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Abstract 

A new formal stereoselective synthesis of (+)-huperzine A 1 was achieved using as a key step a palladium 
mediated annulation between 2-methylene-l,3-propanediol diacetate and (1R,2S)-2-phenylcyclohexanol derived 
13-ketoester 14. © 1999 Elsevier Science Ltd. All rights reserved. 
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(-)-Huperzine A 1 isolated from Huperzia serrata, 1 a plant used in Chinese folk medicine, is a 
potent reversible inhibitor of acetylcholinesterase and is currently under clinical trials for the treatment 
of Alzheimer's disease. 2 This particular biological activity induced several synthetic studies which 
culminated with two total syntheses by Qian 3 and Kozikowski. 4 The main difficulty in the synthesis of 
huperzine A 1 lies in the presence of a 1,3,3-bicyclic framework. From the common I~-keto ester 2, two 
strategies have been used for the construction of this skeleton (Scheme 1). The first one is a particular case 
of the Robinson annulation already used by Raphael 5 in a synthetic approach to Lycopodium alkaloids 
following path a. The second strategy (path b) is an application of palladium-catalysed bicycloannulation 
with 2-methylene-l,3-propanediol diacetate first studied by Gravel 6 on a model system. The first 
synthesis of (-)-huperzine A 1 was described by Kozikowski 7 using the Michael-aldol annulation (path 
a) with a (-)-8-phenyl menthol derived chiral auxiliary. A diastereomeric excess of 80% was obtained 
in this reaction. However, the yield of the following elimination step was modest. A different approach 
using a chiral base was more recently studied by Terashima. 8 The best result was observed with one 
equivalent of (-)-cinchonidine which afforded compound (+)-4 (R*=Me) with an enantiomeric excess of 
64%. The same group also developed an asymmetric palladium-catalysed bicycloannulation following 
path b. 8 A modified chiral ferrocenyl ligand previously developed by Hayashi 9 afforded (+)-5 (R*=Me) 
in 64% ee. A rather similar result was obtained by He and Bai I° who prepared compound 5 in 52% ee 
with another modified Hayashi catalyst. 
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Scheme 1. 

In connection with the development of a new straightforward route to 13-keto ester 2 (R*=Me), nl 
we report in the present paper an efficient formal asymmetric synthesis of (+)-huperzine A 1 using the 
palladium annulation route and the (1R,2S)-2-phenylcyclohexanol derived keto ester 14. 

Two series of compounds were prepared to study the asymmetric palladium annulation. The benzenic 
~-keto ester 7 obtained in one step from the commercially available I~-tetralone 6, was first chosen as a 
model for this reaction (Scheme 2). Transesterification of ester 7 with (1R,2S)-2-phenylcyclohexanol n2 
under acidic catalysis afforded ester 8 in 94% yield. 

6 CO2Me 7 9 0 ~ O  - 
~ , , , P h  ~ , , , P h  
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Scheme 2. (a) KH, (MeO)2CO (excess), fix; (b) (IR,2S)-2-phenylcyclohexanol, CrHr, Dean-Stark, 30 h, fix; (e) Pd(PPh3)4, 
0.05 equiv., 2-methylene-l,3-propanediol diacetate, 1.1 equiv., TMG, 1.1 equiv., 1,4-dioxane, 14 h, 20"C; (d) (1) MePPh3+Br -, 
n-BuLi, THF, 30 rain, 20"C; (2) 9, THF, 90 min, 0°C; (e) LiAlI-h, 1 equiv., 1 h, 20"C; (f) LiAID4, 1.5 equiv., 30 rain, 20"C; 
(g) (1) (R)-(+)-Mosher acid, 1.9 equiv., C7H16, (COC1)2, 3.8 equiv., DMF, eat., 1 h, 20"C; (2) (R)-(+)-Mosher acid chloride, 1.9 
equiv., lla, DMAP, 3.8 equiv., CH2C12, 15 min, 20°C 

1,1,3,3-Tetramethyl guanidine as the base and 1,4-dioxane as solvent were selected following the 
Kozikowski's palladium annulation conditions. 13 However, tetrakis(triphenylphosphine)palladium was 
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used instead of palladium diacetate in the presence of triphenylphosphine. When the reaction was 
performed at room temperature for 14 h, the tricyclic product 9 was isolated in 70% yield with an 
optical rotation o f -60 .4  (C=0.46, CHC13). In refluxing dioxane, 13 9 was obtained in 65% yield with 
a reduced value of the optical rotation: -47.9. The direct measure of the diastereomeric excess was 
not possible at this stage and further transformations were necessary. Accordingly, the unstable 13-keto 
ester 914 was reacted with methylenetriphenylphosphorane affording ester 10.15 This compound was then 
reduced either with LiAIH4 or LiA1D4 affording, respectively, alcohols l l a  and l ib .  Alcohol l l a  was 
in turn nearly quantitatively esterified with the (R)-(+)-Mosher acid in the presence of oxalyl chloride 
giving rise to ester 12. At this stage three different measures of the diastereomeric excess were used. 
19F NMR and GC of ester 12 showed that the diastereomeric excess of this compound was higher than 
99%. 16 Whereas, the enantiomeric purity of alcohol l l b  was measured using Courtieu's method (2H 
NMR in the presence of polybenzyl-L-glutamate) 17 and gave the same enantiomeric excess value for this 
compound. 18 

After these encouraging results in the benzenic series, use of the same chiral auxiliary was extended 
to the synthesis of huperzine A 1 itself. Thus, 13-keto ester 13, prepared in 43% overall yield from 
2-methoxy-6-methylpyridine 11 was transesterified as previously described and the resulting ester 14 
was submitted to the palladium annulation conditions. As in the previous experiment, the reaction was 
performed at room temperature for 18 h. The expected tricyclic compound 15 was isolated as a single 
isomer in 75% yield. The measure of the diastereoselectivity of this reaction was secured after the same 
set of reactions as in the benzenic series. Wittig olefination affording the olefinic ester 16 was followed 
by reduction of the ester group. The resulting primary alcohol 17 was then esterified giving rise as above 
nearly quantitatively to the Mosher ester 18 (Scheme 3). 16 19F NMR and GC of ester 18 allowed to 
measure a diastereomeric excess of 92%. At this stage, these results are quite competitive from both a 
yield and diastereoselectivity point of view with those obtained in the previous asymmetric syntheses of 
huperzine A 1 and prompted us to correlate 15 with an advanced intermediate in the synthesis of this 
alkaloid. 
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Scheme 3. (a) (1R,2S)-2-Phenylcyclohexanol, 1.5 equiv., APTS, 0.1 equiv., C6H6, Dean-Stark, 48 h, fix; (b) Pd(PPh3)4, 0.05 
equiv., 2-methylene-l,3-propanediol diacetate, 1.1 equiv., TMG, 1.1 equiv., 1,4-dioxane, 18 h, 20"C; (c) (1) MePPh3+Br -, 
n-BuLl, THF, 30 min, 20°C; (2) 15, THF, 90 min, 0*C; (d) LiAII-14, 1 equiv., 1 h, 20°C; (e) (1) (R)-(+)-Mosher acid, 1.9 equiv., 
C7H16, (COC1)2, 3.8 equiv., DMF, cat., 1 h, 200C; (2) (R)-(+)-Mosher acid chloride, 1.9 equiv., DMAP, 3.8 equiv., CH2CI~, 15 
rain, 20°C 

Accordingly, I~-ketoester 15 was treated with ethylenetriphenylphosphorane affording the ethylidene 
derivative 19 as a 39:61 mixture of Z and E isomers in 54% yield along with 34% of recovered starting 
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material. Radical mediated isomerisation of  the ethylidene double bond increased this selectivity up to 
15:85 after treatment with th iophenol-AIBN for 7 days. 7a Isomerisation of  the vinylic double bond was 
then achieved in high yield with triflic acid in 1,4-dioxane at 80°C in a sealed tube and gave rise to 
ester 20. The chiral auxiliary was cleaved at this stage with lithium aluminium hydride reduction which 
afforded nearly quantitatively the known primary alcohol 21, a direct synthetic precursor of  huperzine A 
1 (Scheme 4). 7a The measure of  the optical rotation of  alcohol 21 showed the same absolute value as the 
product described by Kozikowski 7a but the reverse positive sign ([0t]O=+37 (c 1, CHCI3)) indicating that 
21 is antipodal to the natural series. 18,19 

MeO~N..~.. ~ M e O ~ . . ~  M e O ~ N ~ . ~ ' ~  MeO. >.. t~L_ 

,5 83%,88% o ,o v20 

Scheme 4. (a) Ph3P÷Et Br-, 9 equiv., cert-BuOK, 8.5 equiv., THE 20 h, 20°C. (b) PhStt, 1.7 equiv., PhMe, AIBN, 7 days, 85°C. 
(c) TfOH, 1.4 equiv., 1,4-dioxane, 18 h, 85°C, sealed tube. (d) LiA1H4, 1 equiv., THE 5 h, 20°C 

In conclusion, alcohol 21, a four-step synthetic precursor of  (+)-huperzine A 1, has been prepared 
in high enantiomeric purity, in 11 steps and in 23.8% overall yield from 2-methoxy-6-methylpyridine. 
As both 2-phenylcyclohexanol enantiomers are available, 12 this synthesis also constitutes a competitive 
access to the acetylcholinesterase inhibitor alkaloid (_+)-huperzine A 1. The asymmetric synthesis of  
huperzine B 2° using a similar procedure is in progress in our laboratory. 
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