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Hydroxyethylamine (HEA) isosteres have previously been shown to display a multitude of biomedical
applications. In fact, the first protease inhibitor, saquinavir is an HEA based peptidomimetic. Herein
we describe an easy-to-operate synthetic route to a series of carbohydrate-based conformationally con-
strained hydroxyethylamine (HEA) isosteres featuring amino acid side chains, starting from D-glucose.
This class of novel sugar–amino acid-tethered conformationally restricted HEA systems may have bearing
in practical application, particularly in the development of conformationally restricted protease
inhibitors.

� 2012 Elsevier Ltd. All rights reserved.
Recent years have witnessed the design and development of a the side chain lengths and composition and introducing conforma-
N
O

NH

OH
HN O

H
N

OH2N

O

N

Saquinavir

HN

HOO

OH

N

N
N

HN

O
S
N

O
O

OH

NH

O
O

O

H2N

Scissile Bond

P1
H
N

O P1'

HO

O
HN

S
OHN

O
HN

H H

Nelfinavir
number of protease inhibitor—systems which mimic the transi-
tion-state of the protease’s actual substrate.1 Protease inhibitors
can be obtained by the isosteric replacement of the scissile peptide
bond.2 One of the most important transition-state isosteres devel-
oped so far is the hydroxyethylamine motif (HEA, Fig. 1).3 Ever
since the successful development of the first protease inhibitor
based on transition-state simulation principle, the amount of
attention given to this class of compounds has increased mani-
folds.4 The HEA isosteres have already been proven to be promising
candidates for various curative programs—in conditions varying
from contagious malaria to the deadly AIDS and many others.5 Suc-
cess of using this moiety as a peptide bond replacement can be
readily understood by the number of HEA-based drugs which have
been available in the market that includes saquinavir, indinavir,
nelfinavir and amprenavir which are the FDA approved protease
inhibitors (PIs). Several other therapeutically significant HEA iso-
sters are known for their potential for treating cancer, Alzheimer0s
disease and nosocomial infections.3a,4,6

In continuation of our ongoing programmes directed toward the
development of novel HEA isosteres,7 and robust peptide second-
ary structure scaffolds,8 herein we describe a general synthetic
route, starting from the readily available D-glucose, to access car-
bohydrate-based conformationally constrained hydroxyethyl-
amine (HEA) isosteres featuring amino acid side chains.

As per the literature precedents, the structural modulations of
HEA isosteres can be achieved by amino acid variations, changing
ll rights reserved.
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n).
tional constraints on the backbone, which would often enhance the
binding affinity of the ligands (Fig. 2).9

A carbohydrate-based starting material was chosen herein ow-
ing to the enormous scope of its functionalization and ready avail-
Indinavir Amprenavir

Figure 1. Selected FDA approved protease inhibitors (PIs) wherein the scissile
peptide bond has been modified with an HEA moiety.
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Figure 2. Design strategy to form conformationally constrained carbohydrate
derived macrocyclic HEA isosteres featuring amino acid side chain.
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baility,10 as well as the ease of tuning of the ring size of these con-
strained HEA isosteres. The design strategy illustrated herein is a
straightforward one which makes use of established synthetic pro-
tocols. The main challenge of our synthetic strategy was the forma-
tion of the 10-membered macrocycle which was finally achieved
through a two-step 1,2 acetonide deprotection cum reductive ami-
nation process. The constrained HEA isosteres were synthesized in
an overall thirteen steps starting from D-glucose (Scheme 1).

To synthesize the carbohydrate-based conformationally con-
strained HEA isosteres 9a–c, we began with D-glucose which was
transformed into the tosyl analog 5 in four steps, following the
known protocols reported in the literature.11 The tosyl protected
furanose sugar 5 furnished the azide displaced product 6 in excel-
lent yield upon heating it at 50 �C in DMF containing NaN3.12 Ben-
zyl protection of the two secondary hydroxyl groups was carried
out by reacting with benzyl bromide in THF, having NaH as the
base and TBAI as a phase transfer catalyst affording the di-benzyl
ether 7. The furanose 7 was then subjected to selective azide
reduction using triphenylphosphine/water followed by coupling
with different BOC-protected amino acids to furnish 8a–c in very
good yields.13 The 1,2 acetonide protected furanose sugar bearing
amino acid side chains were then subjected to a two-step TFA-as-
sisted acetonide cleavage followed by reductive amination in the
presence of NaBH3CN. The crude secondary amine was then
protected using BOC anhydride in water as a solvent. Finally the
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Scheme 1. Reagents and conditions: (i) H3PO4, ZnCl2, acetone, reflux, 36 h, 43%; (ii) PDC
Bu2SnO, CHCl3, TsCl, 5 h, 86%; (v) NaN3, DMF, 0 �C, 10 h, 94%; (vi) NaH, BnBr, TBAI, THF, 2
10 h; (viii) (a) 80% aq TFA, 30 h, (b) NaBH3CN, AcOH, 40 h; (ix) BOC2O, H2O, 12 h; (x) H2
benzyl groups were removed using 20% Pd(OH)2 in methanol at
150 psi under hydrogen atmosphere for 16 h to furnish the macro-
cyclic HEA isosteres 9a–c.14

It is noteworthy that at some stage during the formation of the
10-membered macrocyclic ring from the amino acid coupled fura-
nose precursor, a water molecule got associated with the molecule,
as clearly evident from their spectral data (vide infra), which is a
common feature in carbohydrates and their analogs bearing multi-
ple hydroxyl groups.15

In summary, this work has provided an elegant synthetic route
to access amino-acid-tethered carbohydrate conjugates, which
may eventually find potential application in the development of
conformationally restricted HEA isosteres. The synthetic strategy
reported herein is a convenient and straightforward one starting
from the readily available D-glucose. The generality of this syn-
thetic strategy has been demonstrated by the introduction of three
different amino acid residues into the carbohydrate cyclic frame
work.
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, DCM, Ac2O, 2 h, 95%; (iii) NaBH4, EtOH, 2 h, 70%; (iv) (a) 80% aq AcOH, 8 h, 92%, (b)
.5 h, 68%; (vii) (a) TPP, THF–H2O, rt, 3 h, (b) HBTU, DIPEA, BOC-amino acids, CH3CN,
, Pd(OH)2, MeOH, 150 psi, 16 h.
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