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Abstract
3,3′-Biphenyl-2,2′-binaphthols (BINOLs) are precursors of phosphoric acids that are widely used as ligands and catalysts 
in organic reactions. In this report, two routes for the synthesis of ( ±)-3,3′-diphenyl BINOLs via ( ±)-3,3′ bis-halogenated 
BINOLs intermediates using ( ±)-BINOL as starting material have been established. Both routes are four-step reactions, 
characterized by the use of different catalysts in the third step, the total yield of the first route is 45%, while overall yield of 
the second route is 51% yield.

Keywords  BINOLs · ( ±)-3,3′-Diphenyl BINOL · ( ±)-3,3′ Bis-halogenated BINOLs · Organic reactions

Due to the chiral auxiliaries and ligands with C2-symme-
try, chiral 3,3′-disubstituted-2,2′-binaphthol derivatives 
(BINOLs) have been widely employed as important ligands 
in catalytic asymmetric reactions since the several decades, 
additionally, they have also been used as axially chiral back-
bones for the development of phosphoric acids through syn-
thetic sequences (Brunel 2005, 2007; Yamamoto and Futat-
sugi 2005; Luan and Schaus 2012; Zhou et al. 2012; Yu et al. 
2011). In this regard, chiral phosphoric acids derived from 
BINOLs have bifunctional catalytic performance, namely 
Brønsted acids sites play roles in capturing electrophiles 
via hydrogen bonding interactions without formation of 
loose ion pair, whereas phosphoryl oxygens act as Lewis 
bases sites to capture another component, just as we have 
known, phosphoric acids are prevalent organocatalysts that 
have attracted increasing attention (Yu et al. 2008; Bartoli 
et al. 2010; Mori et al. 2013; Yin and You 2011; Li 2013; 
Dong et al. 2017). Furthermore, intensive studies have been 

revealed that the substituents at 3 and 3′ positions of the 
BINOLs backbone have considerable electronic and/or steric 
influence on chiral phosphoric acids catalytic performance 
through theoretical and experimental methods. According 
to this concept, changing the substituent groups at 3 and 3′ 
positions can, to a large extent, influence the steric and elec-
tronic properties of the BINOLs framework (Brunel 2005; 
Kaupmees et al. 2013; Yang et al. 2013; Bisht et al. 2019). 
Therefore, 3,3′ bis-arylated BINOLs are valuable precur-
sors for an array of phosphoric acids organocatalysts that 
are applied in catalytic asymmetric reactions.

Although many 3,3′ bis-arylated BINOLs are com-
mercial outside, lengthy synthetic sequences and tedious 
manipulations lead to high price-to-sales for 3,3′ bis-arylated 
BINOLs, and the used 3,3′ bis-arylated BINOLs in most 
laboratory are usually synthesized by themselves. Gener-
ally, there are two protocols for synthesis of 3,3′ bis-arylated 
BINOLs, one via 3,3′ bis-metalled BINOLs intermediate 
(Simonsen et al. 1998; Wipf et al. 2000; Ahmed and Clark 
2014) and the other through 3,3′ bis-halogenated BINOLs 
intermediate (Cox et al. 1992; Tsang et al. 2001; Ooi et al. 
2003; Bartoszek et al. 2008; Klussmann et al. 2010; Albini 
et al. 2014), both 3,3′ bis-metalled BINOLs intermediate 
and 3,3′ bis-halogenated BINOLs intermediate could under-
take coupling reactions with aryl sources to furnish 3,3′ bis-
arylated BINOLs (Simonsen et al. 1998; Wipf et al. 2000; 
Ahmed and Clark 2014; Cox et al. 1992; Tsang et al. 2001; 
Ooi et al. 2003; Bartoszek et al. 2008; Klussmann et al. 
2010; Albini et al. 2014). Herein, we describe two different 
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methodologies for synthesis of ( ±)-3,3′-diphenyl BINOL 
( ±)-5 via ( ±)-3,3′ bis-halogenated BINOLs intermediate. 
The presented methods are complementary to previously 
established procedures in the aspects of briefness and effi-
ciency (Yang et al. 2016).

( ±)-1—( ±)-2: (i) ( ±)-BINOL (1 equiv), NaH (60% 
dispersion in mineral oil, 2.5 equiv), THF, 0 °C, 1 h; (ii) 
MOMCl (2.5 equiv), 0 °C, 5 h. ( ±)-2—( ±)-3: (i) n-BuLi 
(1.6 M in hexane, 2.5 equiv), − 78 °C—0 °C, THF, 1 h; (ii) 
Br2/pentane (4 equiv), − 78 °C—rt, 10 h. ( ±)-3—( ±)-4: 
PhB(OH)2 (2.4 equiv), K3PO4•3H2O (3 equiv), PPh3 (0.22 
equiv), Pd(OAc)2 (0.05 equiv), THF, 85 °C, 20 h. ( ±)-4—
( ±)-5: conc. HCl, 1,4-dioxane, 50 °C ~ rt, several minutes.

As shown in Scheme  1, the first route to synthe-
size ( ±)-5 started with the commercially available 
( ±)-BINOL. First, the ( ±)-BINOL ( ±)-1 was treated 
with stoichiometric amounts of sodium hydride (NaH) 
and chloromethyl methyl ether (MOMCl) in THF to 
give 83% yield of ( ±)-2,2′-bis(methoxymethyl)-1,1′-
binaphthalene ( ±)-2. Based on known literatures (Ooi 
et al. 2003; Xu et al. 2005; Osorio-Planes et al. 2014), the 
( ±)-2,2′-bis(methoxymethyl)-1,1′-binaphthalene ( ±)-2 
was then carried out with n-butyllithium in low tempera-
ture for half an hour, followed by dibromination with the 
solution of bromine in pentane to afford ( ±)-3,3′-dibromo-
2,2′-bis(methoxymethyl)-1,1′-binaphthalene ( ±)-3 in 63% 
yield along with some monobromination byproduct at 
room temperature (rt). Subsequently, a Suzuki coupling 
transformation of dibromo functional groups of ( ±)-3 was 
accomplished with stoichiometric amounts of phenylbo-
ronic acid and potassium phosphate tribasic trihydrate in 
THF via palladium acetate/triphenylphosphine catalyst 
system to give ( ±)-3,3′-diphenyl-2,2′-bis(methoxymethyl)-
1,1′-binaphthalene ( ±)-4 in 92% yield, which was much 

higher than that Snieckus reported (Cox et al. 1992). After 
treatment of ( ±)-4 with concentrated HCl in 1,4-dioxane, 
94% yield of ( ±)-3,3′-diphenyl(1,1′-binaphthalene)-2,2′-
diol ( ±)-5 was formed, which could be readily converted 
to phosphoric acid bearing an axially binaphthyl backbone 
with sterically demanding substituents at 3 and 3′ positions.

( ±)-1—( ±)-6: ( ±)-BINOL (1 equiv), K2CO3 (3.5 equiv), 
MeI (4 equiv), anhydrous acetone, reflux, 20 h; ( ±)-6—
( ±)-7: (i) TMEDA (3.5 equiv), n-BuLi (1.6 M in hexane, 
2.5 equiv), ether, 1.5 h, rt; (ii) I2/ether (6 equiv), − 78 °C ~ rt, 
10 h; ( ±)-7—( ±)-8: Ni(acac)2 (0.1 equiv), PhMgBr/ether 
(5 equiv), benzene, rt ~ reflux, 20 h; ( ±)-8—( ±)-5: BBr3 
(1.0 M in CH2Cl2, 6.5 equiv), 0 °C ~ rt, 20 h.

C o n s i d e r i n g  t h e  b r o m i n a t i o n  o f 
( ±)-2,2′-bis(methoxymethyl)-1,1′-binaphthalene ( ±)-2 pro-
vided desired ( ±)-3,3′-dibromo-2,2′-bis(methoxymethyl)-
1,1′-binaphthalene ( ±)-3 in moderate yield in the 
Scheme 1, another methodology was highly desirable to 
handle this unsatisfied result. As illustrated in Scheme 2, 
the starting synthetic sequence was based on the use of 
( ±)-2,2′-dimethoxy-1,1′-binaphthalene ( ±)-6, which was 
first obtained from the nearly complete conversion of the 
corresponding ( ±)-BINOL ( ±)-1 in the presence of stoichi-
ometric amounts of potassium carbonate and methyl iodide 
in anhydrous acetone under reflux conditions. Afterwards, 
dilithiation of ( ±)-2,2′-dimethoxy-1,1′-binaphthalene ( ±)-6 
was done with tetramethylethylenediamine and n-butyllith-
ium in low temperature for an hour, followed by diiodi-
nation with iodine in ether to afford ( ±)-3,3′-diiodo-2,2′-
dimethoxy-1,1′-binaphthalene ( ±)-7 in 87% yield. The yield 
of diiodination in our route is higher than those in literatures 
(Zheng et al. 2012; Ðorđević et al. 2015). Although Pd-cata-
lyzed reactions have occupied a central role for forming new 
C–C bonds, Ni-catalyzed transformations have witnessed 

Scheme 1   The first route to synthesize ( ±)-3,3′-diphenyl BINOL ( ±)-5 

Scheme 2   The second route to synthesize ( ±)-3,3′-diphenyl BINOL ( ±)-5 



Chemical Papers	

1 3

considerable development and become one of the most 
promising synthetic tools, partially due to the nonprecious 
and earth-abundant nature of nickel versus its noble counter-
part palladium. Thereafter, the subsequent approach involved 
Ni-catalyzed Kumada transformation of the ( ±)-3,3′-diiodo-
2,2′-dimethoxy-1,1′-binaphthalene ( ±)-7 into desired 
3,3′-diphenyl-2,2′-dimethoxy-1,1′-binaphthalene ( ±)-8 in 
86% yield with stoichiometric amounts of phenylmagnesium 
bromide in mixed solvents, and the obtained yield was supe-
rior to previous reports (Cram et al. 1981; Wipf et al. 2000). 
Finally, quantities of boron tribromide were slowly added 
into the solution of ( ±)-3,3′-diphenyl-2,2′-dimethoxy-1,1′-
binaphthalene ( ±)-8 in anhydrous dichloromethane, which 
afforded ( ±)-3,3′-diphenyl(1,1′-binaphthalene)-2,2′-diol 
( ±)-5 in 72% yield.

In summary, we have reported two different methods to 
furnish ( ±)-3,3′-diphenyl BINOL via ( ±)-3,3′ bis-halogen-
ated BINOL intermediates using ( ±)-BINOL as starting 
material in this paper. Additionally, the described protocols 
to synthesize ( ±)-3,3′-diphenyl BINOL here are likely to 
provide access to several varieties of phosphoric acids which 
can be used in the development of ligands and catalysts pre-
cursors for organic catalytic reactions.

Experimental

Chloromethyl methyl ether (Amato et al. 1979) and phe-
nylmagnesium bromide (Gülak et al. 2012) were prepared 
following literature procedures. All other reagents were 
commercially available. All reactions were performed under 
nitrogen atmosphere unless otherwise noted. Column chro-
matography was performed on silica gel 300–400 mesh. 1H 
and 13C NMR spectra were recorded at 400 and 100 MHz 
with CDCl3 as solvent, respectively, and all coupling con-
stants (J values) were reported in Hertz (Hz). Elemental 
analyses were performed by Comprehensive Laboratory 
Center of College of Chemistry.

Preparation of ( ±)‑2,2′‑bis(methoxymethyl)‑
1,1′‑binaphthalene [( ±)‑2, in Scheme 1]

 100-mL, one-necked, round-bottomed flask equipped with 
a stir bar was charged with sodium hydride (NaH) (0.5 g, 
60% dispersion in mineral oil, 12.5 mmol, 2.5 equiv), ( ±)-
BINOL (1.43 g, 5 mmol, 1 equiv) and THF (30 mL). The 
mixture was stirred at 0 °C for 1 h, and then chloromethyl 
methyl ether (MOMCl) (0.95 mL, 12.5 mmol, 2.5 equiv) 
was slowly added via syringe at this temperature. After the 
addition, the reaction mixture was stirred at 0 °C for 5 h. 
Subsequently, the reaction mixture was warmed to room 
temperature and diluted with saturated aqueous NH4Cl, 

filtered through a pad of celite and then washed with EtOAc. 
The combined organic phase was washed with brine, dried 
over Na2SO4, filtered and concentrated in vacuo. The resi-
due was then purified by flash chromatography on silica gel 
(15% ether in hexane) to afford 1.42 g (83%) corresponding 
product as a white solid.

Preparation of ( ±)‑3,3′‑dibromo‑2,2′‑bis(m
ethoxymethyl)‑1,1′‑binaphthalene [( ±)‑3, 
in Scheme 1]

 50-mL, one-necked, round-bottomed flask equipped with a 
stir bar was charged with ( ±)-2,2′-bis(methoxymethyl)-1,1′-
binaphthalene (1.42 g, 4.2 mmol, 1 equiv) and THF (20 mL). 
The mixture was cooled to -78 °C with stirring, and n-butyl-
lithium (n-BuLi) (6.6 mL, 1.6 M in hexane, 10.5 mmol, 2.5 
equiv) was slowly added via syringe at this temperature. 
Then, the reaction mixture was allowed to warm to 0 °C and 
stirred for 1 h. After 1 h, the reaction mixture was re-cooled 
to -78 °C, and the solution of bromine (Br2) (0.43 mL, 
16.8 mmol, 4 equiv) in pentane (5 mL) was slowly added 
in to reaction mixture via syringe. Subsequently, the reac-
tion mixture was allowed to warm to room temperature and 
stirred for 10 h. Then, the reaction mixture was diluted with 
saturated aqueous Na2SO3, filtered through a pad of celite 
and then washed with EtOAc. The combined organic phase 
was washed with brine, dried over Na2SO4, filtered and con-
centrated in vacuo. The residue was then purified by flash 
chromatography on silica gel (3% ether in hexane) to afford 
1.33 g (63%) dibromination product as a white solid and 
0.19 g (11%) monobromination byproduct as a white solid.

Preparation of ( ±)‑3,3′‑diphenyl‑2,2′‑bis(m
ethoxymethyl)‑1,1′‑binaphthalene [( ±)‑4, 
in Scheme 1]

A 50-mL, one-necked, round-bottomed flask equipped with 
a stir bar was charged with phenylboronic acid (PhB(OH)2) 
(0.79 g, 6.5 mmol, 2.4 equiv), potassium phosphate triba-
sic trihydrate (K3PO4•3H2O) (2.16 g, 8.1 mmol, 3 equiv), 
triphenylphosphine (PPh3) (0.16 g, 0.6 mmol, 0.22 equiv), 
palladium acetate (Pd(OAc)2) (0.030 g, 8.1 mmol, 0.05 
equiv), ( ±)-3,3′-dibromo-2,2′-bis(methoxymethyl)-1,1′-
binaphthalene (1.33 g, 2.7 mmol, 1 equiv) and THF (20 mL). 
With stirring, the reaction mixtures were heated at 85 °C 
for 20 h, and then cooled down to room temperature. The 
reaction mixtures were diluted with deionized water, filtered 
through a pad of celite and then washed with EtOAc. The 
combined organic phase was washed with brine, dried over 
Na2SO4, filtered and concentrated in vacuo. The residue was 
then purified by flash chromatography on silica gel (6% ether 
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in hexane) to afford 1.21 g (92%) corresponding product as 
a white solid.

Synthesis of ( ±)‑3,3′‑diphenyl(1,1′‑binaphth
alene)‑2,2′‑diol [( ±)‑5, in Scheme 1]

A 50-mL, one-necked, round-bottomed flask equipped 
with a stir bar was charged with ( ±)-3,3′-diphenyl-2,2′-
bis(methoxymethyl)-1,1′-binaphthalene (1.30 g, 2.6 mmol, 
1 equiv), concentrated HCl solution (10 mL) and 1,4-diox-
ane (20 mL). With stirring, the reaction mixture was heated 
at 50 °C for several minutes, and then cooled down to room 
temperature. The reaction mixtures were diluted with deion-
ized water and washed with EtOAc. The combined organic 
phase was washed with brine, dried over Na2SO4, filtered 
and concentrated in vacuo. The residue was then purified by 
flash chromatography on silica gel (6% ether in hexane) to 
afford 1.01 g (94%) corresponding product as a white solid.

Preparation of ( ±)‑2,2′‑dimethoxy‑1,1′‑bina
phthalene [( ±)‑6, in Scheme 2]

A 100-mL, one-necked, round-bottomed flask equipped with 
a stir bar was charged with potassium carbonate (K2CO3) 
(2.42  g, 17.5  mmol, 3.5 equiv), methyl iodide (MeI) 
(1.25 mL, 20 mmol, 4 equiv), ( ±)-BINOL (1.43 g, 5 mmol, 
1 equiv) and anhydrous acetone (40 mL). With stirring, the 
reaction mixture was heated for 20 h under reflux conditions, 
and then cooled down to room temperature. The reaction 
mixtures were diluted with deionized water and washed with 
EtOAc. The combined organic phase was washed with brine, 
dried over Na2SO4, filtered and concentrated in vacuo to 
afford 1.49 g (95%) corresponding product as a pale yellow 
solid.

Preparation of ( ±)‑3,3′‑diiodo‑2,2′‑dimethox
y‑1,1′‑binaphthalene [( ±)‑7, in Scheme 2]

A 250-mL, one-necked, round-bottomed flask equipped 
with a stir bar was charged with tetramethylethylenedi-
amine (TMEDA) (2.6 mL, 17.5 mmol, 3.5 equiv) and ether 
(70 mL), n-butyllithium (n-BuLi) (7.8 mL, 1.6 M in hex-
ane, 12.5 mmol, 2.5 equiv) was slowly added via syringe 
at room temperature and the mixture stirred for 0.5 h. Then 
( ±)-2,2′-dimethoxy-1,1′-binaphthalene (1.56 g, 5 mmol, 1 
equiv) was added and the mixture was stirred for another 1 h. 
After 1 h, the mixture was cooled to -78 °C with stirring, 
the solution of iodine (I2) (7.6 g, 30 mmol, 6 equiv) in ether 
(10 mL) was slowly added via syringe for several minutes. 
After the addition, the reaction mixture was allowed to warm 

to room temperature and stirred for 10 h. Then, the reaction 
mixture was diluted with saturated aqueous Na2SO3, filtered 
through a pad of celite and then washed with EtOAc. The 
combined organic phase was washed with brine, dried over 
Na2SO4, filtered and concentrated in vacuo. The residue was 
then purified by flash chromatography on silica gel (8% ether 
in hexane) to afford 2.34 g (87%) corresponding product as 
a yellow solid.

Preparation of ( ±)‑3,3′‑diphenyl‑2,2′‑dimeth
oxy‑1,1′‑binaphthalene [( ±)‑8, in Scheme 2]

A 50-mL, one-necked, round-bottomed flask equipped 
with a stir bar was charged with nickel (II) acetylacetonate 
(Ni(acac)2) (0.11 g, 0.43 mmol, 0.1 equiv), ( ±)-3,3′-diiodo-
2,2′-dimethoxy-1,1′-binaphthalene (2.45 g, 4.3 mmol, 1 
equiv) and benzene (10 mL). With stirring, the solution of 
phenylmagnesium bromide (PhMgBr) (3.90 g, 21.5 mmol, 
5 equiv) in ether was slowly added via syringe at room 
temperature. After the addition, the reaction mixture was 
stirred for 0.5 h at room temperature, and then heated for 
20 h under reflux conditions. After 20 h, the reaction mixture 
was slowly diluted with saturated aqueous NH4Cl (20 mL), 
filtered through a pad of celite and then washed with EtOAc. 
The combined organic phase was washed with brine, dried 
over Na2SO4, filtered and concentrated in vacuo. The resi-
due was then purified by flash chromatography on silica gel 
(8% ether in hexane) to afford 1.66 g (86%) corresponding 
product as a yellow solid.

Preparation of ( ±)‑3,3′‑diphenyl(1,1′‑binaph
thalene)‑2,2′‑diol [( ±)‑5, in Scheme 2]

A 100-mL, one-necked, round-bottomed flask equipped 
with a stir bar was charged with ( ±)-3,3′-diphenyl-2,2′-
dimethoxy-1,1′-binaphthalene (1.71 g, 3.7 mmol, 1 equiv) 
and dichloromethane (30 mL). Then the mixture was cooled 
to 0 °C by ice bath with stirring, boron tribromide (BBr3) 
(24 mL, 1.0 M in CH2Cl2, 24 mmol, 6.5 equiv) was slowly 
added via syringe at 0 °C and the mixture was stirred for 
20 h at room temperature. Then, the mixture was re-cooled 
to 0 °C again via ice bath, the reaction mixture was diluted 
with deionized water with stirring and washed with EtOAc. 
The combined organic phase was washed with brine, dried 
over Na2SO4, filtered and concentrated in vacuo. The resi-
due was then purified by flash chromatography on silica gel 
(20% ether in hexane) to afford 1.12 g (72%) corresponding 
product as a white solid.
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