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Abstract—An asymmetric synthesis of (R)-(+)-6-(1,4-dimethoxy-3-methyl-2-naphthyl)-6-(4-hydroxyphenyl)hexanoic acid 2 as a key
intermediate for a neurodegenerative disease agent 1 has been developed. A key reaction was an asymmetric hydrogenation of hin-
dered acrylic acid 13 catalyzed by the Rh-JOSIPHOS system in the presence of a base to afford a chiral acid up to 93% ee.
� 2004 Elsevier Ltd. All rights reserved.
In a search for new therapeutic drugs for neurodegener-
ative diseases, a naphthoquinone derivative 1 was found
to be a pharmaceutical agent useful for neurodegenetion
inhibition in the prevention and treatment of nerve dis-
ease (Fig. 1).1 Hence, the preparation of 1 on a large
scale was required to support toxicological evaluation.
For the synthesis of 1, the key intermediate was optically
active acid (R)-2. This was prepared by the enantioselec-
tive hydrolysis of the ester of rac-2 using lipase on a
large scale.2 We continued to research a more efficient
method, and found an asymmetric synthesis of (R)-2.

We planned the synthesis of (R)-2 using asymmetric
hydrogenation as shown in Scheme 1. While asymmetric
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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Figure 1.
hydrogenation has been extensively developed to pro-
duce chiral pharmaceuticals,3 there were a few reports
on the access of 1,1-bisaryl ethane derivatives.4 In par-
ticular, the reduction of 1-naphthyl-1-aryl-ethene deriva-
tive as a hindered substrate has not been reported. In
this letter, we report an asymmetric preparation of
(R)-2 using a new type of asymmetric reduction of hin-
dered 1-naphthyl-1-aryl-ethene derivatives and the
determination of its absolute configuration, which was
not mentioned in the previous report.2

Initially, the model substrates were synthesized from
naphthalene derivative 82 in three steps, as shown in
Scheme 2. Aldehyde 8 was converted by Horner–Wads-
worth–Emmons reaction to E-a, b-unsaturated ester 9.
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Scheme 2. Reagents and conditions; (a) (EtO)2P(O)CH2CO2Et, t-

BuONa, THF, 0–50�C, 1h, 94%, (b) Pd(OAc)2 (10mol%), NaHCO3

(4equiv), n-Bu4 NBr (1equiv), DMF, 100�C, 50h, 56% (6) or 57% (12),

(c) 6N NaOH, EtOH, 60�C, 4h, 92% (7) or 95% (13), (d) DIBAL,

THF, �40�C to rt, 98%.
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Then, the Heck reaction of 9 with iodide 10 regioselec-
tively afforded Z-6 in 56% yield.5 Ester 6 was converted
Table 1. Asymmetric catalytic hydrogenation of compound 7

MeO

MeO

Me

OMe

CO2H

7

H2 (10 M P
Catalyst
(5 mol%)

Base (1.0 e
MeOH
70 oC, 24 h

Entrya Rh-catalystb Base

1 [Rh(nbd)(SS-bdpp)]ClO4
f Et3N

g

2 [Rh(nbd)(SS-bdpp)]ClO4
f Et3N

3 [Rh(nbd)(SS-bdpp)]ClO4
f KOH

4 [Rh(nbd)(SS-bdpp)]ClO4
f (S)-MB

5 [Rh(nbd)(SS-bdpp)]ClO4
f (R)-MB

6 [Rh(nbd)(SS-bdpp)]ClO4
f Brucine

7 Ac,d (SS)-BDPPd Et3N

8 Bc,d (R)-BINAPd Et3N

9 Ac,d (SS)-CHIRAPHOSd Et3N

10 Ac,d (SS)-BCPMd Et3N

11 Ac,d (SS)-BPPMd Et3N

12 Ac,d (RS)-BPPFAd Et3N

13 Ac,d (RS)-BPPFOHd Et3N

14 Ac,d CARBOPHOSd Et3N

15 Cc,d (RR)-Me-DuPHOSd Et3N

16 Cc,d (RR)-Et-DuPHOSd Et3N

17 Ac,d (SR)-JOSIPHOSd Et3N

a Standard conditions: 0.37mmol of substance/catalysts 100/5.
b Abbreviations were used: nbd: norbordiene; cod: 1,5-cyclooctadiene.
c Rh catalyst; A: [Rh(nbd)2]ClO4, B: [Rh(cod)2]ClO4, C: [Rh(nbd)2]OTf.
d These catalysts were prepared in situ by mixing [Rh(dienes)2](anions) (0.01
e Optical purity and conversion of 14 was confirmed by HPLC analyses.
f [Rh(nbd)(SS-bdpp)]ClO4 catalyst was synthesized with [Rh(nbd)2]ClO4 and
g Et3N (0.15equiv) was used (entry 1).
h Optically active a-methylbenzylamine (MBA) was used as the base.
to allylic alcohol 4 by DIBAL reduction in 98%. Fur-
thermore, ester 6 was hydrolyzed to acrylic acid 7 in
92% yields.

For the initial experiments, allylic alcohol 4 was chosen
as a model substrate, since Lepoittevin and co-workers
have reported that the hydrogenation of 3,3-bisaryl ally-
lic alcohols in the presence of [Rh(nbd)(SS-bdpp)]ClO4

gave the enantioselective products in high selectivity
(80–94% ee).4 Therefore, the palladium, ruthenium and
rhodium catalysts were employed to hydrogenate of
allylic alcohol 4 in methanol at 70 �C under the pressure
of hydrogen (10MPa). However, no hydrogenations of 4
under these conditions were observed to provide
byproduct 3 and 5 in 5% and 34% yields, respectively.6

Stable allylic cations have been obtained by these reac-
tions.7 Furthermore, we thought that the olefins were
too rigid and perhaps sterically hindered because atrop-
isomerism7 was observed in these substrates.

Next, we applied acrylic acid 7, which were atropiso-
mers, as model substrates to an asymmetric hydrogena-
tion catalyzed by 5 mol% [Rh(nbd)(SS-bdpp)]ClO4.
Subsequently, we were pleased to find the reduction
product 14, which was not atropisomer, with good enan-
tioselectivities in the case of the presence of various
bases8 as shown in Table 1. We considered that, the rho-
MeO

MeO

Me

OMe

H
CO2H

14

a)

q)

14/7e % eee

90/10 85 (R)

93/7 86 (R)

96/4 86 (R)

Ah 90/10 86 (R)

Ah 89/11 86 (R)

73/27 87 (R)

97/3 87 (R)

18/41 6 (R)

15/68 27 (R)

100/0 48 (R)

85/15 45 (R)

100/0 3 (S)

94/6 2 (R)

12/88 60 (R)

31/69 1 (S)

53/47 16 (R)

95/5 94 (R)

9mmol) and chiral phosphines (0.019mmol).

(SS)-BDPP in MeOH for 30min and concentrated in vacuo.
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dium catalyst could strongly interact with the carboxyl
group of substrate 7, that the coordination was
enhanced by these bases (entries 1–3), without undesira-
ble elimination of the coordination group such as steri-
cally hindered alcohol 4, respectively. In particular,
triethylamine played three important roles in this reduc-
tion. First, the solubility of 7 to methanol was extremely
increased. Second, the chelating effect was enhanced
against sterically hindered substrate. Third, the addition
of triethylamine (1.0equiv) slightly increased selectivity
and conversion. Although, in addition, we would expect
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Figure 3. Chiral phosphines.

Figure 2. ORTEP view of 16.
asymmetric kinetic resolution in the hydrogenation of 79

with chiral bases, no inductions were observed (Table 1,
entries 4–6).

Initially, a synthesized [Rh(nbd)(SS-bdpp)]ClO4 catalyst
was used (Table 1, entries 1–6). After researching, this
process was more simplified to the use of an �in-situ� cat-
alyst system comprised of a 1:1 molar mixture of
Rh(dienes)2ClO4 or Rh(nbd)2 OTf and chiral phos-
phines (Table 1, entries 7–17). Though, the problems
of catalyst oxygen stability were avoided by substituting
two components of long-term stability.

Therefore, we explored a variety of chiral phosphines10

more easily (Fig. 3; Table 1, entries 8–17) . The hydro-
genation of 7 with Rh-CHIRAPHOS, Rh-DuPHOS or
Rh-BINAP11 catalysts showed lower enantioselectivities.
In these events, unsaturated acid 7 could be asymmetri-
cally hydrogenated with the Rh-JOSIPHOS12 catalyst
to afford (R)-1413 of 94% ee in a high yield (entry 17).

Next, we tried an asymmetric hydrogenation of 13
(Scheme 3). Required 13 was prepared in the same man-
ner as shown in Scheme 2. Then, acrylic acid 13 was
hydrogenated with a catalyst, formed in situ from
(SR)-JOSIPHOS and [Rh(nbd)2]ClO4, to afford 1514 of
93% ee15 in a high yield as an oil. Therefore, chiral acid
15 was resolved to give (R)-isomer over 99% ee using its
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Scheme 3. Reagents and conditions; (a) H2 (10MPa), [Rh(nbd)2]ClO4

(5mol%), (SR)-JOSIPHOS (5mol%), Et3N, MeOH, 70 �C, 63h,

conversion 94%, 93% ee, (b) brucine, acetone, rt, 86% (two steps),

99% de, (c) 1N HCl, EtOAc, 95%, (d) (1) ClCO2Et, Et3N, (2)

MeONHMeÆHCl, DBU, MeCN, 88%, (e) Red-Al�, THF, 90%, (f)

Ph3P(Cl)CH2CH2CO2H, LiN(TMS)2, THF/DMSO (4/1), 56%, (g) H2,

5% Pd–C, EtOH, 98%, (h) 6N HCl, acetone, 75%.
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brucinium salt 16, which was easily purified by single
crystallization in acetone, in 86% yield (two steps).
Therefore, the absolute stereochemistry was determined
by X-ray crystallography of 16 as shown in Figure 2.16

Salt 16 was acidified and extracted with EtOAc to give
15 in 99% ee. Condensation of 15 with N,O-dime-
thylhydroxylamine gave Weinreb amide, which was con-
verted to aldehyde 17 by Red-Al� in 79% (two steps).
The Wittig reaction17 of aldehyde 17 followed by hydro-
genation gave MOM ether of (R)-2 in 43% yield (two
steps). Finally, the MOM group was deprotected with
6N HCl to give (R)-(+)-22 in 75% yield with >99% opti-
cal purity by a single recrystallization.

In conclusion, we have achieved the asymmetric synthe-
sis of (R )-2 by asymmetric reductions of 13 with the
Rh-JOSIPHOS catalyst system in both high yield and
enantioselectivity. Therefore, we could determine the
absolute chemistry of (R)-2 using brucinium salt 16.
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