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Cascade fluorofunctionalisation of 2,3-unsubstituted
indoles by means of electrophilic fluorination†
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Eileen Lau Shuying

Cascade fluorofunctionalisation of 2,3-unsubstituted indoles fea-

turing the formation of C–C, C–F and C–O bonds via electrophilic

fluorination using N-fluorobenzenesulfonimide is described. The

use of an O-nucleophile tethered to the nitrogen of indoles enables

the synthesis of polycyclic fluorinated indoline derivatives from

simple precursors in 40–63% yields.

The long-standing interests in fluorochemicals that are present
in a wide range of applications in our daily lives,1 for example,
pharmaceuticals, agrochemicals and materials, give impetus to
the development of new methods to efficiently install fluorine(s)
or fluorine-containing functional groups in organic molecules.2,3

In this context, electrophilic fluorination of indoles and indoline-
2-ones or oxindoles has attracted the attention of a number of
groups over the years,4 since indole and indoline are amongst
privileged structural motifs found in various drugs and natural
products,5a as well as in materials.5b,c Electrophilic fluorocycli-
sation, a powerful method to synthesise fluorinated hetero- and
carbocycles from alkenes,6 can offer a convenient access to
fluorinated indolines from indoles as demonstrated by several
groups.7 The common feature of this process is the concomi-
tant formation of two types of bonds (i.e. C–F and C–O, or C–F
and C–N). To the best of our knowledge, however, formation of
three different types of bonds in a cascade fashion through
fluorocyclisation reactions has not been documented to date.
As one could envision, such a process can offer new opportu-
nities to assemble highly complex structures in an efficient
manner. We herein demonstrate the feasibility of a domino
C–C/C–F/C–O bond forming sequence to rapidly access poly-
cyclic difluorinated indoline derivatives.

We recently reported the conversion of indoles into 3,3-
difluoro-2-oxindole II using N-fluorobenzenesulfonimide (NFSI)

as the fluorinating agent (Scheme 1a).4a A possible key inter-
mediate of this process was proposed to be a hemiaminal
(Scheme 1, V, Nu1 = OH), which subsequently undergoes HF
elimination and electrophilic fluorination to give oxindole II.
We envisioned that if V could, however, be generated with a
nucleophile (Nu1 a OH), interception of the incipient iminium IX
with a second nucleophile (Nu2) may lead to a highly function-
alized fluorinated indoline III (Scheme 1a). Moreover, complex
polycyclic fluorinated scaffolds could potentially be generated if
a fluorocyclisation step is incorporated into the process by
employing a nucleophile, for example a hydroxyl group, tethered
to the nitrogen of indole (Scheme 1b). Overall, this strategy
entails a vicinal tetrafunctionalisation of indoles that installs
four new bonds, featuring C–C, C–F and C–O bonds.

Scheme 1 Electrophilic fluorofunctionalisation of indoles.
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To test our hypothesis, we subjected indole 1a possessing a
hydroxyl group as the pendant nucleophile to electrophilic fluori-
nation conditions, using NFSI in a 1 : 1 mixture of MeCN–MeOH at
25 1C (Table 1, entry 1). To our delight, compound 2a was isolated
in 35% yield (38% as determined by 19F NMR) as the major
product, demonstrating the viability of a cascade fluorofunction-
alisation. The minor product 4a was also observed by 19F NMR in
8% yield. Screening of reaction temperatures and concentra-
tions showed that the reaction was optimal at 0.05 M of 1a and
at �20 1C (entries 1–6). We next studied the influence of
solvents on the reaction (entries 7–13). The use of a co-solvent
system of MeOH with either MeCN, CH2Cl2 or PhMe was
critical to the formation of 2a.8 Interestingly, oxazolidine 3a
was selectively obtained in 40% yield when the reaction was
performed in a mixture of PhMe–MeCN (4 : 1) at 100 1C (entry 13).
A basic additive such as NaHCO3 or K2HPO4 was found to inhibit
the reaction (entry 14), while the addition of an acid such as
CF3COOH or CH3COOH led to a reduction in yield of 2a to 40%
(entry 15). Varying the amount of NFSI (entries 16 and 17) or
switching to another fluorinating reagent such as Selectfluor
(entry 18) was detrimental to the reaction outcome.

A range of indoles could undergo the cascade fluorofunctionali-
sation under our optimised conditions (Table 2). Notably, the three

best solvent systems from our optimization were tested for each
substrate (entries 3, 11 and 12) and MeCN–MeOH (1 : 1) was
found to give better yields of the desired products in most
cases. Indoles incorporating a pendant secondary or tertiary
hydroxyl group underwent the reaction to give products 2b and
2c in 58% and 63% yields, respectively. Formation of tetrahydro-
1,3-oxazine 2d, however, was less favored as it was only obtained
in 43% yield. Indoles possessing electron-donating, halogen or
phenyl substituents on the benzenoid ring could be converted to
the desired products in 40–52% yields (2e–2l). Notably, rapid
polymerisation was observed with 4-methoxyindole 1g under the
standard conditions. Performing the reaction in EtOH instead of
MeOH at �40 1C allowed for the isolation of 2g in 51% yield.
Indoles with diminished nucleophilicity such as 1i, 1j and 1k
required longer reaction times to convert. In accord with this
trend, highly deactivated indoles possessing strongly electron-
withdrawing groups such as nitrile (1m), ester (1n) or nitro (1o)
failed to give the desired products. Interestingly, di- or tri-
substituted indoles 1h and 1l afforded 2h and 2l in 44% and
50% yields, respectively.

We further examined the scope of difluorocyclisation (Table 1,
entry 13) at high temperatures to prepare a range of oxazolidines
and tetrahydro-1,3-oxazines 3 (Table 3). Indoles possessing a

Table 1 Optimisation of the cascade fluorofunctionalisation

Entrya Solvents (ratio) T (1C)

Yieldb (%)

2a 3a 4a

1 MeCN–MeOH (1 : 1) 25 38 (35)c Trace 8
2d MeCN–MeOH (1 : 1) 70 9 4 8
3 MeCN–MeOH (1 : 1) �20 60 (54) 0 3
4 MeCN–MeOH (1 : 1) �40 6 0 Trace
5e MeCN–MeOH (1 : 1) �20 26 0 Trace
6 f MeCN–MeOH (1 : 1) �20 16 0 Trace
7 MeCN �20 43 0 0
8 MeOH �20 18 0 3
9 CH2Cl2 �20 28 Trace —
10 PhMe �20 42 Trace —
11 CH2Cl2–MeOH (1 : 1) �20 60 0 0
12 PhMe–MeOH (1 : 1) �20 65 0 0
13d, g PhMe–MeCN (4 : 1) 100 Trace 42 (40) 0
14h MeCN–MeOH (1 : 1) �20 0 0 0
15i MeCN–MeOH (1 : 1) �20 40 0 0
16 j MeCN–MeOH (1 : 1) �20 40 Trace Trace
17k MeCN–MeOH (1 : 1) �20 26 Trace Trace
18l MeCN–MeOH (1 : 1) �20 0 0 0

a Conditions: indole (1 equiv.), N-fluorobenzenesulfonimide (NFSI,
3 equiv.), solvent (0.05 M), 20 h. b Yield determined by 19F NMR using
1,3-bis(trifluoromethyl)benzene as the internal standard. c Isolated
yield. d Reaction was completed in 1 h. e Reaction was performed at
0.01 M concentration. f Reaction was performed at 0.25 M concen-
tration. g Difluorooxindole was also formed with an estimated yield of
16%. h NaHCO3 (2 equiv.) or K2HPO4 (equiv.) was used as an additive.
i CH3COOH (2 equiv.) or CF3COOH (2 equiv.) was used as an additive.
j 5 equiv. of NFSI was used. k 2 equiv. of NFSI was used. l Selectfluor
was used instead of NFSI.

Table 2 Substrate scope of the cascade fluorofunctionalisation

a Reaction was performed in a 1 : 1 mixture of MeCN–EtOH at �40 1C
for 40 h. b Reaction was performed at �20 1C for 48 h. c Reaction was
performed at�20 1C for 70 h. d Reaction was performed at�20 1C for 96 h.
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strong electron-withdrawing group such as nitrile (1m), ester
(1n) or nitro (1o) afforded oxazolidines 3m–o in 49–60% yield.
Tetrahydro-1,3-oxazine 3d was also obtained in 41% yield.9

To probe whether 3 is an intermediate en route to 2
(Scheme 2, pathway A), we subjected 3i to the cascade fluoro-
functionalisation conditions (NFSI, MeCN–MeOH 1 : 1). How-
ever, no conversion of 3i was observed, suggesting that 3i did
not undergo the HF elimination process to afford 3i0. Interest-
ingly, we were able to isolate bisindole 6i in ca. 4% yield in
the reaction of 1i with 1.7 equiv. of NFSI under the cascade
fluorofunctionalisation conditions. Importantly, 6i was fully
converted to 2i upon treatment with NFSI. Overall, these obser-
vations favour a mechanism whereby the C–C bond formation
precedes the O-cyclisation step (Scheme 2, pathway B) via an
intermediate such as difluorinated indoline 5i.10 The failure of
electron-deficient indoles such as 1m–o to give 2 could be
explained by their inability to intercept an iminium inter-
mediate. At high temperatures, indoles 1 could rapidly undergo
fluorination with NFSI,4a rendering them unavailable towards
the C–C bond forming process (pathway B). Thus, difluorocyclisa-
tion products were obtained under these conditions (pathway A).

In conclusion, we have developed a new cascade tetrafunction-
alisation of 2,3-unsubstituted indoles via electrophilic fluoro-
cyclisation. A range of polycyclic fluorinated indolines can be
prepared in 40–63% yields by this process that simultaneously
generates four new bonds, featuring C–C, C–F and C–O bonds.
In cases of indoles bearing electron-withdrawing substituents

on the benzenoid ring, the fluorocyclisation can produce
oxazolidines and tetrahydro-1,3-oxazines 3 in 40–60% yields.
Extension of the current strategy to incorporate other nucleo-
philes, and studies on the photochromic properties of these
fluoroindoline derivatives as potential molecular switches5b,c

are now underway in our laboratory.
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