingerprint and MSeMS spectra) were the same described
above. In all protein identification, the probability scores were
greater than the score fixed by MASCOT as significant with
a p-value <0.05. Protein identification by de novo sequencing from
fragmentation spectra of peptides was performed using de Novo
tool software (Applied Biosystems). Tentative sequences were
manually checked and validated, and the homology search for these
sequences was obtained using the BLAST tool at (http://www.ncbi.
nlm.nih.gov/BLAST).

3. Results

3.1. DTPs classification models and complex network assembly

LDA model. The present is the first mt-QSAR model for the
probability of binding organic compounds to very large diversity of
receptors based only on the molecular connectivity of the drug and
the protein receptor. One application for the present model is
predict the protein receptor or active place with a specific drug and
vice versa, predict drugs with theirs proteins. In both cases,
receptor susceptibility identification is imperative. Detailed infor-
mation on the compounds, predicted classification, and probability
of affinity on different receptors of the drugs used to seek themodel
appears in Table 1SM of the supplementary material. Using this
model we can predict the different relationships between the
drugeprotein connectivity same physicochemical property [32].
Common physicochemical properties have been demonstrated to
be useful on protein QSAR [63,64]. This work introduces for the first
time a single linear mt-QSAR equation model to classify drugs with
your respective protein receptor. The best model found was:

SðDTPÞpred ¼ �8:51$Dq2 ðTÞ þ 8:23$Dq4ðTÞ þ 2:01$Dq0ðXÞ
þ 0:19$Dq0ðHetÞ þ 21:74$Dq2ðH � HetÞ � 20:16$Dq5ðH � HetÞ
þ 3:78$Tq0ðcÞ þ 0:51$Dq0ðcÞ þ 0:34$Tq0ðiÞ þ 1:25$Tq3ðiÞ
� 0:45$Tq5ðiÞ þ 1:97$Tq1ðmÞ � 4:01$Tq2ðmÞ þ 3:74$Tq3ðmÞ
� 0:68$Tq5ðmÞ þ 0:19$Tq0ðsÞ � 1:05$Tq2ðsÞ � 1:99N

¼ 5784 c2 ¼ 2241:061 p < 0:001

(4)

In this model the N is the number of cases (DTPs) used to train the
model and Chi-square (c2) is the statistic used to test the

http://matrixscience.com
http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST


Table 1
Detailed list of the symbols and description for all parameters present in the model.

Molecule Symbol Atom group Descriptor name

Drug DqðTÞ All atoms Entropy of drug for all atoms at distance k � 2
Drug DqðTÞ All atoms Entropy of drug for all atoms at distance k � 4
Drug DqðXÞ Halogens Entropy of drug for halogens at distance k ¼ 0
Drug Dq ðHetÞ Heteroatoms Entropy of drug for heteroatoms at distance k ¼ 0
Drug DqðH � HetÞ Hydrogens bonded to heteroatoms Entropy of drug for hydrogens-heteroatoms and all the neighbors at distance k � 2
Drug DqðH � HetÞ Hydrogens bonded to heteroatoms Entropy of drug for hydrogens-heteroatoms and all the neighbors at distance k � 5
Molecule Symbol Protein region Descriptor name
Target protein TqðcÞ Core Entropy of all aminoacids in the core of the protein at distance k ¼ 0
Target protein TqðcÞ Core Entropy of all aminoacids in the core of the protein at distance k � 5
Target protein TqðiÞ Inner Entropy of all aminoacids placed in the inner region at distance k ¼ 0
Target protein TqðiÞ Inner Entropy of all aminoacids placed in the inner region and all the neighbors at distance k � 3
Target protein TqðiÞ Inner Entropy of all aminoacids placed in the inner region and all the neighbors at distance k � 5
Target protein TqðmÞ Middle Entropy of all aminoacids placed in the middle region and all the neighbors at distance k � 1
Target protein TqðmÞ Middle Entropy of all aminoacids placed in the middle region and all the neighbors at distance k � 2
Target protein TqðmÞ Middle Entropy of all aminoacids placed in the middle region and all the neighbors at distance k � 3
Target protein TqðmÞ Middle Entropy of all aminoacids placed in the middle region and all the neighbors at distance k � 5
Target protein TqðsÞ Surface Entropy of all aminoacids placed in the surface region at distance k ¼ 0
Target protein TqðsÞ Surface Entropy of all aminoacids placed in the surface region and all the neighbors at distance k � 2

Table 2
Comparison of LDA and different ANNs classification models.

Model profile Class Train Stat. Par. Validation

DTPs nDTPs % % DTPs nDTPs

LDA DTPs 2878 356 89.0 Sn 88.6 1359 175
17:17e1:1 nDTPs 81 597 88.1 Sp 88.2 40 298

Total 88.8 Ac 88.5
LNN DTPs 606 72 89.4 Sn 88.5 299 39
64:64e1:1 nDTPs 359 2875 88.9 Sp 87.4 193 1341

Total 89 Ac 87.6
PNN DTPs 26 652 3.8 Sn 3.6 12 326
65:65e3912e2e2:1 nDTPs 0 3234 100 Sp 100 0 1534

Total 83.3 Ac 82.6
MLP DTPs 602 76 88.8 Sn 88.8 300 38
39:39e20e21e1:1 nDTPs 354 2880 89.1 Sp 88.9 171 1363

Total 89 Ac 88.8
RBF DTPs 369 309 54.4 Sn 52.4 177 161
1:1e1e1:1 nDTPs 1502 1732 53.6 Sp 52.6 727 807

Total 53.7 Ac 52.6
MLP DTPs 623 55 91.9 Sn 92.6 313 25
MLP 32:32e15e1:1 nDTPs 239 2995 92.6 Sp 92.0 123 1411

Total 92.5 Ac 92.1

DTPs: Drug-target pairs for compounds with high affinity; nDTPs: Drug-target pair
for compounds with non-affinity.
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significance of DTPs/nDTP discrimination with p < 0.001 (level of
error). Significant entropy parameters were calculated for the
totality (T) of the atoms in the molecule or for specific collections of
atoms. These collections are atomswith a common characteristic as
for instance are: halogens (X), heteroatom (Het), hydrogen atom
bonded to one heteroatom (H-Het) or protein region (protein
region). In Table 1 we report a detailed list of the symbols and
description for all parameters present in the model.

This model, with 18 variables, classifies correctly 597 out of 678
DTPs (Sensitivity of 88.05%) and 2878 out of 3234 nDTP (DrugePro-
tein Pair for compounds with low connectivity) (Specificity of 89%).
Overall training Accuracy was 88.83%. The validation of the model
was carried out by means of external predicting series. The model
classifies correctly 298 out of 338 DTPs (88.17%) and 1359 out of 1534
nDTPs (88.59%) in validation series. Accuracy for validation series
(predictability) was 88.51% (1399 out of 1872 DTPs). These results
(Table 2) indicate that we developed an accurate model according to
previous reports on the use of LDA in QSAR [65,66].

ANN models. The present model shows good results with
a relatively small number of parameters (18 parameters) and
a linear equation. To show how important is this result, we
compared the presentmodel with othermodels used to address the
same problem. We processed our data with different Artificial
Neural Networks (ANNs) looking for a better model. Four types of
ANNs were used, namely, Probabilistic Neural Network (PNN),
Radial Basic Function (RBF), Three Layers Perceptron (MLP-3), and
Four Layer Perceptron (MLP-4). The Fig. 3 depicts the networks
maps for some of the ANN models tested. In general, at least one
ANN of every type tested was statically significant. However, one
must note that the profiles of each network indicate that these are
highly nonlinear and complicated models.

One network found was MLP and it showed training perfor-
mance higher than 92%. We compare different types of networks to
obtain a better model; Table 2 shows the classificationmatrix of the
different networks. Was taken as the main network (MLP
32:32e15e1:1) because it presents a wider range of variables,
presents 32 inputs in the first layer and 32 neurons in second layer,
two sets of cases (Training and Validation). Another tested
networks found were MLP 39:39e20e21e1:1, RBF 1:1e1e1:1
presents the same type of variables; Linear 64:64e1:1 present
many variables and PNN 65:65e3912e2e2:1 has a very low
percentage of DTPs leading to possible errors in the model although
your accuracy is very well, see Table 2. We depict the ROC-curve for
MLP 32:32e15e1:1 to show how reliable was the network model
developed, see Fig. 4. Notably, almost the model presented was
under curve higher than 0.5. The model presented an area greater
than 0.97. The vitality of this type of procedures developing ANN-
QSAR models has been demonstrated before; see, for instance, the
works of Fernandez and Caballero [67,68]. The same is true about
the other kinds of ANNs tested.

Complex networks assembly. Two possible applications for the
present model are the bio-molecular screening of drug affinity to
different proteins and the construction of multi-protein affinity
profile networks for drugs. In order to recall the capacity of the mt-
QSAR to predict new CNswe selected a database of recently assayed
drugswith their respectively Proteins. With these goals inmind, we
constructed first a new observed DrugeProtein (DP) DP-CN,
obtaining a CN with 855 vertices and 1016 DP (edges) an average
distance equal to 6.66. The same as before, we constructed a new
predicted DP-CN obtaining an average distance equal to 5.47 and
1298 DP (edges) see Fig. 6. In this, we illustrate visually both
observed DP-CN and predicted DP-CN. The numeric labels of the
nodes identify the different inputs (DRPs) used in the analysis.

In Table 3 we show the results of calculating the functions of
normal and exponential distribution for proteins and drugs
observed and predicted presented in dataset. It is seen in that the
protein has a difference (d) biggest on normal function to the



Fig. 3. Topology of some ANN models trained in this work.
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exponential function, so that we can conclude that our CN tends to
be an exponential distribution. To illustrate these results a node
degree distribution for both observed and predicted DPs were
performed, see Fig. 7. In this figure we can see that the drugs follow
Fig. 4. ROC curve
a normal distribution, while proteins follow an exponential
distribution.

In Table 4 we show the results of closeness centrality and the
number of node degree for proteins and drugs used in the database.
for classifier.
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Centrality closeness measures how many steps are required to
access every other given vertex from a vertex. An interesting result
that can be seen in the table is the protein with a closeness 1HOF
equal to 20 and a higher degree node equal to 51. This means that
many drugs in the CN have interaction and the node degree is high,
but these drugs are selective for this protein and that within the CN
have the lowest closeness. This is a very interesting result; the
Fig. 5. Synthesis of rasagiline der
protein 1HOF is a G protein [69]. G proteins are important signal
transducing molecules in cells. In fact, diseases such as diabetes,
blindness, allergies, depression, cardiovascular defects, and certain
forms of cancer, among other pathologies, are thought to arise due
to derangement of G protein signaling [70,71]. The drugs that
interact with 1HOF can be, in according to these results can bemore
selective for a particular disease and cause fewer adverse reactions
ivates obtained in this work.



Fig. 6. Observed vs. predicted drug-target complex networks.
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Fig. 7. Distribution functions for

Table 3
Study of network distribution functions.

Sub-network Network Distribution d p Fit Best fit

Proteins Observed Normal 0.46 0.01 No No
Exponential 0.30 0.01 No Yes

Predicted Normal 0.39 0.01 No No
Exponential 0.27 0.01 No Yes

Drugs Observed Normal 0.35 0.01 No Yes
Exponential 0.40 0.01 No No

Predicted Normal 0.34 0.01 No Yes
Exponential 0.40 0.01 No No

F. Prado-Prado et al. / European Journal of Medicinal Chemistry 46 (2011) 1074e10941086
against illness before descript. On the contrary this protein 1A8M
closeness to present a very low node degree with a low closeness,
which means that drugs that interact with 1A8M interacts with
other proteins and which mean the drugs that interact with 1A8M
are not selective, in this case there are a variety of drugs that can
interact with protein see Table 4.

In the case of drugs as an example is the Moexipril. This drug is
a ACE inhibitor that can be for the treatment of hypertension [72].
Moexipril presents a low closeness equal to 29 with a high node
degree 37, this means that the drug is selective for proteins to
which is connected to the CN. These results are consistent with the
literature [72e74]; Moexipril is a long-acting, non-sulfhydryl
angiotensine-converting enzyme inhibitor (ACE). On the other
complex networks sub-sets.
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hand Acetazolamide, that is a carbonic anhydrase inhibitor that is
used to treat glaucoma, epileptic seizures, benign intracranial
hypertension (pseudotumor cerebri), altitude sickness, cystinuria,
and dural ectasia [75,76], acetozolamide submit a node degree
equal ¼ 5 with a closeness ¼ 22, which indicates that this drug
interacts with five proteins these proteins only interact with
Acetazolamide; there are specific to this drug.

3.2. Illustrative experiments

3.2.1. Study of rasagiline analogs (experiment 1)
Synthesis, characterization, and assay. The preparation of (�)-cis-

and trans-amino alcohols 5a,5b and their N-propargyl derivatives
6a,6b and N,N-dipropargyl derivatives 7a,7b has been reported see
Fig. 5. In short, the amino alcohols 5a,5b were prepared from the
2,2,2-trifluoro-N-(6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophen-
4-yl)acetamide, 3 that were synthesized by intramolecular cycli-
zation of 3-amino-3-(thiophen-3-yl)propanoic acid, 2 following
previously described pathways [77]; thus the b-aminoacid 2 were
obtained by treatment of thiophen-3-carbaldehide with ammo-
nium acetate and malonic acid in refluxing ethanol [78]. The
treatment of the carboxylic acid 2 with a mixture of boiling tri-
fluoroacetic acid and anhydride gave in one step the oxotri-
fluoroacetamide derivative 3, whose melting point and
spectrophotometry infrared has concordat with the literature
[77,79]. The reaction of the oxoamide 3with NaBH4 inMeOH during
4 days at room temperature (molar ratio 3/NaBH4, 1/5) [80,81]
produced, after chromatographic purification, an 86% yield of
a mixture of cis/trans-5a/5b epimers, however attempts of sepa-
ration of the mixture were unsuccessful, leading only to partial
resolution of epimers. Alternatively, the compound 3 were con-
verted to the mixture of cis/trans-4a/4b epimers (83% yield) by
treatment with NaBH4 in methanol during 10 min at room
temperature (molar ratio 3/NaBH4, 1/2) and the subsequent reso-
lution of those by flash column chromatography was efficient
(4a:32%, 4b:31%), so the needed separation of the corresponding
isomers was performed at this stage of the synthetic route. The
trifluoroacetamides hydrolysis of these compounds with K2CO3 in
MeOH/H2O gave the corresponding amino alcohols 5a and 5bwith
yields of the 99% and 75% respectively. Propargylation of these
compounds with propargyl bromide and K2CO3 in acetonitrile [82]
afforded the corresponding mixtures cis and trans of mono- and
dipropargyl derivatives 6a/7a and 6b/7b. Subsequent
Table 4
Results of node degree and closeness centrality for top-20 proteins and drugs.

Rank PDB Function Cdeg Cclo

1 1HOF a-2A adrenergic receptor 51 20.3
2 1BNA DNA 49 33.49
3 1HA2 Serum albumin 47 35.29
4 1QYX Estradiol 17-b-dehydrogenase 1 31 27.89
5 1UWJ B-Raf proto-oncogene 22 26.64
6 1EMI 23S rRNA 20 23.67
7 1CZM Carbonic anhydrase 1 19 26.77
8 1MLD Malate dehydrogenase 18 31.47
9 1P49 Steryl-sulfatase 16 26.98
10 1BYW Kþ voltage-gated H member 2 15 27.62
11 1T40 Aldose reductase 15 25.2
12 1F8U Acetylcholinesterase 14 23.33
13 1N7D Low-density lipoprotein receptor 14 22.7
14 1SLM Stromelysin-1 13 21.1
15 1EXX g-1 Retinoic acid receptor 12 25.5
16 1E3G Androgen receptor 11 27.3
17 1VJB Estrogen-related receptor g 11 23.4
18 1Z8L Glutamate carboxypeptidase 2 11 24.7
19 1A8M Tumor necrosis factor 10 30.9
20 1OCZ Cytochrome c oxidase subunit 1 10 26
chromatography achieving clean separation of these mixtures: 6a
(24%) and 7a (36%), and 6b (13%) and 7b (753%). Finally the
compounds 7a and 7b were converted in goods yields, to the cor-
responding acetyl esters 8a and 8b, and benzoyl esters 9a and 9b,
treatment with acetic anhydride in Et3N [83] and with benzoyl
chloride in Et3N and acetonitrile [84] respectively.

Prediction of rasagiline analogs vs. MAO proteins. In this in silico
experiment we used the 3D structure MAO-A and B proteins with
PDB ID 2Z5X and 2VZ2 and the model MLP 32:32e15e1:1 to
predict the scores. We also generated the SMILE codes for these
compounds and predicted their propensity to form DTPs with
MAO-A and MAO-B using the model. In Table 5 we confront the
results obtained using this model and the outcomes of the phar-
macological assay. The compound Rasagiline a known selective
inhibitor for MAO-B was used as control. We consider the observed
class for active compounds OC ¼ 1 if compound IC50 < 50 mM this
cut-off is in the similar range than other used in previous works
[36,37]. As we can see in this table the only one active compound in
the pharmacological assay (OC ¼ 1) was compound 8b predicted
also as active with PC ¼ 1 and high score S(DTP)pred ¼ 0.64. Two
other compounds (5b and 6b) that are inactive (both as MAO A and
MAO B inhibitors) in pharmacological assays (OC ¼ 0) were also
predicted as inactive against MAOA (PC¼ 0) but predicted as active
for MAO B (PC ¼ 1). In this case the model fails, however the
prediction have a very low activity scores S(DTP)pred ¼ 0.15.

Prediction of rasagiline analogs vs. US FDA drug-target proteins. An
additional use of the model was to predict the activity of the new
compoundswith respect to all other targets previously approved by
US FDA [85]. At the same time we can use this model to predict the
selectivity of the new rasagiline derivative 8a as MAO B inhibitor
with respect to all FDA drugs targets and predict possible toxico-
logical effects depending on the other targets predicted for these
compounds. This type of experiment is of the major importance
due to the cost in terms of animal sacrifice, time, materials and
human resources of the experimental assay of all compounds
against all these targets, see recent reviews by Duardo-Sanchez
et al. [86e89]. In fact, over a decade, the US FDA has been engaged
in the applied research, development, and evaluation of computa-
tional toxicology methods used to support the safety evaluation of
a diverse set of regulated products. The basis for evaluating
computational toxicology methods is multi-factorial, including the
potential for increased efficiency, reduction in the numbers of
animals used, lower costs, and the need to explore emerging
Drugs Activity Cdeg Cclo

Moexipril ACE inhibitor 37 29.4
Sertraline SSRI class 18 34.5
Levamisole Anthelminthic 16 27.1
Adenine Biochemistry metabolism 15 27.6
Digoxin Atrial fibrilation 15 32.3
Atorvastatin Inhibitor of HMG-coa reductase 11 31.6
Pyrazinamide FAS inhibitor 10 24.9
ADP AMP/IMP catalysis 8 27.9
Mibefradil Ca2þ channel blocker 8 27.3
Alitretinoin Antineoplasic 7 21.9
L-Aspartic acid Stimulates NMDA receptors 7 23.9
Megestrol Antineoplasic 7 25.4
Vinblastine Antineoplasic 7 21.8
Acitretin Psoriasis inhibitor 6 29.5
Etorphine Analgesic 6 21.9
Halofantrine Antimalaria 6 31.2
L-Arginine Vasodilatation 6 20.3
L-Ornithine Catalyst 6 25.3
Acetazolamide Carbonic anhydrase inhibitor 5 22.8
Adapalene Anti-acne 5 21.9



Table 5
Prediction of rasagiline analogues with the new model.

MAO-B Compound MAO-A

Druga IC50
b OC PC S(DTP)pred Structure IC50 OC PC S(DTP)pred

5a >100 0 0 0.70
S OH

NH2

>100 0 0 0.97

5b >100 0 1 0.15

S OH

NH2

>100 0 0 0.88

6a >100 0 0 0.70

S OH

HN

>100 0 0 0.97

6b >100 0 1 0.15

S OH

HN

>100 0 0 0.88

7a >100 0 0 0.94

S OH

N

>100 0 0 0.99

7b >100 0 0 0.94

S OH

N

>100 0 0 0.99

8a >100 0 0 0.92

S OAc

N

>100 0 0 0.98

8b 46.25 1 1 0.64

S OAc

N

>100 0 0 0.96
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Table 5 (continued ).

MAO-B Compound MAO-A

Druga IC50
b OC PC S(DTP)pred Structure IC50 OC PC S(DTP)pred

9a >100 0 0 0.94

S OBz

N

>100 0 0 0.99

9b >100 0 0 0.92

S OBz

N

>100 0 0 0.98

Rasagiline 0.412 � 0.04 1 1 0.14
HN

0.0443 � 0.009 1 0 0.87

a Rasagiline was used as positive control.
b >100¼ compound inactive at 100 mM (highest concentration tested), OC¼ observed class and PC¼ Predicted class, OC¼ 1 if compound IC50 < 50 mMand PC¼ 1 if the DTP

probability predicted for pair drug-MAO-i enzyme p(MAO-i) > 0.5 (2Z5X and 2VZ2 are PDB ID of MAO-A and B used to predict p-values).
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technologies that support the goals of the US FDA’s Critical Path
Initiative (e.g. to make decision support information available early
in the drug review process). The US FDA’s efforts have been facili-
tated by agency-approved data-sharing agreements between
government and commercial software developers [90].

For this we used the model to calculate DTPs scores for our
compounds (rasagiline derivatives) vs. FDA approved targets. We
depict in Table 4SM, all proteins in FDA dataset predicted vs. the 10
rasagiline derivatives. We found that overall the 10 derivatives
were predicted negative against almost all proteins in the FDA
Fig. 8. Drug-target sub-network obtained after coupling the real network for FDA drugs an
database. In Table 6 we depict some results, which show that our
rasagiline derivative 8b is predicted as selective MAO B inhibitor,
because it have only interaction with MAO-B, and have not pre-
dicted interaction with the proteins used in the database.

Using these results (depicted in Table 4SM), we constructed
a DP-CN for rasagiline derivatives and the FDA dataset (see Fig. 8).
As a result we obtained a CN with 669 nodes (FDA drugs, proteins,
or rasagiline derivatives) and 839 DP (edges, DTPs). As In this
network we can see that protein 2BK3 (MAO-B) is predicted to
interact with compounds 5b, 6b and 8b, this protein is a known
d proteins with new rasagiline derivates (based on QSAR prediction with MLP model).



Fig. 9. ESAs of F. hepatica: (A) Size-exclusion chromatogram obtained by FPLC separation of ESAs from F. hepatica. The arrow indicates peak number IV of the chromatogram
according to Mezo et al. [62]; (B) SDS-PAGE analysis of proteins contained in peak number IV (Lane b). The proteins present in band 2 were analyzed by MS and MS/MS spec-
trometry. The relative molecular masses of standard markers (lane a) from top to bottom were: 170, 130, 95, 72, 55, 43, 34, 26, 17 and 10 kDa.

F. Prado-Prado et al. / European Journal of Medicinal Chemistry 46 (2011) 1074e10941090
rasagiline target [94,95]. These results are satisfactory because they
agree with the experimental results presented in this paper where
the compound 8b show MAO-B activity. The use of such complex
networks can help us find and predict new drugseprotein inter-
actions, and therefore find new drugs with improved biological
activity and fewer side effects, especially in parasite disease.

3.2.2. Study of peptidome for Fasciola hemoglobin protein
(experiment 2)

SEC, 1DE, PMF and MS/MS study of peptides found on Fasciola
hemoglobin (fHb). In this section we present an example of the
practical use of the QSAR model to predict enzyme scores for
peptides found in the PMFandMS/MS study of a newquery protein.
We illustrate an overall view of SEC and 1D electrophoresis study of
F. hepaticaproteome carried out in thiswork, see Fig. 9. In thisfigure,
we label the bands obtained after 1DE including band number 2.
Table 6
Some illustrative scores obtained in experiments 1 and 2.

Prediction of rasagiline analogues (experiment 1) Targetsa

Drugs codes PDB PC Score

8b 2VZ2 1 0.64 MAO-B
8b 1SD2 1 0.74 MTA phosphorylase
5a 1E18 0 1.00
5b 1E18 0 0.93
9a 1A8M 0 1.00
9b 1A8M 0 1.00
5a 1AGS 0 1.00
9b 1BWC 0 1.00
5a 1BXS 0 1.00
7b 1D3H 0 1.00

Prediction of peptides (experiment 2) fHbb

Drugs name Peptide PC Score
Amphetamine p1 1 0.82 Yes
Aprotinin p6 1 0.81 Yes
Cisplatin p16 1 0.78 Yes
Debrisoquin p14 1 0.57
Hexachlorophene p5 1 0.83
Pentamidine p22 1 0.58
Phentermine p29 1 0.89
Propofol p20 1 0.58
Rasagiline p5 1 0.55

a We give only the function of positive targets.
b fHb¼ yes means that peptide may be present in hemoglobin of F. hepatica (fHb).
The selected band (band number 2 in this study) was excised
and the peptides were analyzed by MALDI-TOF MS and MS/MS.
Once we obtained the data from MALDI-TOF MS analysis of the
query band, the most relevant MS signals were introduced into the
MASCOT search engine [91,92]. We obtained 20 hits (template
proteins) for this protein with MASCOT scores (Ms) higher than 81
(p< 0.05), the threshold value for significantmatch, see Table 7. The
maximum scores obtained were 286 and 283, which corresponded
to proteins gij196049684 (16 550 Da) and gij159461074 (16 681 Da)
of F. hepatica, both are fHb proteins annotated as: Fasciola Chain
A hemoglobin (Hb2) and Fasciola hemoglobin F2, respectively.

We provide in Table 8, detailed information on the results of the
MS and MASCOT search engine for band number 2. This table
includes the 9 most interesting peptides matching with the fHb
sequence. We found an excellent match between the mass of the
peptide detected and the mass of the template peptide recorded in
MASCOT database with known sequence for all these peptides.
After that, we decided to investigate the structureefunction rela-
tionships for all sequences of the 9 fHb peptides found on the PMF
Table 7
Top-20 template proteins in F. hepatica found by MASCOT search.

Protein Accession Score Function

1 gij196049684 16,550 286 Chain A, hemoglobin (Hb2)
Fasciola hepatica

2 gij159461074 16,681 283 Hemoglobin F2 Fasciola hepatica
3 gij47116941 14,671 79 Fatty acid-binding protein type 3
4 gij209964147 20742 69 D,D-heptose 1,7-bisphosphate

phosphatase 1
5 gij73539911 69,948 68 Thiamine biosynthesis protein thic
6 gij53713210 34,431 64 Putative transcription regulator
7 gij162149431 56,150 64 Hypothetical protein GDI3669
8 gij156844632 52,531 62 Hypothetical protein Kpol-1058p57
9 gij51245092 32,033 61 Cysteine synthase A
10 gij188590974 69,946 60 Thiamin biosynthesis protein
11 gij164428423 274,657 60 Hypothetical protein NCU00551
12 gij58268372 88,612 60 Myosin heavy chain
13 gij114800067 52,676 60 Hypothetical protein HNE_2630
14 gij37522203 19,619 59 Hypothetical protein gll2634
15 gij46203356 41,788 59 COG0673 dehydrogenases
16 gij3913328 59,940 59 Cytochrome P450 52A10
17 gij146278964 46,771 59 Peptidase M16 domain-containing

protein
18 gij6679022 38,881 59 Neutrophil cytosolic factor 4
19 gij189184533 29,079 58 Hypothetical protein OTT_1626
20 gij148284486 29,137 58 Competence protein F



Table 8
MASCOT study of hemoglobin peptidome in Fasciola hepatica.

Pept Sequences fHba Observed Mr(expt) Mr(calc) Delta

p1 kaasnpsvleeri Yes 1172.59 1171.58 1171.58 �0.002
p2 kaasnpsvleerivqgakd Yes 1768.80 1767.79 1767.95 �0.1577
p3 karpvtkdqftgaapifikf Yes 1960.03 1959.02 1959.09 �0.0745
p4 kavnnyhkv 944.58 943.58 943.49 0.0883
p5 kcpentthvvre 1212.56 1211.56 1211.57 �0.0154
p6 kdnvgqsegiry Yes 1074.56 1073.55 1073.51 0.0414
p7 kdqftgaapifikf Yes 1307.68 1306.68 1306.69 �0.0168
p8 kdsdskisqvqkc 1234.56 1233.56 1233.62 �0.0631
p9 kffqgllkkq Yes 980.60 979.60 979.59 0.0119
p10 kfllhvmqaiaakm Yes 1504.70 1503.70 1503.79 �0.0967
p11 kiaahaadlakg 980.60 979.60 979.55 0.0523
p12 kiahfcsmcgpkf 1307.65 1306.64 1306.56 0.0778
p13 kleqsenmdavlqkl 1504.70 1503.70 1503.72 �0.0264
p14 klitsskpeitftlegnkm 1877.92 1876.91 1877.01 �0.0996
p15 kllndhgyfvfvvtnqsgvarg 2236.24 2235.23 2235.14 0.0853
p16 klqgltkdnvgqsegiry Yes 1714.81 1713.80 1713.90 �0.099
p17 kmiatvtvgdvka Yes 1133.61 1132.60 1132.62 �0.0113
p18 kmiatvtvgdvkavnnyhkv 1960.03 1959.02 1959.02 �0.0051
p19 ktlfaahpeyisyfskl 1773.79 1772.78 1772.88 �0.0987
p20 kttvisftfgeefkeetadgrt 2264.07 2263.06 2263.06 �0.0009
p21 kwclahhke 951.55 950.54 50.45 0.0886
p22 rcrkpepgmlldlcdrw 1859.90 1858.90 1858.89 0.0125
p23 rdawrgaafldrd 1277.61 1276.61 1276.63 �0.0246
p24 kwclahhke 1114.61 1113.61 1113.58 0.0278
p25 rdlqaaeaagirg 1114.61 1113.605 1113.57 0.0278
p26 rgaafldrdgvlnidhgyvhrr 2225.17 2224.16 2224.11 0.0456
p27 rghlftggdlsefvgallar 1960.03 1959.02 1959.02 �0.0017
p28 rklitsskpeitftlegnkm 2006.10 2005.10 2005.11 �0.0135
p29 rkpepgmlldlcdrwpvdr 2196.99 2195.99 2196.08 �0.0965
p30 rredvewiqgaitavkl 1714.81 1713.80 1713.90 �0.103

a fHb¼ yes means that peptide may be present in hemoglobin of F. hepatica (fHb).

Table 9
MM/MD study of hemoglobin peptidome in Fasciola hepatica.

Input MM/MD

Pept. sequences fHba ACCR EPOT DEPOT

p1 kaasnpsvleeri Yes 0.62 �224.29 26.91
p2 kaasnpsvleerivqgakd Yes 0.60 �237.99 35.00
p3 karpvtkdqftgaapifikf Yes 0.47 288.65 61.95
p4 kavnnyhkv 0.47 24.38 34.27
p5 kcpentthvvre 0.67 18.15 24.15
p6 kdnvgqsegiry Yes 0.65 �26.93 21.92
p7 kdqftgaapifikf Yes 0.63 55.90 27.43
p8 kdsdskisqvqkc 0.61 �152.86 36.88
p9 kffqgllkkq Yes 0.63 56.88 34.29
p10 kfllhvmqaiaakm Yes 0.62 �118.13 25.75
p11 kiaahaadlakg 0.65 �34.73 15.87
p12 kiahfcsmcgpkf 0.61 �139.91 23.68
p13 kleqsenmdavlqkl 0.62 �130.95 25.73
p14 klitsskpeitftlegnkm 0.64 �5.93 33.40
p15 kllndhgyfvfvvtnqsgvarg 0.64 �69.69 30.24
p16 klqgltkdnvgqsegiry Yes 0.60 �203.86 26.48
p17 kmiatvtvgdvka Yes 0.63 49.97 19.80
p18 kmiatvtvgdvkavnnyhkv 0.64 86.49 24.13
p19 ktlfaahpeyisyfskl 0.66 �66.69 25.78
p20 kttvisftfgeefkeetadgrt 0.64 19.60 35.22
p21 kwclahhke 0.62 �145.51 38.69
p22 rcrkpepgmlldlcdrw 0.65 �55.35 19.04
p23 rdawrgaafldrd 0.63 �38.58 35.68
p24 kwclahhke 0.64 �133.69 37.46
p25 rdlqaaeaagirg 0.62 �209.57 33.44
p26 rgaafldrdgvlnidhgyvhrr 0.63 76.47 18.94
p27 rghlftggdlsefvgallar 0.60 �208.79 28.09
p28 rklitsskpeitftlegnkm 0.64 �168.13 34.40
p29 rkpepgmlldlcdrwpvdr 0.59 �362.27 25.37
p30 rredvewiqgaitavkl 0.60 �253.95 22.92

a fHb¼ yes means that peptide may be present in hemoglobin of F. hepatica (fHb).
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of the new protein and other peptides reported by MASCOT as well
(30 peptides in total).

MM/MC study of peptides found on new protein PMF. Our main
interest on the study of the peptides in the PMF of the new
unknown proteins is to find which of them make a positive
Fig. 10. Drug-target sub-network for FDA drugs vs. 30 pep
contribution to the ligand interaction. This may allow us to select
peptides for drug design and/or obtain information for drug-target
discovery. We therefore have to calculate the qk for all peptides and
substitute these values in the QSAR model to predict ligand
tides of different proteins including 9 peptides of fHb.
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interaction score for one ligand (levulinic acid). For this, we first
need the 3D structures of the peptides in order to calculate the qk
values. For this study we used the same 30 peptides found by PMF
of the new protein (9 peptides from fHb and the rest from other
proteins). Unfortunately, we only have the sequences of the
peptides but not the 3D structures. We therefore first obtained the
optimal 3D folded structures by use of an MM geometry optimi-
zation for the 30 peptides (see Fig. 2). We complemented the MM
by MC search in order to explore alternative geometrical structures
for the peptides. We summarized the results of MC simulation of
these peptides in Table 9. In this table we reported the initial energy
(E0) based on the starting structure constructed with standard
parameters for a-helixes (bond distances, angles, and dihedral
angles) set as default on the sequence editor of Hyperchem [59,60].
We also reported the (E1) obtained after optimization of the
structure with AMBER force field obtained by MC method using
1000 steps for 30 peptides. Lastly, we report the ACCR values for the
MDTof the 30 peptides in Table 9. In theMD studymost researchers
tend to try for an average ACCR value around 0.5; smaller values
may be appropriate when longer runs are acceptable and more
extensive sampling is necessary. In the present study all the ACCR
values were between 0.47 and 0.66 because MC simulation has
been realized by 1000 steps; in consequence, we can accept theMD
results as valid [59,60].

Assemble of drug-target binding site network. We use our best
model to predict whether the FDA drugs used in the database have
interaction or affinity with the 30 peptides, but we put special
interest on the 9 peptides from fHb. The reason for this interest in
fHb peptides is due to the work of Dewilde et al. [93]; which
described for the first time fHb, a potential immunogen, in the
search for an effective vaccine. Here mt-QSAR models in combi-
nation with complex networks may be helpful to predict possible
drugs that interact with fHb effectively with fewer adverse reac-
tions. In this sense, we assembled drug-target binding site network
with the predicted probabilities of binding of organic compounds
to 30 peptides of different proteins found with MASCOT (including
9 peptides of fHb). In so doing, we used the MARCH-INSIDE 2.0
software to calculate the qk values for the 30 peptides. We
substituted these values in the model and predicted the probability
with the 30 peptides interact with FDA drugs. In bottom of Table 6
(experiment 2), we show some results used to assemble the drug-
target binding site network. We constructed a new observed
DrugeProtein DP-CN, obtaining a CN with 70 vertices (peptides or
drugs) and 321 DP (edges, peptideedrug pairs) see Fig. 10.

4. Conclusions

Combining entropy parameters, calculated with MARCH-INSIDE
approach to codify information of drug and target structure, and
ANNs is possible to seek one mt-QSAR classifier to predict the
probability of drugs to bind more than 500 different drug-target
proteins approved by FDA of USA with Accuracy >90%. This ANN
classifier is useful to carry out Data Mining of PDB in order to
discovery new drug targets for any drug. We can also predict the
interactions with specific drugs of peptides or protein 3D structures
generated by MM/MD modeling.

Acknowledgments

The authors appreciate the technical assistance and advice of
Lola Gutiérrez, from the Genomics and Proteomics Center, Uni-
versidad Complutense de Madrid. H. González-Díaz thanks spon-
sorships for a research position at the University of Santiago de
Compostela from the Isidro Parga Pondal Program, Xunta de Galicia.
F. Prado-Prado thanks sponsorships for research position at the
University of Santiago de Compostela from Angeles Alvariño, Xunta
de Galicia. N. Alonso thanks sponsorships for research position at
the University of Santiago de Compostela from FPU program, Xunta
de Galicia. The present study was partially supported by grants
FAU2006-00021-C03-00 and AGL2010-22290-C03-01 (Ministerio
de Ciencia e Innovación, Spain), 07CSA008203PR (Xunta de Galicia,
Spain) and by the European Fund for Regional Development
(FEDER). The authors also would like to dedicate the present work
to Prof. F. Orallo (in memoriam) by his kind attention, support, and
friendship.
Appendix. Supplementary material

Supplementary data related to this article can be found online at
doi:10.1016/j.ejmech.2011.01.023.
References

[1] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kanehisa, Prediction of
drug-target interaction networks from the integration of chemical and
genomic spaces, Bioinformatics 24 (2008) i232e240.

[2] A. Giuliani, Collective motions and specific effectors: a statistical mechanics
perspective on biological regulation, BMC Genomics 11 (Suppl. 1) (2010) S2.

[3] P.K. Dhar, A. Giuliani, Laws of biology: why so few? Syst. Biol. Synth. 4 (2010)
7e13.

[4] S. Bornholdt, H.G. Schuster, Handbook of Graphs and Complex Networks:
From the Genome to the Internet. WILEY-VCH GmbH & CO. KGa., Wheinheim,
2003.

[5] E. Estrada, Virtual identification of essential proteins within the protein
interaction network of yeast, Proteomics 6 (2006) 35e40.

[6] E. Estrada, Protein bipartivity and essentiality in the yeast proteineprotein
interaction network, J. Proteome Res. 5 (2006) 2177e2184.

[7] A. Réka, A.-L. Barabasi, Statistical mechanics of complex networks, Rev. Mod.
Phys. 74 (2002) 47e97.

[8] A.L. Barabasi, Z.N. Oltvai, Network biology: understanding the cell’s functional
organization, Nat. Rev. Genet. 5 (2004) 101e113.

[9] A.L. Barabasi, Network medicineefrom obesity to the “diseasome”, N. Engl. J.
Med. 357 (2007) 404e407.

[10] H. González-Díaz, S. Vilar, L. Santana, E. Uriarte, Medicinal chemistry and
bioinformatics e current trends in drugs discovery with networks topological
indices, Curr. Top. Med. Chem. 7 (2007) 1025e1039.

[11] A. Giuliani, L. Di Paola, R. Setola, Proteins as networks: a mesoscopic approach
using haemoglobin molecule as case study, Curr. Proteomics 6 (2009)
235e245.

[12] A. Krishnan, J.P. Zbilut, M. Tomita, A. Giuliani, Proteins as networks: usefulness
of graph theory in protein science, Curr. Protein Pept. Sci. 9 (2008) 28e38.

[13] A. Krishnan, A. Giuliani, J.P. Zbilut, M. Tomita, Implications from a network-
based topological analysis of ubiquitin unfolding simulations, PLoS ONE 3
(2008) e2149.

[14] M.C. Palumbo, A. Colosimo, A. Giuliani, L. Farina, Essentiality is an emergent
property of metabolic network wiring, FEBS Lett. 581 (2007) 2485e2489.

[15] A. Krishnan, A. Giuliani, J.P. Zbilut, M. Tomita, Network scaling invariants help
to elucidate basic topological principles of proteins, J. Proteome Res. 6 (2007)
3924e3934.

[16] A. Krishnan, A. Giuliani, M. Tomita, Indeterminacy of reverse engineering of
gene regulatory networks: the curse of gene elasticity, PLoS ONE 2 (2007)
e562.

[17] K. Tun, P.K. Dhar, M.C. Palumbo, A. Giuliani, Metabolic pathways variability
and sequence/networks comparisons, BMC Bioinf. 7 (2006) 24.

[18] L.G. Pérez-Montoto, F. Prado-Prado, F.M. Ubeira, H. González-Díaz, Study of
parasitic infections, cancer, and other diseases with mass-spectrometry and
quantitative proteome-disease relationships, Curr. Proteomics 6 (2009)
246e261.

[19] H. González-Díaz, Y. González-Díaz, L. Santana, F.M. Ubeira, E. Uriarte, Pro-
teomics, networks and connectivity indices, Proteomics 8 (2008) 750e778.

[20] J. Caballero, M. Fernandez, Artificial neural networks from MATLAB in
medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN):
application to the prediction of the antagonistic activity against human
platelet thrombin receptor (PAR-1), Curr. Top. Med. Chem. 8 (2008)
1580e1605.

[21] L. Fernández, J. Caballero, J.I. Abreu, M. Fernández, Aminoacid sequence
autocorrelation vectors and Bayesian-regularized genetic neural networks for
modeling protein conformational stability: gene v protein mutants, Proteins
67 (2007) 834e852.

[22] M. Fernández, J. Caballero, L. Fernández, J.I. Abreu, M. Garriga, Protein radial
distribution function (P-RDF) and Bayesian-regularized genetic neural
networks for modeling protein conformational stability: chymotrypsin
inhibitor 2 mutants, J. Mol. Graph. Model. 26 (2007) 748e759.

http://dx.doi.org/10.1016/j.ejmech.2011.01.023


F. Prado-Prado et al. / European Journal of Medicinal Chemistry 46 (2011) 1074e1094 1093
[23] M. Fernández, F. Caballero, L. Fernández, J.I. Abreu, G. Acosta, Classification of
conformational stability of protein mutants from 3D pseudo-folding graph
representation of protein sequences using support vector machines, Proteins
70 (2008) 167e175.

[24] J.P. Zbilut, A. Giuliani, A. Colosimo, J.C. Mitchell, M. Colafranceschi, N. Marwan,
C.L. Webber Jr., V.N. Uversky, Charge and hydrophobicity patterning along the
sequence predicts the folding mechanism and aggregation of proteins:
a computational approach, J. Proteome Res. 3 (2004) 1243e1253.

[25] J.P. Zbilut, A. Colosimo, F. Conti, M. Colafranceschi, C. Manetti, M. Valerio,
C.L. Webber Jr., A. Giuliani, Protein aggregation/folding: the role of deter-
ministic singularities of sequence hydrophobicity as determined by nonlinear
signal analysis of acylphosphatase and abeta(1e40), Biophys. J. 85 (2003)
3544e3557.

[26] M.A. Yildirim, K.I. Goh, M.E. Cusick, A.L. Barabasi, M. Vidal, Drug-target
network, Nat. Biotechnol. 25 (2007) 1119e1126.

[27] D. Viña, E. Uriarte, F. Orallo, H. Gonzalez-Diaz, Alignment-free prediction of
a drug-target complex network based on parameters of drug connectivity and
protein sequence of receptors, Mol. Pharmacol. 6 (2009) 825e835.

[28] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors. Wiley-VCH,
2002.

[29] H. Gonzalez-Diaz, F. Prado-Prado, F.M. Ubeira, Predicting antimicrobial drugs
and targets with the MARCH-INSIDE approach, Curr. Top. Med. Chem. 8
(2008) 1676e1690.

[30] G. Aguero-Chapin, J. Varona-Santos, G.A. de la Riva, A. Antunes, T. Gonzalez-
Villa, E. Uriarte, H. Gonzalez-Diaz, Alignment-free prediction of poly-
galacturonases with pseudofolding topological indices: experimental isolation
from coffea arabica and prediction of a new sequence, J. Proteome Res. 8 (2009)
2122e2128.

[31] R. Concu, M.A. Dea-Ayuela, L.G. Perez-Montoto, F. Bolas-Fernandez, F.J. Prado-
Prado, G. Podda, E. Uriarte, F.M. Ubeira, H. Gonzalez-Diaz, Prediction of
enzyme classes from 3D structure: a general model and examples of experi-
mental-theoretic scoring of peptide mass fingerprints of Leishmania proteins,
J. Proteome Res. 8 (2009) 4372e4382.

[32] H. Gonzalez-Diaz, L. Saiz-Urra, R. Molina, L. Santana, E. Uriarte, A model for the
recognition of protein kinases based on the entropy of 3D van der Waals
interactions, J. Proteome Res. 6 (2007) 904e908.

[33] C.R. Munteanu, J.M. Vazquez, J. Dorado, A.P. Sierra, A. Sanchez-Gonzalez,
F.J. Prado-Prado, H. Gonzalez-Diaz, Complex network spectral moments for
ATCUN motif DNA cleavage: first predictive study on proteins of human
pathogen parasites, J. Proteome Res. 8 (2009) 5219e5228.

[34] Y. Rodriguez-Soca, C.R. Munteanu, F.J. Prado-Prado, J. Dorado, A. Pazos Sierra,
H. Gonzalez-Diaz, Trypano-PPI: a web server for prediction of unique targets
in trypanosome proteome by using electrostatic parameters of protein-
protein interactions, J. Proteome Res. (2009). doi:10.1021/pr900827b.

[35] R. Concu, M.A. Dea-Ayuela, L.G. Perez-Montoto, F.J. Prado-Prado, E. Uriarte,
F. Bolas-Fernandez, G. Podda, A. Pazos, C.R. Munteanu, F.M. Ubeira,
H. Gonzalez-Diaz, 3D entropy and moments prediction of enzyme classes and
experimental-theoretic study of peptide fingerprints in Leishmania parasites,
Biochim. Biophys. Acta 1794 (2009) 1784e1794.

[36] L. Santana, H. Gonzalez-Diaz, E. Quezada, E. Uriarte, M. Yanez, D. Vina,
F. Orallo, Quantitative structure-activity relationship and complex network
approach to monoamine oxidase A and B inhibitors, J. Med. Chem. 51 (2008)
6740e6751.

[37] L. Santana, E. Uriarte, H. González-Díaz, G. Zagotto, R. Soto-Otero, E. Mendez-
Alvarez, A QSAR model for in silico screening of MAO-A inhibitors. Prediction,
synthesis, and biological assay of novel coumarins, J. Med. Chem. 49 (2006)
1149e1156.

[38] H. González-Díaz, Y. Pérez-Castillo, G. Podda, E. Uriarte, Computational
chemistry comparison of stable/nonstable protein mutants classification
models based on 3D and topological indices, J. Comput. Chem. 28 (2007)
1990e1995.

[39] H. Gonzalez-Diaz, L. Saiz-Urra, R. Molina, Y. Gonzalez-Diaz, A. Sanchez-Gon-
zalez, Computational chemistry approach to protein kinase recognition using
3D stochastic van der Waals spectral moments, J. Comput. Chem. 28 (2007)
1042e1048.

[40] G. Aguero-Chapin, A. Antunes, F.M. Ubeira, K.C. Chou, H. Gonzalez-Diaz,
Comparative study of topological indices of macro/supramolecular RNA
complex networks, J. Chem. Inf. Model. 48 (2008) 2265e2277.

[41] M. Cruz-Monteagudo, C.R. Munteanu, F. Borges, M.N.D.S. Cordeiro,
E. Uriarte, K.-C. Chou, H. González-Díaz, Stochastic molecular descriptors
for polymers. 4. Study of complex mixtures with topological indices of
mass spectra spiral and star networks: the blood proteome case, Polymer
49 (2008) 5575e5587.

[42] M.A. Dea-Ayuela, Y. Perez-Castillo, A. Meneses-Marcel, F.M. Ubeira, F. Bolas-
Fernandez, K.C. Chou, H. Gonzalez-Diaz, HP-Lattice QSAR for dynein proteins:
experimental proteomics (2D-electrophoresis, mass spectrometry) and
theoretic study of a Leishmania infantum sequence, Bioorg. Med. Chem. 16
(2008) 7770e7776.

[43] G. Aguero-Chapin, H. Gonzalez-Diaz, G. de la Riva, E. Rodriguez, A. Sanchez-
Rodriguez, G. Podda, R.I. Vazquez-Padron, MMM-QSAR recognition of ribo-
nucleases without alignment: comparison with an HMM model and isolation
from Schizosaccharomyces pombe, prediction, and experimental assay of a new
sequence, J. Chem. Inf. Model. 48 (2008) 434e448.

[44] G. Ferino, H. Gonzalez-Diaz, G. Delogu, G. Podda, E. Uriarte, Using spectral
moments of spiral networks based on PSA/mass spectra outcomes to derive
quantitative proteomeedisease relationships (QPDRs) and predicting prostate
cancer, Biochem. Biophys. Res. Commun. 372 (2008) 320e325.

[45] H. Gonzalez-Diaz, M.A. Dea-Ayuela, L.G. Perez-Montoto, F.J. Prado-Prado,
G. Aguero-Chapin, F. Bolas-Fernandez, R.I. Vazquez-Padron, F.M. Ubeira, QSAR
for RNases and theoretic-experimental study of molecular diversity on
peptide mass fingerprints of a new Leishmania infantum protein, Mol. Divers.
(2009).

[46] H. Gonzalez-Diaz, R. Molina, E. Uriarte, Recognition of stable protein mutants
with 3D stochastic average electrostatic potentials, FEBS Lett. 579 (2005)
4297e4301.

[47] R. Concu, G. Podda, E. Uriarte, H. Gonzalez-Diaz, Computational chemistry
study of 3D-structureefunction relationships for enzymes based on Markov
models for protein electrostatic, HINT, and van der Waals potentials,
J. Comput. Chem. 30 (2009) 1510e1520.

[48] StatSoft.Inc., STATISTICA (Data Analysis Software System), Version 6.0. Statsoft
Inc., 2002.www.statsoft.com.

[49] G.M. Casanola-Martin, Y. Marrero-Ponce, M.T. Khan, S.B. Khan, F. Torrens,
F. Perez-Jimenez, A. Rescigno, C. Abad, Bond-based 2D quadratic fingerprints
in QSAR studies: virtual and in vitro tyrosinase inhibitory activity elucidation,
Chem. Biol. Drug Des. 76 (2010) 538e545.

[50] J.A. Castillo-Garit, M.C. Vega, M. Rolon, Y. Marrero-Ponce, V.V. Kouznetsov,
D.F. Torres, A. Gomez-Barrio, A.A. Bello, A. Montero, F. Torrens, F. Perez-
Gimenez, Computational discovery of novel trypanosomicidal drug-like
chemicals by using bond-based non-stochastic and stochastic quadratic maps
and linear discriminant analysis, Eur. J. Pharm. Sci. 39 (2010) 30e36.

[51] R. Gozalbes, F. Barbosa, E. Nicolai, D. Horvath, N. Froloff, Development and
validation of a pharmacophore-based QSAR model for the prediction of CNS
activity, ChemMedChem 4 (2009) 204e209.

[52] Y. Marrero-Ponce, A. Meneses-Marcel, O.M. Rivera-Borroto, R. Garcia-Dome-
nech, J.V. De Julian-Ortiz, A. Montero, J.A. Escario, A.G. Barrio, D.M. Pereira,
J.J. Nogal, R. Grau, F. Torrens, C. Vogel, V.J. Aran, Bond-based linear indices in
QSAR: computational discovery of novel anti-trichomonal compounds,
J. Comput. Aided Mol. Des 22 (2008) 523e540.

[53] S.J. Patankar, P.C. Jurs, Classification of inhibitors of protein tyrosine phos-
phatase 1B using molecular structure based descriptors, J. Chem. Inf. Comput.
Sci. 43 (2003) 885e899.

[54] M. Murcia-Soler, F. Perez-Gimenez, F.J. Garcia-March, M.T. Salabert-Salvador,
W. Diaz-Villanueva, P. Medina-Casamayor, Discrimination and selection of
new potential antibacterial compounds using simple topological descriptors,
J. Mol. Graph. Model. 21 (2003) 375e390.

[55] R.A. Cercos-del-Pozo, F. Perez-Gimenez, M.T. Salabert-Salvador, F.J. Garcia-
March, Discrimination and molecular design of new theoretical hypolipaemic
agents using the molecular connectivity functions, J. Chem. Inf. Comput. Sci.
40 (2000) 178e184.

[56] B.H. Junker, D. Koschutzki, F. Schreiber, Exploration of biological network
centralities with CentiBiN, BMC Bioinf. 7 (2006) 219.

[57] D. Koschützki, pp. CentiBiN Version 1.4.2, centralities in biological networks�

2004e2006 Dirk Koschützki research group network analysis. IPK Gate-
rsleben, Germany, 2006.

[58] Hypercube Inc., Hyperchem Software. Release 7.5 for Windows, Molecular
Modeling System. Hypercube Inc., Gainesville, FL, USA, 2002.

[59] M. Froimowitz, HyperChem: a software package for computational chemistry
and molecular modeling, BioTechniques 14 (1993) 1010e1013.

[60] I. Hypercube, Hyperchem Inc, Gainesville, FL, USA, 2002.
[61] Y. Liu, D.L. Beveridge, Exploratory studies of ab initio protein structure

prediction: multiple copy simulated annealing, AMBER energy functions, and
a generalized born/solvent accessibility solvation model, Proteins 46 (2002)
128e146.

[62] M. Mezo, M. Gonzalez-Warleta, F.M. Ubeira, Optimized serodiagnosis of sheep
fascioliasis by Fast-D protein liquid chromatography fractionation of Fasciola
hepatica excretoryesecretory antigens, J. Parasitol. 89 (2003) 843e849.

[63] O. Ivanciuc, N. Oezguen, V.S. Mathura, C.H. Schein, Y. Xu, W. Braun, Using
property based sequence motifs and 3D modeling to determine structure and
functional regions of proteins, Curr. Med. Chem. 11 (2004) 583e593.

[64] C.H. Schein, O. Ivanciuc, W. Braun, Common physicalechemical properties
correlate with similar structure of the IgE epitopes of peanut allergens,
J. Agric. Food Chem. 53 (2005) 8752e8759.

[65] Y.M. Alvarez-Ginarte, Y. Marrero-Ponce, J.A. Ruiz-Garcia, L.A. Montero-Cabrera,
J.M. Vega, P. Noheda Marin, R. Crespo-Otero, F.T. Zaragoza, R. Garcia-Domenech,
Applying pattern recognition methods plus quantum and physico-chemical
molecular descriptors to analyze the anabolic activity of structurally diverse
steroids, J. Comput. Chem. (2007).

[66] A.H. Morales, J.E. Rodríguez-Borges, X. García-Mera, F. Fernández, M.N. Dias-
Sueiro-Cordeiro, Probing the anticancer activity of nucleoside analogs: a QSAR
model approach using an internally consistent training set, J. Med. Chem. 50
(2007) 1537e1545.

[67] M. Fernandez, J. Caballero, A. Tundidor-Camba, Linear and nonlinear QSAR
study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as
matrix metalloproteinase inhibitors, Bioorg. Med. Chem. 14 (2006)
4137e4150.

[68] J. Caballero, M. Fernandez, Linear and nonlinear modeling of antifungal
activity of some heterocyclic ring derivatives using multiple linear regression
and Bayesian-regularized neural networks, J. Mol. Model. 12 (2006) 168e181.

[69] D.A. Chung, E.R. Zuiderweg, C.B. Fowler, O.S. Soyer, H.I. Mosberg, R.R. Neubig,
NMR structure of the second intracellular loop of the alpha 2A adrenergic

http://www.statsoft.com


F. Prado-Prado et al. / European Journal of Medicinal Chemistry 46 (2011) 1074e10941094
receptor: evidence for a novel cytoplasmic helix, Biochemistry 41 (2002)
3596e3604.

[70] M. Katragadda, M.W. Maciejewski, P.L. Yeagle, Structural studies of the
putative helix 8 in the human beta(2) adrenergic receptor: an NMR study,
Biochim. Biophys. Acta 1663 (2004) 74e81.

[71] K. Khafizov, G. Lattanzi, P. Carloni, G protein inactive and active forms
investigated by simulation methods, Proteins 75 (2009) 919e930.

[72] H. Kalasz, G. Petroianu, K. Tekes, I. Klebovich, K. Ludanyi, Z. Gulyas, Metabo-
lism of moexipril to moexiprilat: determination of in vitro metabolism using
HPLC-ES-MS, Med. Chem. 3 (2007) 101e106.

[73] G.S. Chrysant, P.K. Nguyen, Moexipril and left ventricular hypertrophy, Vasc.
Health Risk Manage. 3 (2007) 23e30.

[74] F. Sayegh, J. Topouchian, M. Hlawaty, M. Olzewska, R. Asmar, Regression of left
ventricular hypertrophy with moexipril, an angiotensin-converting enzyme
inhibitor, in hypertensive patients, Am. J. Therapeut. 12 (2005) 3e8.

[75] A. Innocenti, R.A. Hall, C. Schlicker, A. Scozzafava, C. Steegborn,
F.A. Muhlschlegel, C.T. Supuran, Carbonic anhydrase inhibitors. Inhibition and
homology modeling studies of the fungal beta-carbonic anhydrase from
Candida albicans with sulfonamides, Bioorg. Med. Chem. 17 (2009)
4503e4509.

[76] C. Temperini, A. Cecchi, A. Scozzafava, C.T. Supuran, Carbonic anhydrase
inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide,
and furosemide X-ray crystal structures in adducts with isozyme II, when
several water molecules make the difference, Bioorg. Med. Chem. 17 (2009)
1214e1221.

[77] P. Dallemagne, S. Rault, M. Cugnon de Sévricourt, K.M. Hassan, M. Robba,
Tetrahedron Lett. 23 (1986) 2607e2610.

[78] S. Rault, P. Dallemagne, M. Robba, Bull. Soc. Chim. Fr. 6 (1987) 1079e1083.
[79] M.A. Quermonne, P. Dallemagne, J. Louchahi-Raould, J.C. Pilo, S. Rault,

M. Robba, Eur. J. Med. Chem. 27 (1992) 961e965.
[80] P. Dallemagne, S. Rault, J.C. Pilo, M.P. Foloppe, M. Robba, Tetrahedron Lett. 32

(1991) 6327e6328.
[81] P. Dallemagne, S. Rault, M. Gordaliza, M. Robba, Heterocycles 26 (1987)

3233e3237.
[82] J. Guillon, G. Hebert, P. Dallemagne, J.M. Leger, C. Vidaillac, C. The, V. Lisowski,

S. Rault, J. Demotes-Mainard, C. Jarry, Synthesis and initial results for MAO-B
inhibition by new N-propargyl-3-pyrrol-1-ylindanamine derivatives, analogs
of rasagiline, J. Enzyme Inhib. Med. Chem. 18 (2003) 147e153.

[83] P. Abeijón, J.M. Blanco, F. Fernández, M.D. García, O. Caamaño, Synthesis of
two precursors of heterocarbocyclic nucleoside analogues, Eur. J. Med. Chem.
(2003) 759e764.

[84] M. Sukeda, S. Ichikawa, A. Matsuda, S. Shuto, The first radical method for the
introduction of an ethynyl group using a silicon tether and its application to
the synthesis of 20-deoxy-20-C-ethynylnucleosides, J. Org. Chem. 68 (2003)
3465e3475.

[85] N.T. Nguyen, D.M. Cook, L.A. Bero, The decision-making process of US food and
drug administration advisory committees on switches from prescription to
over-the-counter status: a comparative case study, Clin. Ther. 28 (2006)
1231e1243.

[86] A. Duardo-Sanchez, G. Patlewicz, A. Lopez-Diaz, Current topics on software
use in medicinal chemistry: intellectual property, taxes, and regulatory issues,
Curr. Top. Med. Chem. 8 (2008) 1666e1675.

[87] H. González-Díaz, F. Prado-Prado, L.G. Pérez-Montoto, A. Duardo-Sánchez,
A. López-Díaz, QSAR models for proteins of parasitic organisms, plants and
human guests: theory, applications, legal protection, taxes, and regulatory
issues, Curr. Proteomics 6 (2009) 214e227.

[88] H. González-Díaz, A. Duardo-Sanchez, F.M. Ubeira, F. Prado-Prado, L.G. Pérez-
Montoto, R. Concu, G. Podda, B. Shen, Review of MARCH-INSIDE & complex
networks prediction of drugs: aDMET, anti-parasite activity, metabolizing
enzymes and cardiotoxicity proteome Biomarkers, Curr. Drug Metab. 11
(2010) 379e406.

[89] H. Gonzalez-Diaz, F. Romaris, A. Duardo-Sanchez, L.G. Perez-Montoto,
F. Prado-Prado, G. Patlewicz, F.M. Ubeira, Predicting drugs and proteins in
parasite infections with topological indices of complex networks: theoretical
backgrounds, applications, and legal issues, Curr. Pharm. Des. 16 (2010)
2737e2764.

[90] C. Yang, L.G. Valerio Jr., K.B. Arvidson, Computational toxicology approaches at
the US food and drug administration, Altern. Lab. Anim. 37 (2009) 523e531.

[91] Z. Lei, A.M. Elmer, B.S. Watson, R.A. Dixon, P.J. Mendes, L.W. Sumner, A two-
dimensional electrophoresis proteomic reference map and systematic iden-
tification of 1367 proteins from a cell suspension culture of the model legume
Medicago truncatula, Mol. Cell Proteomics 4 (2005) 1812e1825.

[92] M.C. Giddings, A.A. Shah, R. Gesteland, B. Moore, Genome-based peptide
fingerprint scanning, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 20e25.

[93] S. Dewilde, A.I. Ioanitescu, L. Kiger, K. Gilany, M.C. Marden, S. Van Doorslaer,
J. Vercruysse, A. Pesce, M. Nardini, M. Bolognesi, L. Moens, The hemoglobins of
the trematodes Fasciola hepatica and Paramphistomum epiclitum: a molecular
biological, physico-chemical, kinetic, and vaccination study, Protein Sci. 17
(2008) 1653e1662.

[94] F. Hubalek, C. Binda, A. Khalil, M. Li, A. Mattevi, N. Castagnoli, D.E. Edmondson,
Demonstration of isoleucine 199 as a structural determinant for the selective
inhibition of human monoamine oxidase B by specific reversible inhibitors,
J. Biol. Chem. 280 (2005) 15761e15766.

[95] C. Binda, F. Hubalek, M. Li, N. Castagnoli, D.E. Edmondson, A. Mattevi, Struc-
ture of the human mitochondrial monoamine oxidase B: new chemical
implications for neuroprotectant drug design, Neurology 67 (2006) S5eS7.


	Using entropy of drug and protein graphs to predict FDA drug-target network: Theoretic-experimental study of MAO inhibitors ...
	Introduction
	Materials and methods
	Computational methods
	MARCH-INSIDE technique
	Theoretical study of hemoglobin peptidome of parasite F. hepatica

	Experimental methods
	Study of rasagiline analogs
	Experimental study Fasciola protein fingerprints
	Experimental methods



	Results
	DTPs classification models and complex network assembly
	Illustrative experiments
	Study of rasagiline analogs (experiment 1)
	Study of peptidome for Fasciola hemoglobin protein (experiment 2)


	Conclusions
	Acknowledgments
	Supplementary material
	References


