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The oxidative addition of aryl halides and sulfonates to pal-
ladium(0) is a fundamental organometallic transformatidfany

has been typically attributed to coordination of the anion to Pd(0)
prior to oxidative additiorf:>1226Thus, we measured the order of

studies have been conducted on the oxidative addition of aryl halidesreaction in different reagents yP NMR spectroscopy at 55C
to palladium(0%1* but fewer studies have been conducted on the in THF solvent in the presence and absence of added bromide. The

oxidative addition of aryl sulfonatés'1:12The oxidative addition

concentration of PhOTs was varied from 0.062 to 0.45 M;

of aryl tosylates is particularly rare because of the low reactivity [N(octyl),Br] was varied from 0 to 0.34 M, and [Bolyl)s] was
of this substrate. Yet, palladium-catalyzed couplings of aryl tosylates varied from 0.088 to 0.26 M. Compourdvas formed in situ from
would be more attractive than the more common reactions of Pd[Pp-tolyl)s], and PPR-Bu. Excellent fits to a first-order decay
triflates because they are more crystalline than aryl triflates and of 1 were obtained? A first-order dependence dps on [PhOTS]

are generated from less expensive reagents.
Cross couplings of aryl tosylates with nickét® iron,'6-17 cop-

in both the presence and absence of added bromide was observed.
Plots of 1Kk.ps Vs [P(-tolyl)s] from reactions in the presence and

peri® or palladium catalysts have required high temperatures, ac- absence of added N(octyyr were linear, indicating that the

tivated aryl tosylates, or high catalyst loadidg$% 22 Although

reaction is inverse first order in &¢olyl)s.

complexes of hindered alkylphosphines have recently reacted with  Plots of kops VS [NR4X] from reactions conducted with added

aryl chlorides?® most of them do not add aryl tosylates that lack

bromide and Pgwere linear with a positive slope and a clear,

activating groups. We report a Pd(0) complex that oxidatively adds nonzeroy-intercept. The value df.s for reaction in the absence

aryl tosylates at room temperature to form isolable arylpalladium- of bromide [(4.1+ 0.6) x 1074

(I) tosylate complexes. This mild activation created palladium-

s 1] matched they-intercept of
the plot ofkops vs [N(octyl)Br] [(3.9 & 0.6) x 1074 s71)] and the

catalyze_d couplings of aryl tosylates with aryl Grignard reagent§ plot of Kops Vs [NBwPFR] [(3.34:0.7) x 1074)]. The slope of the
and amines at room temperature or at elevated temperatures withy|ot of kyys vs [NBwPR] was roughly 4 times greater than that of

low loadings.
3, R=Ph, X=0Ts
(Pt-Bu)2 /H' 4 R= Cy, X=0Ts
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the plot ofkops Vs [N(octyl),Br]. Thus, reactions in the presence of
[NBusPFs] were fasterthan those conducted with added bromide.
Low solubility of 1 limited quantitative data, but reactions in DMF
and NMP were faster than reactions in less polar solvents. With 5
equiv of Pp-tol); at 55°C, reactions in DMF and NMP appeared
complete in 0.5 h instead of 3.5 h inglfs or THF. Oxidative
addition of PhOTs td® was complete within 5 min at 25C in
THF, CsHe, or DMF.

Potential mechanisms for the reaction in eq 1 are shown in

Pd(0) complexes generated from sterically hindered versions of Scheme 1. Path A begins with direct oxidative addition of aryl

the commercially available Josiphos ligaffé8underwent addition

of aryl tosylate under mild conditions. Reaction between R&[P(
tolyl)s], and PPR-Bu or CyPFt-Bu at room temperature formed
Pd(PPF-BuU)[P(o-tolyl)3] (1) or Pd(CyPF-Bu)[P(o-tolyl)s] (2, eq

1). Subsequent treatment bivith PhOTs produced the phenylpal-
ladium tosylate comple8 in 85% yield (eq 1) after 16 h at room
temperature by the first oxidative addition of an aryl tosylate to

tosylate to the 16-electron compléxfollowed by dissociation of
P(o-tolyl)s. In the presence of bromide, the halogen would replace
the coordinated tosylate after addition. This pathway predicts first-
order behavior in aryl tosylate and zero-order behavior in both
bromide and Rttolyl);. This pathway is inconsistent with the
observed inverse-order behavior inoR¢lyl); and the positive-
order behavior in bromide.

generate an isolable addition product. Reaction in the presence of Path B is initiated by dissociation of &(olyl)s from 1, irrever-

N(octyl),Br formed the phenylpalladium bromide comptein 95%
yield after only 9 h. Reactions of phenyl tosylate with CyPBu
complex2 were even faster. Phenylpalladium tosyldtéormed
from 2 in 92% vyield in less than 5 min. The same reaction in the
presence of bromide formed the bromide commer 94% vyield
in less than 5 min. Two isomeric versions®f6 could form, but

only one product that contained the palladium-bound phenyl cis to

sible oxidative addition of aryl tosylate and subsequent more rapid
exchange of bromide for tosylate to forrif bromide is present.
This pathway predicts first-order behavior in aryl tosylate, inverse-
order behavior in Rftolyl);, and zero-order behavior in added
bromide. The kinetic orders in PhOTs and added-te(); are
consistent with reaction by path B in the absence of added bromide.
Taken alone, the acceleration of rate by added bromide suggests

the smaller phosphine was observed by NMR and X-ray diffraction that path C, which involves initial associative or dissociative

(see Supporting Information). Reactions of the analogued of
containing Josiphos ligands that lackeat-butyl group formed the
addition product in lower yields and with slower rates.

exchange of bromide for B{tolyl); and subsequent irreversible
oxidative addition of aryl tosylate to the anionic Pd(0), occurs
concurrently with path B in the presence of added bromide. This

Added anions have been shown to influence the mechanisms ofpathway predicts a reaction that is first order in aryl tosylate, inverse
oxidative addition of aryl halides and sulfonates to Pd(0). This effect order in P¢-tolyl)s, and first order in bromide. However, faster
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(f'gu)z ko (t'gu)z k3
\ _OTs -P(o-tol); \Pd/OTs NR4Br 50r6+
o | Ar /Ar NR,OTs
N gzP(o-tol)3 “ gz 3, §=gh
e y =
°“P pathc P y
Path A Ky g
ArOTs +NR4Br (t ,'3’\”)2 e ko
- P(o-tol)3 Pd—=ar ATOTS 506+
— Joo e,
Path B P(o-tol Ra
- P(o—toll()a Ky -l(\lR4B)r3 FeCp
1
(+-Bu),
R k
2 3
ArOTs P 0TS NRBI 5 org
pi A NR,OTs
.. Rz 3,R=Ph
FeCp 4, R=Cy
Table 1. Pd-Catalyzed Couplings of ArOTs and ArMgBré
0.1%-1% Pd(DBA),
ArOTs + ArMgx 01%-1% PPF-tBU
toluene, 25-80 °C
ArOTs Ar'MgX Mol% Pd/L  Conditions  Yield”
1% 25°C,5h  86%
MeO—@—OTs p-tolylMgBr 0.1% 8°G ih 8%
1% 25°C,12h  72%
MeO—@—OTs o-tolylMgBr 0.1% 8 °C 1h 650t
OMe
1% 80 °C, 3h 65%
@OTS p-tolylMgBr 01%  80°C.3h  48%
OMe
1% 80°C,15h  65%
QOTS o-tolylMgBr 0.1% 80°C. 24h 529
1% 25°C, 1h 65%
CFGOOTS p-tolylMgBr 01%  80°C.1h  68%
—QOTS p-tolylMgBr 1% 80°C,10h  40%
OTs
1% 25°C, 1h 77%
p-tolyiMgBr 01%  80°C.th  79%
_ < > 1% 25 °C, 5h 70%
OTs 4-F-CeHMgBr %o, 80°C. th  67%
< > 1% 25°C, 3d 65%
OTs 4-OMe-CgH,MgBr 1% 80 °C. 4h 62%

a1 mmol ArOTs and 2.0 equiv ArMgBRP Isolated yields are an average
of two runs.

rates in the presence of more weakly coordinating anions imply

The palladium-catalyzed amination of aryl tosylates at 1CO
was reported previoush;?2but the mild additions of aryl tosylates
now allow for the amination of aryl tosylates under milder condi-
tions. Octylamine and phenyl tosylate underwent coupling at room
temperature in 76% yield after gné h intoluene in the presence
of 1 mol % PdC}(PPF#-Bu) and 2.5 equiv of Na@Bu (eq 2). In
addition, reaction in the presence of 1 mol % of RFBu and
commercially available PdgIPhCN) formed the arylamine in 72%
yield after 6 h. The increased rate of addition by the Pd(0) complex
of CyPF{-Bu further increased the rate of amination. Octylamine
coupled with phenyl tosylate in 74% vyield afte2 h at 25°C.

NaO-t-Bu, toluene

QOTS + HoNoctyl @—NHoctyl )
L = PPF-t-Bu 25 °C, 6h

72%
L =CyPF-t-Bu, 25 °C, 2 h

1% (PhCN)oPdCl, / L

74%

The mild activation of aryl tosylates reported here has several
important consequences. First, the mild addition allows for pal-
ladium-catalyzed Kumada and amination reactions with unactivated
aryl tosylates at room temperature. Second, the rapid oxidative addi-
tion step shows that the scope of couplings of aryl tosylates can be
limited by transmetalation and reductive eliminatibmstead of
oxidative addition. As a result, aryl tosylates may ultimately replace
the more expensive and less convenient aryl triflates in many
coupling applications.
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