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Summary of main observation and conclusion  The limited availability of highly valuable arenesulfonyl fluorides seriously hinders their further 
application in many research fields including medicinal chemisty and chemical biological, organic synthesis, polymer preparation, etc.. We report herein a 
mild and efficient copper-free Sandmeyer-type fluorosulfonylation reaction of various arenediazonium salts to prepare valuable arenesulfonyl fluorides 
using K2S2O5 as both a reductant and a practical sulfonyl source in combination with N-fluorobenzenesulfonimide as an effective fluorine source. This 
methodology provides an attractive route to diverse important arenesulfonyl fluorides given the overall practicality and scope. 

 

Background and Originality Content 
 

Since sulfonyl fluoride groups (SO2F) have unique properties 

including special stability-reactivity pattern and 

proton-mediated reactivity that is sensitive to the 

micro-environment,[1] arenesulfonyl fluorides are highly 

valuable synthetic motifs that have been adopted in a variety 

of applications including the prominent sulfur fluoride 

exchange (SuFEx) reaction for “click chemistry” pioneered by 

Sharpless and co-workers,[1] attracting fast-growing attention 

in the community of both chemical biologists and synthetic 

organic chemists.[2] However, there are only limited synthetic 

methods to efficiently access them, which seriously hinders 

their further applications. The classical chloride-fluoride 

exchange of arenesulfonyl chlorides for the synthesis of 

corresponding arenesulfonyl fluorides requires preparation of 

arenesulfonyl chlorides that are relatively unstable and 

moisture-sensitive (Scheme 1A).[1,3] Alternative starting 

materials including ArSO2NHNH2[4], ArSO2Na[5], ArSO3Na[6], 

ArSSAr[7], ArSH[8], etc., have been successfully converted into 

the desired corresponding arenesulfonyl fluorides using an 

appropriate oxidant and fluorinating reagents (Scheme 1A). An 

efficient synthesis of various arenesulfonyl fluorides by 

palladium-catalyzed cross-coupling of aryl halides with 

1,4-diazabicyclo[2.2.2]octane-bis(sulfur dioxide) adduct 

(DABSO) in combination with electrophilic fluorinating 

reagents has been developed recently (Scheme 1B).[9] Two 

recent reports have demonstrated the synthesis of 

arenesulfonyl fluorides via sulfuryl fluoride incorporation from 

arynes or various Grignard reagents (Scheme 1C).[10] Despite 

these advances, access to various arenesulfonyl fluoride from 

inexpensive and wildly available starting material by a practical 

and mild method is still highly desired. 
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Scheme 1 Established synthetic methods for arenesulfonyl 

fluorides 
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 The Sandmeyer reaction has been widely used for the conversion 

of aromatic amino groups into a variety of functional groups, such 

as halogen, hydroxyl, cyano, boryl groups etc.[11] Recently 

Sandmeyer-type fluoroalkylation of arenediazonium salts has 

been developed, and various fluorine-containing functional 

groups including CF3[12], SCF3[13], SCF2H[14], CF2H[15], 

CF2HSO2/CH2FSO2[16], CnF2n+1 (n>2)[17] and OCF3[18] can be 

efficiently incorporated into arenes. Moreover, clorosulfonylation 

of arenediazonium salts has been achieved as well.[19] However, to 

our best knowledge, the corresponding Sandmeyer-type 

fluorosulfonylation reaction of arenediazonium salts has never 

been reported such far. We conceived that the combination of 

economical SO2 and an appropriate fluoride source would achieve 

it via radical SO2 insertion and fluorination strategy (Scheme 1D). 

Based on this new strategy, we have already developed an 

efficient method for the preparation of a number of alkyl sulfonyl 

fluorides.[20] Very recently, we have established the first synthesis 

of various arenesulfonyl fluorides from arenediazonium salts in 

combination of KHF2 as a fluorine source and SO2 surrogate 

1,4-diazabicyclo[2.2.2]octane-bis(sulfur dioxide) adduct (DABSO) 

as a sulfonyl source via copper-catalyzed radical SO2 insertion and 

fluorination strategy (Scheme 2).[21] As a good complement to this 

method and as a continuation of our research interest in 

fluorosulfonylation, we report herein copper-free Sandmeyer-type 

fluorosulfonylation of various arenediazonium salts with the use 

of N-fluorobenzenesulfonimide (NFSI) as an efficient fluorine 

source and K2S2O5 as an inexpensive and practical sulfonyl source 

(Scheme 2)[22]. 

 

Scheme 2 Arenesulfonyl fluoride synthesis from arenediazonium 

salts via radical SO2 insertion and fluorination strategy 
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Results and Discussion 

Our initial studies on the Sandmeyer-type fluorosulfonylation 

of arenediazonium salts were carried out using 

p-methoxybenzenediazonium salt 1a as the model substrate, 

DABSO as a popular and commercially available solid SO2 

source[23], and NFSI as a fluoride source. As shown in Table 1, 

initial experiments revealed that the combination of 2.0 equiv of 

DABSO, 1.0 equiv of NFSI in MeCN at room temperature for 6 

hours did not efficiently generate the desired arenesulfonyl floride, 

and only trace amounts of the product 2a were detected (entry 2). 

Careful analysis of the reaction mixture demonstrated that the 

majority of starting arenediazonium salt 1a was not consumed. 

Then UV irradiation or copper powder was used to improve the 

reaction, and increased yields of the desired product were 

observed (entries 3 and 4). It is well-known that K2S2O5 can be 

used as both good inorganic SO2 surrogate[24] and effective 

reductant. It was found that the desired reaction was improved 
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when DABSO was replaced with K2S2O5 (entry 5). Notably, water 

had positive effect on the reaction and good yield of the desired 

product 2a was obtained in its presence (entry 6). To our delight, 

when HOAc was used as co-solvent, the desired reaction was 

further improved and a good yield of 80% was achieved (entry 1), 

which might be ascribed to the suppression of formation of 

undesired products by HOAc including Sandmyer-type or azo 

byproducts. Interestingly, lower yield of the product was observed 

in the absence of water (entry 7), thus demonstrating the key role 

of water in the desired Sandmeyer-type fluorosulfonylation 

reactions probably by increasing the solubility of K2S2O5 in the 

reaction mixture. The utilization of Selectfluor as electrophilic 

fluorine source was not effective for the transformation and 

obvious drop in the yield of the desired product was observed 

(entry 8). Furthermore, the increased concentration of K2S2O5 or 

NFSI did not have a significant effect on the reaction (entries 9 

and 10). These extensive screening of reaction conditions showed 

that the combination of 2.0 equiv of K2S2O5 and 1.0 equiv of NFSI 

in MeCN/H2O/HOAc at room temperature for 6 hours provided 

optimal reaction conditions to generate the desired 

fluorosulfonylation product in good yield (entry 1). 

 

Table 1 Optimization of reaction conditionsa   

 

MeO N2BF4 SO2FMeO

2.0
 equiv 1.0

 equiv1a 
1.0

 equiv 2a

N-FPhO2S
PhO2S

(NFSI)
K2S2O5

MeCN/H2O/HOAc

rt,
 
6
 
h

 

Entry Variation from the standard 

conditions 

Yield of 2a (%)b 

1 none 80 

2 DABSO instead of K2S2O5, MeCN trace 

3 DABSO instead of K2S2O5, MeCN, 

1.0 equiv of Cu 

32 

4 DABSO instead of K2S2O5, MeCN, 

UV irradiation 

8 

5 without HOAc and H2O 35 

6 without HOAc 56 

7 without H2O 45 

8 Selectfluor instead of NFSI 57 

9 2.0 equiv of NFSI 80 

10 4.0 equiv of K2S2O5 78 

a General reaction conditions: arenediazonium salt (1a, 0.2 

mmol), K2S2O5 (0.4 mmol), NFSI (0.2 mmol) in MeCN/H2O/HOAc 

(3/0.05/0.2 mL) under Ar atmosphere at room temperature for 6 

hours. b Yields were determined by 19F NMR spectroscopy using 

1-methoxy-4-(trifluoromethoxy)benzene as an internal standard. 

 

 

With the optimal reaction conditions in hand, we next 

engaged in examining the generality of this copper-free 

Sandmeyer-type fluorosulfonylation of various arenediazonium 

salts and the results are summarized in Table 2. A wide range of 

arenediazonium salts with electron-donating, neutral, and 

electron-withdrawing substituents were smoothly transformed 

into the corresponding Sandmeyer-type fluorosulfonylation 

products in good yields. As expected, no fluorinated byproducts 

were formed in these reactions, but some polar and complicated 

Sandmeyer-type or azo byproducts were observed. Thanks to the 

mild reaction conditions employed, a series of functional groups 

including ether (2a-e), ester (2f-i), halogen (2j, 2k), cyano (2l), 

nitro (2m), sulfonyl (2n) and hydroxyl (2o) were well tolerated 

under the reaction conditions providing the corresponding target 

products in good yields. In particular, the substrate 1o bearing an 

active OH group delivered the corresponding products in good 

yields. However, it was found that heteroarenediazonium salts 2w 

and 2x are not suitable reaction partners for the current 

This article is protected by copyright. All rights reserved.



 

 

 www.cjc.wiley-vch.de © 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Chin. J. Chem. 2019, 37, XXX－XXX 

Report First author et al. 

transformation and lower yields of the corresponding 

fluorosulfonylation products were formed. Furthermore, 

gram-scale synthesis of 2a was performed on 8.0 mmol scale to 

estimate practicality of this reaction and a good yield of the target 

product was obtained, thus demonstrating good viability of the 

transformation for scale-up. 

 

 

Table 2 Substrate scope for the copper-free Sandmeyer-type 

fluorosulfonylation of various arenediazonium saltsa 
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a Standard reaction conditions: arenediazonium salt (0.3 mmol), 

K2S2O5 (0.6 mmol), NFSI (0.3 mmol) in MeCN/H2O/HOAc 

(4.5/0.075/0.3 mL) under Ar atmosphere at room temperature 

for 6 hours. Yields of isolated products are given. b Yields were 

determined by 19F NMR spectroscopy using 

1-methoxy-4-(trifluoromethoxy)benzene as an internal 

standard. 

 

Some preliminary mechanistic studies on the 

Sandmeyer-type fluorosulfonylation of arenediazonium salts were 

carried out in order to gain some insights into the reaction 

pathway. First, 2,2,6,6-tetramethyl-1-piperidyloxy (TEMPO) as a 

radical scavenger was added to the reaction of 1a, resulting in an 

obvious decrease in the yield and successful observation of the 

corresponding TEMPO-trapped complex 3 (Scheme 3a). Second, 

arenediazonium salt 4 was subjected to the standard reaction 

conditions to generate the ring-closed product 5 in 23% isolated 

yield (Scheme 3b). This might be ascribed to the fact that the alkyl 

radical generated in situ from addition of aryl radical to the 

alkenyl group in 4 undergoes irreversible intramolecular 

This article is protected by copyright. All rights reserved.
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cyclization at a much fast rate than that of the consequent aryl 

radical SO2 insertion. All these results strongly demonstrate the 

radical character of the reaction. Based on the above 

experimental results and literature,[25] we propose the following 

reaction pathway for the desired copper-free Sandmeyer-type 

fluorosulfonylation reaction of arenediazonium salts. 

Arenediazonium salt 1 readily generates the corresponding aryl 

radical by K2S2O5 via a single electron transfer (SET) process under 

the reaction conditions. It is rapidly trapped by SO2 originated 

from K2S2O5 to form the corresponding [ArSO2.] intermediate, and 

their subsequent rapid fluorination by NFSI results in the desired 

arenesulfonyl fluoride 2 (Scheme 3c). 

 

Scheme 3 Preliminary mechanistic investigation of the 

copper-free Sandmeyer-type fluorosulfonylation of 

arenediazonium salts 
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Conclusions 

In conclusion, based on the radical SO2 insertion and 

fluorination strategy, we have developed a copper-free 

Sandmeyer-type fluorosulfonylation reaction of readily available 

arenediazonium salts using cheap K2S2O5 as both a reductant and 

a sulfonyl source and NFSI as an effective fluorine source. This 

transformation permits a fast and facile construction of various 

highly valuable arenesulfonyl fluorides from low-cost and widely 

available starting materials, and is expected to greatly expand the 

toolkit of arenesulfonyl fluorides and significantly promote their 

further application in different fields. Further studies on the 

synthesis of other sulfonyl fluorides via the radical SO2 insertion 

and fluorination strategy are in progress. 

Experimental 
 

General Procedure for the Sandmeyer-type fluorosulfonylation 

of arenediazonium salts. Arenediazonium salt 1 (0.3 mmol), 

K2S2O5 (133.2 mg, 0.6 mmol) and NFSI (94.5 mg, 0.3 mmol) were 

added to a sealed tube. The system was then evacuated and 

backfilled with Ar (3 times) and distilled CH3CN (4.5 mL), H2O (75 

μL) and HOAc (0.3 mL) were added in turn via syringe under Ar 

atmosphere. The reaction mixture was sealed and stirred at room 

temperature for 6 hours. Yields of the desired product were 

measured by 19F NMR spectroscopy before working-up. Then the 

reaction mixture was filtered through a pad of celite, diluted with 

DCM (20 mL) and H2O (50 mL). The resulting mixture was 

extracted with DCM (2 × 20 mL). The organic layers were 

combined, washed with brine (50 mL), dried over Na2SO4, filtered 

and concentrated. The crude product was purified by silica gel 

chromatography to give the desired product. 
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A mild and efficient copper-free Sandmeyer-type fluorosulfonylation reaction of various 
arenediazonium salts was developed to prepare valuable arenesulfonyl fluorides using K2S2O5 as a 
practical sulfonyl source in combination with N-fluorobenzenesulfonimide as an effective fluorine 
source. 
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