THREE DIHYDROISOCOUMARIN GLUCOSIDES FROM HYDRANGEA MACROPHYLLA SUBSP. SERRATA*

TOSHIHIRO HASHIMOTO, MOTOO TORI and YOSHINORI ASAKAWA†

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

(Received 18 March 1987)

Key Word Index—Hydrangea macrophylla subsp. serrata; Saxifragaceae; macrophyllosides A, B and C; dihydroisocoumarin glucosides; bitter principles; plant growth inhibitory activity.

Abstract—Three new dihydroisocoumarin glucosides, macrophyllosides A, B and C were obtained from dry leaves of *Hydrangea macrophylla* subsp. serrata, together with the previously known hydrangenol $8-\beta$ -glucoside. Using NMR and CD techniques and some chemical transformation, the structures were elucidated as (3S)-3',4',5'-trimethoxyphenyl- $8-\beta$ -D-glucopyranosyl dihydroisocoumarin, (3R)- and (3S)-3',5'-dimethoxy-4'-hydroxyphenyl- $8-\beta$ -D-glucopyranosyl dihydroisocoumarins. CD experiments indicated that hydrangenol $8-\beta$ -glucoside was the mixture of 3S- and 3R-stereoisomers.

INTRODUCTION

Hydrangea species (Saxifragaceae) are rich in dihydroisocoumarins. H. macrophylla var. macrophylla produces hydrangenol (1) [1] and hydrangenol $8-\beta$ -glucoside (2) [2]. (+)-Phyllodulcin (3) [3-6] possessing antimicrobial activity [7] and phyllodulcin $8-\beta$ -glucoside (4) [8] have been isolated from H. macrophylla var. thunbergii, together with stilbene derivatives (26-29). Compound 3 is 1000 times sweeter than sugar and used as a refrigerant [9]. H. macrophylla var. thunbergii is a variety of H. macrophylla subsp. serrata (= H. macrophylla var. accuminata) whose chemical constituents have not so far been studied. As part of our interest of physiologically active substances and chemosystematics of Hydrangea

*This work was presented at the 106th Annual Meeting of Pharmaceutical Society of Japan, Chiba (1986). Symposium paper, p. 162.

⁺Author to whom correspondence should be addressed.

species, we have now investigated the chemical constituents of H. macrophylla subsp. serrata. In this paper we wish to report the isolation, structural elucidation and taste of three new dihydroisocoumarin glucosides and the plant growth inhibitory activity of stilbene derivatives derived from the new glucosides.

RESULTS AND DISCUSSION

The dry leaves of *H. macrophylla* subsp. serrata were extracted with methanol and the crude extract partitioned between water and *n*-butanol. The butanol extract was chromatographed on silica gel to afford macrophylloside A (5; 0.79% for dry leaves), and a mixture of macrophyllosides B and C (6 and 7, 0.95%), along with the previously known hydrangenol $8-\beta$ -glucoside (2, 1.83%).

Macrophylloside A (5)

The spectral data of 5 showed the presence of a hydroxyl group (3440 cm^{-1}) , a benzene ring (1605 and

1510 cm⁻¹; 216, 237.5 and 300 nm) and a carbonyl group (1715 cm⁻¹). The ¹HNMR (Table 1) and ¹³CNMR (Table 2) indicated the presence of three methoxyl groups, 5 protons on the benzene ring, two of which appeared as singlets, one methine group [$\delta_{\rm H}$ 5.44 (dd, J = 10.5 and 3.4 Hz); $\delta_{\rm C}$ 80.7 (d)] bearing an oxygen atom and one methylene proton $[\delta_{H} 3.19 (dd, J = 16.6 \text{ and } 3.2 \text{ Hz}), 3.28$ $(dd, J = 16.6 \text{ and } 10.5 \text{ Hz}); \delta_{C} 36.9 (t)$ which was coupled with the methine proton and ester carbonyl group $\delta_{\rm C}$ 164.9 (s)]. Acetylation of 5 gave a tetraacetate (8), whose high resolution mass spectrum (HRMS) exhibited a molecular ion at m/z 660.2067 in accord with the molecular formula C23H36O15. The mass spectrum of 8 indicated the characteristic fragment ions of tetraacetyl glucoside at m/z 331, 169 and 109, respectively [10, 11]. As seen in Tables 1 and 2, the ¹H and ¹³C NMR spectra of 8 were quite similar to those of the two pentaacetates (9 and 10) prepared from hydrangenol $8-\beta$ -glucoside (2) by acetylation, except for the signal pattern of the B-ring. The above spectra and chemical transformation indicated that 8 was 3-(3'.4'.5'-trimethoxyphenyl)-dihydroisocoumarin 8pentaacetyl glucoside. This assignment was confirmed as follows. 3,4,5-Trimethoxybenzaldehyde (11) was reduced with sodium borohydride, followed by acetylation to give 3.4.5-trimethoxybenzyl acetate (12) whose NMR signal pattern was identical to that of the B-ring of 8. Treatment of 5 with 1 N sulphuric acid gave macrophyllol (13), an dihydroisocoumarin possessing a hydrogen bonded carbonyl group (1660 cm⁻¹) and D-glucose which was identified as pentaacetyl- α -D-glucopyranoside ($[\alpha]_D + 100.5^\circ$) [12, 13] (Fig. 1). The NMR spectra of 13 resembled those of hydrangenol (1) and phyllodulcin (3), except for the signal pattern of the B-ring. Treatment of 13 with methanol-water in the presence of sodium bicarbonate to give a dihydrostilbene derivative (14), $C_{18}H_{20}O_7$ (HRMS: [M]⁺ 348.1203; calc. 348.1209; 1660 cm⁻¹; δ_C 174.3 s) whose ¹H and ¹³C NMR spectral data (Table 3) were very similar to those of combretastin (15) which shows antimitotic activity [14, 15]. The β -configuration of the glucose at C-8 of 5 was confirmed by the following NMR data: (i) the coupling constant of an anomeric proton (H-1") of 5 and 8 was 7.6 Hz [16]; (ii) the signal pattern of the sugar moiety in the ${}^{13}C$ NMR spectrum of 8 was identical to that of the pentaacetates (9 and 10) prepared

from hydrangenol 8- β -D-glucoside (2) whose absolute configuration at C-1" has been established as β [2]; (iii) the coupling constant $(J_{C-H} = 165.7 \text{ Hz})$ of an anomeric carbon (C-1") of 8 resembled that $(J_{C-H} = 166.0 \text{ Hz})$ of 9 and 10 [17]. The absolute configuration at C-3 of 5 was established by comparison of CD spectrum with that of (+)-phyllodulcin (3), whose absolute configuration at C-3 has been determined [18, 19] and its methylated derivative (16). Methylation of 3 with diazomethane gave two methylated products (16) and (17). Compound 13 gave a negative Cotton effect at 254 nm and a positive Cotton effect at 237 nm. On the other hand, compound 3 indicated negative and positive Cotton effects at 238 nm and 255 nm, respectively. The same spectrum as 3 was obtained in the case of 16. Thus, the absolute configuration at C-3 of 5 was established as S and the total stereostructure of macrophylloside A was formulated as (3S)-3',4',5'-trimethoxyphenyl-8- β -D-glucopyranosyl dihydroisocoumarin (5).

Macrophyllosides B(6) and C(7)

Compounds 6 and 7 were obtained as a mixtures. As the isolation of the two compounds was difficult by prep. TLC and HPLC, the mixture was acetylated and the resulting acetates chromatographed on silica gel to afford the two pentaacetates (18 and 19) in the ratio ca 1:1, whose HRMS showed the same molcular ions at m/z 688.1986, indicating the molecular formula, $C_{33}H_{36}O_{16}$. All the spectral data of 18 resembled those of 19, except for the sign of specific optical rotation. As indicated in Tables 1 and 2, the NMR spectral data of 18 and 19 were almost identical to those of 8-10, except for the absence of one methoxyl group in B-ring, replacing three methoxyl groups as in 8–10. The signal pattern of the two protons on the B-ring of 18 and 19 was very close to those of 4acetoxy-3,5-dimethoxybenzyl acetate (21), prepared from 20 in three steps (Fig. 2). The above spectral and chemical data suggested that 6 and 7 might be 3-(3',5'-demethoxy-4'-hydroxy-phenyl)-8-β-glucopyranosyl- or 3-(3',5'-dimethoxy-4'-\beta-glucopyranosylphenyl)-8-hydroxydihydroisocoumarin, having a different absolute configur-ation at C-3. The mixture of 6 and 7 underwent smooth hydrolysis with 1 N sulphuric acid to yield D-glucose,

Table 1. ¹H NMR chemical shifts and coupling constants (Hz, in parentheses) for

Proton	1	3	5	8	9	10	12
3	5.58 dd (12.2, 3.4)	5.43 dd (12.2, 3.2)	5.44 dd (10.5, 3.4)	5.40 dd (10.5, 3.4)	5.37 dd (12.5, 3.4)	5.47 dd (10.7, 3.2)	
4	3.12 dd (16.5, 3.4)	3.04 dd (16.6, 3.2)	3.19 dd (16.6, 3.4)	3.12 dd (16.6, 3.4)	3.04 dd (15.9, 3.4)	3.04 dd (16.4, 3.2)	
	3.35 dd (16.6, 12.2) 3.24 dd (16.6, 12.2) 3.28 dd (16.6, 10.5) 3.27 dd (16.6, 10.5) 3.24 dd (15.9, 12.5) 3.26 dd (16.4, 10.7)
5	6.84 d (7.8)	6.71 d (7.3)	7.01 d (7.1)	7.02 d (7.6)	7.01 d (7.6)	7.01 d (7.6)	
6	7.47 dd (7.8, 7.8)	7.41 dd (7.3, 7.3)	7.53 dd (7.1, 7.1)	7.48 dd (7.6, 7.6)	7.47 dd (7.6, 7.6)	7.47 dd (7.6, 7.6)	
7	6.88 d (7.8)	6.89 d (7.3)	7.27 d (7.1)	7.23 (7.6)	7.21 d (7.6)	7.23 d (7.6)	
2′	7.36 d (8.3)	6.99 d (2.0)	6.75 s	6.65 s	7.48 d (8.5)	7.45 d (8.8)	6.59 s
3′	6.90 d (8.3)				7.13 d (8.5)	7.12 d (8.8)	
5′	6.90 d (8.3)	6.83 d (8.3)			7.13 d (8.5)	7.12 d (8.8)	
6'	7.36 d (8.3)	6.91 (8.3, 2.0)	6.75 s	6.65 s	7.48 d (8.5)	7.45 d (8.8)	6.59 s
1″	. ,		4.94 d (7.6)	5.10 d (7.6)	5.21 d (7.8)	5.09 d (7.6)	
4'-OMe		3.86s	3.74 s	3.85 s			3.84 s
3'-OMe 5'-OMe			3.82 s	3.87 s			3.87 s

*Compounds 3, 8-19, 21 and 22 were measured in CDCl₃ solution, TMS as internal standard. Compounds 1 and 5 were measured

identified as its pentaacetate, and an aglycone (22), followed by methylation with diazomethane to afford macrophyllol (13) ($[\alpha]_D \pm 0^\circ$). Compound 22 was further treated with methanol-water in alkali solution to give a stilbene derivative (23). Reduction of 22 with sodium borohydride-palladium chloride gave a dihydrostilbene derivative (24), which was also derived from 23 by hydrogenation.

The location of a glucose at C-8 in 6 and 7 was confirmed by the following spectral evidence. The IR spectrum of the mixture of 6 and 7 showed an intense absorption band at 1705 cm⁻¹, attributable to a nonhydrogen bonded carbonyl group [20]. In the ¹³C NMR spectra of 18 and 19, the glycosylation shift was observed in C-7 and C-8a [21]. The β -configuration of the glucose at C-8 of 6 and 7 was established by the coupling constant of the anomeric protons at H-1" (J = 7.8 Hz) in both 18 and 19 [16] and of the anomeric carbons at C-1" (J = 166.3 Hz) in 18 and (J = 166.0 Hz) in 19, whose values were in accord with those of 9 and 10. Confirmation of the absolute configuration at C-3 of 18 and 19 was provided by the CD curve (see Experimental). Compound 19 showed the same Cotton effect as that of 8 whose absolute configuration at C-3 has been determined as S. On the other hand, 18 displayed the expected opposite Cotton curve to 8, indicating that the absolute configuration at C-3 of 18 was R. Compound 19 was further converted into 13 in three steps as shown in Fig. 1. On the basis of the above spectral and chemical evidence, the stereostructures of macrophyllosides B and C are presented as the formulae 6 and 7, respectively. Furthermore, the absolute configuration at C-3 of the two acetates (9 and 10) of hydrangenol 8- β -D-glucoside (2) was also established by the CD spectra (see Experimental) to be 3R and 3S, respectively showing that 2 was present as an inseparable mixture of the two stereoisomers (3R and 3S) in Hydrangea species.

As phyllodulcin (3) is an intense sweetening agent, the dihydroisocoumarins obtained in this experiment were tested for this property. Compounds 1, 8, 13, 18, 19 and 22 did not show any taste, however, 5 and the mixtures of 6 and 7 displayed a surprisingly intense bitter taste inducing vomiting. The stilbene derivatives (23 and 24) inhibited germination (100%) and elongation of second coleoptile

(70-68%) of rice in husk at the concentration of 500 ppm. This activity is almost the same as that of lunularic acid (25) which is the dormant substance isolated from some liverworts [22].

Table 4 shows the distribution of dihydroisocoumarins and stilbene derivaties found in three *Hydrangea* species. *H. macrophylla* subsp. *serrata* is morphologically quite similar to *H. macrophylla* var. *thunbergii*, however, the former species lacks 3 and 4, and stilbenes (26–29). Although the three species produce 4'-hydroxyphenyl dihydroisocoumarin in common, their chemical profiles are quite different.

EXPERIMENTAL

All mps were uncorr. The solvent used for spectral determination were: TMS-CDCl₃ [¹H NMR (400 MHz) and ¹³C NMR (100 MHz)]; EtOH (UV); CHCl₃ (IR and $[\alpha]_D$) and dioxane (CD) unless otherwise stated.

Plant materials. Hydrangea macrophylla subsp. serrata (Thumb.) Makino (= H. macrophylla var. acuminata f. Thunb. (Sieb.) Hatusima) was collected in Kenzan mountain, Tokushima prefecture in July 1984 and identified by Dr G. Murata, Department of Botany, Kyoto University. A voucher specimen has been deposited in the Herbarium of the Institute of Pharmacognosy, Tokushima Bunri University. Dried leaves of Hydrangea macrophylla var. thunbergii Makino was purchased in the market in July 1985.

Extraction and isolation. Fresh leaves of H. macrophylla subsp. serrata was dried overnight and the air-dried material (554 g) extracted with $\times 2$ hot MeOH (7 l). The extract, evapd to dryness at 30–40° gave a residue (89.1 g) which the partitioned between *n*-BuOH and H₂O. The conc. *n*-BuOH extract gave a residue (48.50 g) which was chromatographed on silica gel (1.5 kg) column and eluted with CHCl₃ with increasing amounts of MeOH (0–12%). The fraction (11–13) eluted by 12% MeOH-CHCl₃ contained white crystals which were recryst. from MeOH-Et₂O to afford pure macrophylloside A (5) (4.350 g, 0.79% for dry leaves). mp 110–112°; $[\alpha]_D = -134.4^\circ$ (MeOH; c1.22); UV λ_{max} nm (log ϵ): 216.0 (4.51), 237.5 (4.15) and 300 (3.65); ¹H NMR and ¹³C NMR: see Tables 1 and 2. (Found: C, 58.55; H, 5.60. C₂₄H₂₈O₁₁ requires: C, 58.53; H, 5.73).

The fraction (14–19) gave a white powdery material (5.25 g, 0.95°_{0}) whose ¹H NMR spectrum indicated the presence of two

13	16	18	19	21	22
5.52 dd (12.5, 2.9	5.52 dd (12.1, 3.3)	5.33 dd (9.8, 3.4)	5.34 dd (12.5, 3.4)		5.50 dd (12.5, 3.2)
3.10 dd (16.5, 2.9)	3.10 dd (16.5, 3.3)	3.05 dd (16.6, 3.4)	3.05 dd (16.6, 3.4)		3.10 dd (16.6, 3.2)
3.22 dd (16.5, 12.5) 3.33 dd (16.5, 12.1) 3.20 dd (16.6, 9.8)	3.20 dd (16.6, 12.5)	3.31 dd (16.6, 12.5)
6.75 d (7.7)	6.73 d (7.3)	7.01 d (7.1)	7.02 d (7.6)		6.74 d (7.3)
7.46 dd (7.7, 7.7)	7.44 dd (7.3, 7.3)	7.48 dd (7.1, 7.1)	7.48 dd (7.6, 7.6)		7.45 dd (7.3, 7.3)
6.93 d (7.7)	6.91 d (7.3)	7.21 d (7.1)	7.21 d (7.6)		6.92 d (7.3)
6.68 s	7.00 d (1.8)	6.71 s	6.71 s	6.60 s	6.68 s
	6.88 d (8.1)				
6.68 s	6.97 dd (8.1, 1.8)	6.71 s	6.71 s	6.60 s	6.68 s
	··· (···, ···,	5.21 d (7.8)	5.22 d (7.8)		
3.87 s	3.92 s				
3.89 s	3.90 s	3.85 s	3.85 s	3.81 s	3.91 s

compounds 1, 3, 5, 8-10, 12, 13, 16, 18, 19, 21 and 22*

in CD₃COCD₃ and CD₃OD, respectively.

Table 2. ¹³CNMR chemical shifts of compounds

С	1	3	5	8	9	10
1	169. 6 s	169.8 s	164.9 s	160.9 s	160.9 s	160.4 s
3	81.0 d	80.7 d	80.7 d	79.0 d	78.6 d	78.3 d
4	34.8 t	34.9 t	36 9 t	36.6 t	36.7 t	36.4 1
4a	140.0 s	139.5 s	142.9 s	141.2 s	141.4 s	141.1 s
5	118.0 d	118.2 d	117.0 d	118.6 d	117.6 d	118.4 d
6	136.0 d	136.3 d	136.3 d	134.3 d	134.2 d	134.4 d
7	115.6 d	116.3 d	122.5 d	122.5 d	122.3 d	122.7 d
8	161.8 s	162.1 s	160.2 s	158.0 s	157.8 s	158.0 s
8a	108.5 s	108.4 s	115.5 s	116.3 s	116.2 s	116.1 s
1′	129.1 s	131.0 s	135.9 s	134.0 s	141.4 s	135.9 s
2′	127.9 d	110.7 <i>d</i>	104.7 d	103.7 d	121.8 d	121.8 d
3'	115.3 d	145.8 s	154.6 s	153.5 s	127.4 d	127.3 d
4'	157.6 s	147.1 s	139.0 s	138.5 s	150.8 s	150.7 s
5'	115.3 d	112.7 d	154.6 s	153.5 s	127.4 d	127.3 d
б'	127.9 d	118.2 d	104.7 d	103.7 d	121.8 d	121.8 d
1″			103.0 d	100.0 d	99.8 d	100.0 d
2″			74.5 d	71.0 d	70.4 d	70.7 d
3″			78.4 d	72.3 d	72.1 d	72.2 d
4″			71.1 d	68.5 d	68.5 d	68.3 d
5″			77.7 d	72.6 d	72.6 d	72.5 d
6″			62.5 t	62.1 t	62.0 t	62.0 t
OMe		65.0 q	56.7 g	56.4 g		
		•	61.0 q	60.8 g		

*Compounds 3, 8–18, 21 and 22 were measured in CDCl₃ solution, TMS as internal standard. ^{a,b} These assignments are interchangeable.

a) $1N + H_2SO_4$ b) $NaHCO_3/MeOH + H_2O$ c) $Ba(OH)_2$ d) CH_2N_2 e) $H_2/10$ % Pd-C f) $NaBH_4$ -PdCl₂ Fig. 1.

glucosides, macrophyllosides B (6) and C (7) which were inseparable on TLC an HPLC. The mixture of 6 and 7: $[\alpha]_D - 35.5^{\circ}$ (MeOH; c1.30); UV λ_{max} nm (log ϵ): 216.5 (4.51), 242 (4.15) and 302 (3.62); (Found: C, 55.42; H, 5.65. C₂₃H₂₆O₁₁ · H₂O requires: C, 55.64; H, 5.68). The mixture (6 and 7) was acetylated and the resulting acetates purified by silica gel CC to afford pure acetates (18 and 19) (see below).

From the fraction (20–22), hydrangenol-8- β -D-glycoside (2) (10.150 g, 1.83 %) was obtained as crystals mp 190–194°; $[\alpha]_D$ – 50.1° (EtOH; c0.20); UV λ_{max} nm (log s): 218.5 (4.24), 228 (4.24),

285 (3.55) and 301 (3.62); (Found: C, 60.02; H, 5.38, $C_{21}H_{22}O_9$ requires: C, 60. 28; 5.30).

Acetylation of 5. Compound 5 (203 mg) was acetylated with Ac₂O-pyridine (4 ml each). After the usual work-up, the reaction product was cryst. from EtOH to give macrophylloside A tetraacetate (8) (224 mg) as colourless needles. Mp 237-240° (decomp.); $[\alpha]_D - 137.5°$ (dioxane; c0.16); UV λ_{max} nm (log s): 212.5 (4.05), 240 (3.60) and 305 (3.19); ¹H NMR and ¹³C NMR (see Tables 1 and 2); CD curve $[\theta]_{276} - 15260, [\theta]_{246} - 16310$ and $[\theta]_{205} - 38430$; HRMS: $[M]^+$ found 660.2067; calc. for

12	13	16	18	19	21	22
	169.7 d	169.7 s	160.9 s			168.9 s
	81.0 d	80.7 d	79.0 d	79.3 d		80.2 d
	35.3 t	34.9 t	37.0 t	36.5 t		35.2 t
	138.4 s	139.3 s	136.8 s	137.9 s		138.6 s
	118.0 d	117.8 d	117.5 d	117.5 d		117.3 d
	136.4 d	136.2 d	134.3 d	134.9 d		135.6 d
	116.4 d	116.1 d	122.3 d	122.9 d		115.6 d
	162.3 s	162.1 s	157.8 s	158.6 s		161.4 s
	108.4 s	108.2 s	116.1 s	116.2 s		107.8 s
131.5 s	133.6 s	130.3 s	136.8 s	134.9 s	134.4 s	134.5 s
105.7 d	103.4 d	109.3 d*	102.8 d	103.7 d	105.1 d	102.6 d
153. 4 s	153.5 s	149.0 s ^b	152.3 s	153.0 s	152.2 s	146.4 s
138. 1 s	139.3 s	149.4 s ^b	128.7 s	129.3 s	128.6 s	128.3 s
153.4 s	153.5 s	110.9 d*	152.3 s	153.0 s	152.2 s	146.4 s
105.7 d	103.4 d	118.7 d	102.8 d	103.7 d	105.1 d	102.6 d
			99.7 d	100.0 d		
			70.4 d	71.8 d		
			72.2 d	72.6 d		
			68.5 d	68.9 d		
			72.6 d	73.4 d		
			62.0 t	62.5 t		
56.2 a	56.2 a	55.8 a	56.3 a	56.3 a	56.1 a	56.1 a
60.8 a	60.9 a	4		T	· ··· 4	+ 1

1, 3, 5, 8-10, 12, 13, 16, 18, 19, 21 and 22*

Compounds 1, 5 and 19 were measured in CD₃COCD₃, CD₃OD and C₅D₅N solution, respectively.

Table 3. ¹H and ¹³CNMR chemical shifts (Hz, in parantheses) for compounds 14 and 15*

	14	15 [14]
Proton		
2		6.74-6.93
4	6.77 d (7.7)	
5	7.21 dd (7.7, 7.7)	6.74-6.93
6	6.62 d (7.7)	6.74-6.93
2′	6.61 s	6.64 s
6'	6.61 s	6.64 s
α	3.31 m	2.91 m
β	4.84 dd (9.2, 5.2)	4.83 dd (9, 5)
4'OMe	3.73 s	2.00 -
3',5'OMc	3.79 s	5.90 5
Carbon		
1	138.0 s	131.3 s ^a
2	104.2 s	110.8 <i>d</i> ^b
3	162.3 s	145.5 s ^c
4	116.5 d	145.8 s ^c
5	133.9 d	115.6 d ^b
6	124.8 d	121.0 d ^b
1'	142.2 s*	137.4 s ^a
2′	104.2 d	103.0 d
3′	154.2 s	153.3 s
4'	142.4 s ^a	139.7 s ^a
5'	154.2 s	153.3 s
6'	104. 2 d	103.0 <i>d</i>
α	46.6 t	45.6 t
β	76.2 d	75.5 d

*Compounds 14 and 15 were measured in CD₃OD and CDCl₃ solution, respectively.

^{a, b, c} These assignments are interchangeable.

 $C_{32}H_{36}O_{15}$: 660.2055; EIMS *m/z* (rel. int.): 660 [M]⁺ (3.2), 331 (37), 211 (6), 169 (100), 109 (37) and 43 (10); (Found: C, 57.76; 5.40. $C_{32}H_{36}O_{15}$ requires C, 58.18; H, 5.49).

Acetylation of 2. Compound 2 (1.150 g) was acetylated using the procedure described above' to give acetates (1.520 g), followed by CC on silica gel (200 g) eluted by CHCl₃ with increasing amounts of EtOAc to give the pentaacetates (9, 520 mg and 10, 556 mg) of hydrangenol 8- β -D-glucoside (2), respectively. Compound 9: mp 240-242° (from EtOAc-Et₂O); [α]_D + 37.4° (c0.43); UV λ_{max} nm (log ϵ): 210.5 (4.27), 236 (3.72) and 296.5 (3.47); ¹H and ¹³C NMR (see Tables 1 and 2); CD curve [θ]₂₈₈ + 2850, [θ]₂₇₈ + 2550, [θ]₂₅₀ + 5560 and [θ]₂₀₆ + 7650; (found: C, 59.10; H, 5.09. C₂₁H₃₂O₁₄ requires: C, 59.23; H, 5.13). 10: mp 242-244.5° (from EtOAc-Et₂O); [α]_D - 120.5° (c0.42); UV λ_{max} nm (log ϵ): 213.5 (4.45), 235 (4.00), 298 (3.59); CD curve [θ]₂₇₆ -9290, [θ]₂₅₇ - 7860 and [θ]₂₀₄ - 26430; (Found: C, 59.52; H, 5.02. C₃₁H₃₂O₁₄ requires: 59.23; H, 5.13).

Preparation of 12. To 3,4,5-trimethoxybenzaldehyde (11) (70 mg) in MeOH (60 ml) was added NaBH₄ (36 mg) and stirred for 1 hr at room temp. Work-up as usual gave a colourless oil (68 mg) which was acetylated with Ac₂O-pyridine (2 ml each) to give 3,4,5-trimethoxybenzyl acetate (12) (71 mg) as colourless oil. $IR \nu_{max} \text{ cm}^{-1}$: 1735, 1595, 1460, 1312, 1215 and 1125; EIMS m/z (rel. int.): 240 [M]⁺ (99), 198 (51) and 181 (100).

Acid hydrolysis of 5. 1 N H₂SO₄ (40 ml) was added to 5 (1.500 g) and stirred for 1 hr at 80–90°. The resulting mixture was extracted with EtOAc and the conc. extract purified by CC on silica gel using C₆H₆-EtOAc gradient to give macrophyllol (13) (465 mg). Mp 151–153.5° (from EtOAc-Et₂O); $[\alpha]_D$ – 58.0° (MeCOMe; c 0.81); UV λ_{max} nm (log s): 216 (4.61), 237.5 (4.10) and 318 (4.73); IR $\nu_{max}^{\rm KBr}$ cm⁻¹: 3400, 1660, 1618, 1590, 1460, 1225, 1115 and 1000; ¹H and ¹³C NMR (see Tables 1 and 2); CD curve (MeOH) [θ]₃₁₃ – 1140, [θ]₂₅₄ –8290 and [θ]₂₃₇ +4860; HRMS: found: 330.1096; calc. for C₁₈H₁₈O₆: 330.1103; EIMS *m/z* (rel. int.): 330 [M]⁺ (100), 312 (30), 237 (23) and 134 (21);

28 R¹=OH, R²=OMe 29 R¹=H, R²=OH

15 $R^1 = R^2 = R^3 = R^5 = OMe$, $R^4 = H$, $R^6 = OH$ **26** $R^1 = Glc$, $R^2 = H$ **25** $R^1 = R^3 = R^5 = R^6 = H$, $R^2 = OH$, $R^4 = COOH$ **27** $R^1 = H$, $R^2 = Glc$

a) NaBH₄/MeOH b) Ac₂O/pyridine

Fig. 2.

 Table 4. Distribution of dihydroisocoumarins and stilbene derivatives in three Hydrangea species

	Species						
Compounds	H. macrophylla var. macrophylla [1, 2]	H. macrophylla subsp. serrata	H. macrophylla var. thunbergii [3-6, 8]				
Hydrangenol (1)	+		+				
Hydrangenol 8- β - glucoside (2)	+	+	+				
Phyllodukin (3)			+				
Phyllodulcin 8- β - glucoside (4)			+.				
Macrophylloside A (5)		+					
Macrophylloside B (6)		+					
Macrophylloside C (7)		+					
Hydrangea glucoside A (26)			+				
Hydrangea glucoside B (27)			+				
Stilbene glucoside I (28)			+				
Stilbene glucoside II (29)			+				

(found: C, 65.89; H, 5.49. $C_{18}H_{18}O_6$ requires: C, 65.44; H, 5.49). The water layer was coned *in vacuo* at 40–50° to afford the residue (350 mg) which was acetylated with Ac₂O-pyridine (5 ml each) for 2 hr at 0–5° and then 16 hr at room temp. Work-up as usual gave pentaacetyl- α -D-glucopyranoside (125 mg). Mp 112–113° (lit. [12, 13]; $[\alpha]_D$ + 110.5° (1.5) (lit. [12, 13] + 102°). Alkaline hydrolysis of 13. To compound 13 (120 mg) in MeOH (8 ml)-H₂O (4 ml) was added NaHCO₃ (207 mg) and refluxed for 4 hr at 70–80°. The resulting mixture was acidified with 1 N H₂SO₄ and extracted with EtOAc and the combined extracts dried, filtered and evapd. The residue (118 mg) was recryst. from CHCl₃-Et₂O to give a dihydrostilbene derivative (14) (109 mg) as colourless needles. Mp 157–159.5°; $[\alpha]_D$ + 17.6° (c 0.57); UV λ_{max} nm (log ϵ): 219.5 (4.36); 230 (4.10), 282.5 (3.20) and 313 (3.58); ¹H and ¹³C NMR (see Tables 1 and 2); HRMS: $[M]^+$ (found 348.1203; calc. for $C_{18}H_{20}O_7$ 348.1209), $[M-H_2O]^+$ (found 330.1094; calc. for $C_{18}H_{18}O_6$ 330.1103).

Isolation of hydrangenol (1) and (+)-phyllodulcin (3) from H. macrophylla var. thunbergii. Dry leaves of H. macrophylla var. thunbergii (2.0 kg) was extracted \times 3 with MeOH (5 l). The same treatment of the methanol extract as described in the extraction of H. macrophylla subsp. serrata gave the residue (121 g) which was chromatographed on silica gel (1 kg) column eluted by n-hexane, with increasing amounts of EtOAc (0-100%). The fraction (30.5 g) eluted with 30% EtOAc-n-hexane contained sweet material which was further chromatographed on silica gel (500 g) using a CH₂Cl₂-EtOAc gradient to give (+)-phyllodulcin (3) (9.85 g, 0.49% for dry leaves) and hydrangenol (1) (3.95 g, 0.20%) as white crystals, respectively. 3: mp 118–120° (from Et₂O); $[\alpha]_D$ + 71.0 (Me₂CO; c 1.31); UV λ_{max} nm (log s): 214 (4.51), 230 (4.07), 289 (3.64) and 318 (3.70); ¹H and ¹³C NMR (see Tables 1 and 2); CD curve (MeOH) $[\theta]_{31,3}$ + 1710, $[\theta]_{238}$ -8000 and $[\theta]_{255}$ + 9430; HRMS: [M]* (found 286.0830; calc. for C₁₆H₁₄O₅ 286.0842); EIMS *m/z* (rel. int.); 286 [M]* (100), 269 (62), 253 (13), 240 (39), 225 (68), 197 (50) and 134 (83). 1: mp 180–181° (from CHCl₃-Et₂O); $[\alpha]_D$ -1.9° (dioxane; c0.9); UV λ_{max} nm (log s): 213.5 (4.46), 227 (4.24), 245 (3.95) and 316 (3.77); ⁻¹H and ¹³C NMR (see Tables I and 2); EIMS *m/z* (rel. int.): 256 [M]* (100), 238 (73), 210 (59) and 134 (23); (found: C, 70.20; H, 4.59, C₁₅H₁₂O₄ requires: 70.30; H, 4.72).

Methylation of 3. To compound 3 (1.35 g) in MeOH (20 ml) was added CH₂N₂—Et₂O (10 ml) and allowed to stand for 2 hr at 0-5°. The resulting mixture (1.40 g), after removal of the solvent, was chromatographed on silica gel (80 mg) using a CHCl₃-EtOAC gradient to give a dimethoxy (16) (129 mg, 9%) and a trimethoxy derivatives (17) (1.19 g, 76%), respectively. 16: mp 102-103° (from *n*-hexane-Et₂O); $[\alpha]_D$ + 63.9° (Me₂CO; c0.78); UV λ_{max} nm (log ε): 213.5 (4.53), 230 (4.16), 282 (3.61) and 316.5 (3.72); ¹H and ¹³C NMR (see Tables 1 and 2); CD (MeOH) curve $[\theta]_{304}$ + 1170, $[\theta]_{254}$ + 5840 and $[\theta]_{236}$ - 2210; HRMS: [M]⁺ (found: 300.1007; calc. for C₁₇H₁₆O₅ 300.0998); (found: C, 68.24; H, 5.39, C_{1.7}H₁₆O₅ requires: C, 67.99; H, 5.37).

17: Mp 116–117° (from *n*-hexane–Et₂O); $[\alpha]_D + 15.6^\circ$ (c1.37); UV λ_{max} nm (log *z*): 217 (4.40), 235.5 (4.17), 287 (3.67) and 308 (3.75); ¹H NMR: δ 3.02 (1H, *dd*, *J* = 16.1, 2.7 Hz, H-4), 3.27 (1H, *dd*, *J* = 16.1, 12.0 Hz, H-4), 3.88, 3.90, 3.95 (each 3H, 3 × OMe), 5.34 (1H, *dd*, *J* = 12.0, 2.7 Hz, H-3), 6.84 (1H, *d*, *J* = 7.6 Hz, H-5), 6.85 (1H, *d*, *J* = 8.1 Hz, H-5'), 6.94 (1H, *d*, *J* = 7.6 Hz, H-7), 6.96 (1H, *dd*, *J* = 8.1, 2.0 Hz, H-6'), 7.20 (1H, *d*, *J* = 2.0, H-2'), 7.47 (1H, *dd*, *J* = 7.6, 7.6 Hz, 6-H); HRMS: [M]⁻ (found: 314.1183; calc. for C₁₈H₁₈O₅ 314.1155); EIMS *m*/z (rel. int.): 314 [M]⁺ (76), 239 (10), 181 (31), 148 (100), 90 (59).

Acetylation of the mixtures 6 and 7. The mixture (1.15 g) of compounds 6 and 7 was acetylated with Ac₂O-pyridine (each 10 ml) to give acetates which were chromatographed on silica gel eluted by CHCl₃, with increasing amounts of EtOAc. From the fraction (6-20) and (22-47), macrophylloside B pentaacetate (18) (669 mg) and macrophylloside C pentaacetate (19) (574 mg) were obtained as colourless crystals, respectively. 18: mp 237-238° (from Et₂O-EtOAc); $[\alpha]_D$ +46.8° (c0.62); UV λ_{max} nm (log ε): 216.5 (4.38); 230 (4.10), 281 (3.45) and 299 (3.64); ¹H and ¹³C NMR (see Tables 1 and 2); CD curve, $[\theta]_{290}$ + 5000, $[\theta]_{247}$ + 1344 and $[\theta]_{206}$ + 28750; HRMS: [M]⁺ (found: 688.2010; cale. for C33H36O16: 688.2004); ELMS m/z (rel. int.): 688 (0.5), 331 (58), 211 (5), 169 (100), 109 (37), 43 (24). (found: C, 56.89; H, 5.15. C33H36O16 requires: C, 57.56; H, 5.25). 19: mp 237-238" (from Et₂O-EtOAc); $[x]_D = -131.0^{\circ}$ (c0.45); UV λ_{max} nm (log ϵ): 216.5 (4.37), 230 (4.09), 282.5 (3.44) and 298 (3.57); ¹H and ¹³C NMR (see Tables 1 and 2); CD curve, $[\theta]_{275} = -12080$, $[\theta]_{243} = -15840$ and [θ]₂₀₆ -85000; HRMS: [M]⁺ (found: 688.1986; calc. for $C_{33}H_{36}O_{16}$: 688.2004); EIMS m/z (rel. int.): 688 [M]⁺ (0.5), 331 (58), 211 (6), 169 (100), 109 (49), 43 (26); (found: C, 57.42; H, 5.24; C33H36O16 requires: C, 57.56; H, 5.27).

Preparation of **21**. Syringaldehyde (**20**) (105 mg) was acetylated with Ac₂O-pyridine (2 ml each) to give a monoacetate (125 mg), mp 107-108°. To the MeOH soln (12 ml) of the acetate was added NaBH₄ (61 mg) at 0° and stirred for 30 min. The resulting mixture was poured into 1 N HCl and extracted with EtOAc. Work-up as usual gave the residue (119 mg) which further acetylated to give 3,5-dimethoxy-4-acetoxybenzyl acetate (**21**) (95 mg) as a colourless oil. ¹H and ¹³C NMR (see Tables 1 and 2); EIMS *m/z* (rel. int.); 268 [M]⁺ (1), 226 (100), 184 (40), 167 (50).

Acid hydrolysis of the mixtures of 6 and 7. The mixtures (2.60 g) of compounds 6 and 7 were treated as above for the preparation

of 13 to give the residue (1.65 g), followed by recryst. from Et₂O-EtOAc to afford 4'-demethylmacrophyllol (22) (1.37 g) as colourless needles. mp 154-155.5°; $[\alpha]_D \pm 0^\circ$ (c 0.72); UV λ_{max} nm (log c); 217.5 (4.48), 243.5 (4.17) and 317 (3.77); ¹H and ¹³C NMR (see Tables 1 and 2); HRMS: $[M]^+$ (found; 316.0939; calc. for $C_{17}H_{16}O_6$ 316.0947); EIMS m/z (rel. int.); 316 (100), 298 (10), 279 (11), 134 (18); (found: C, 64.89; H, 5.11. $C_{17}H_{26}O_6$ requires C, 64.55; H, 5.10).

The water layer was treated as described in the hydrolysis of 5 to give pentaacetyl- α -D-glucopyranoside (257 mg). mp 112-113° (lit. [12, 13] 112-113°); [α]_D + 107.5° (c 1.8) (lit. (12, 13] + 102°).

Methylation of 22. Compound 22 (226 mg) was treated as for prep. of 16 and 17 to yield a methylated product which was further purified by prep. TLC (CHCl₃-EtOAc 4:1) to give macrophyllol (13) (54 mg) 151-154°; $[\alpha]_D \pm 0^\circ$ (Me₂CO, c0.72) and the starting material (22) (126 mg), respectively. The former compound was identical to 3S-macrophyllol (13) in all respect, except for the value of the specific optical rotation.

Alkaline hydrolysis of 22. NaHCO₃ (200 mg) was added to compound 22 (305 mg) in MeOH (10 ml) and H₂O (2 ml) and then refluxed for 1 hr at 70-80°. The resulting mixture was acidified with 1 N H₂SO₄ and extracted with EtOAc. The usual work-up afforded a stilbene, which was recryst. from CHCl₃ to furnish 23 (254 mg) as yellow needles. Mp 115–116°; UV λ_{max} nm (log ɛ): 214 (4.46), 342 (4.18) and 346.5 (4.19); ¹H NMR (CD₃OD); δ 3.90 (3H, s, OMe), 6.80 (2H, s, H-2' and 6'), 6.82 (1H, d, J = 7.6 Hz, H-4), 6.86 (1H, d, J = 16.1 Hz, H- β), 7.32 (1H, d, J = 7.6 Hz, H-6), 7.33 (1H, dd, J = 7.6, 7.6 Hz, H-5) and 7.59 (1H, d, J = 16.1 Hz, H- α); ¹³C NMR (CD₃OD + CDCl₃): 56.7 (q, 2 × OMe), 105.4 (d, C-2' and C-6'), 122.4 (s, C-2), 116.8 (d, C-4), 119.4 (d, C-\beta), 127.8 (d, C-6), 129.5 (s, C-4'), 132.2 (d, C-5), 134.9 (C-a), 137.3 (s, C-1'), 142.4 (s, C-1), 148.9 (s, C-3' and C-5'), 163.2 (s, C-3) and 173.4 (s, COOH): HRMS: [M]⁺ (found: 316.0927; calc. for C17H16O6 316.0947).

Reduction of 22. To compound (22) (251 mg) in MeOH (20 ml) was added PdCl₂ (140 mg). NaBH₄ (300 mg) was added to the above soln little by little for 10 min with stirring and stirred further for 30 min. The resulting mixture was filtered and the filtrate concd in vacuo to give a residue which was extracted with EtOAc and the combined extracts dried and evapd. The residue was chromatographed on silica gel using CHCl3-MeOH gradient to yield a bibenzyl derivative (24) (199 mg) as white needles. mp 149-151.5 (from Et₂O-EtOAc); UV λ_{max} nm (log s): 219 (4.38), 230 (4.10), 284.5 (3.39) and 312 (3.59); ¹H NMR (CD₃OD): δ2.78 $(2H, t, J = 8.3 \text{ Hz}, H-\beta), 3.18 (2H, t, J = 8.3 \text{ Hz}, H-\alpha), 3.78 (6H, s, s)$ $2 \times OMe$), 6.43 (2H, s, H-2' and H-6'), 6.65 (1H, d, J = 7.6 Hz, H-6), 6.75 (1H, d, J = 7.6 Hz, H-4) and 7.21 (1H, dd, J = 7.6, 7.6 Hz, H-5); ¹³C NMR (CD₃OD + CDCl₃): 39.4, 39.5 (t, C- α and C- β), 56.6 (q, 2 × OMe), 106.6 (d, C-2' and C-6'), 115.5 (s, C-2), 115.9 (d, C-4), 123.2 (d, C-6), 133.8 (d, C-5), 134.2, 134.4 (s, C-1' and C-4'); 146.0 (s, C-1), 148.8 (s, C-3' and C-5'), 167.2 (s, C-3) and 175.4 (s, COOH); HRMS: $[M]^+$ (found; 318.1096; calc. for $C_{17}H_{18}O_6$ 318.1104); EIMS m/z (rel. int.): 318 [M]+ (26), 167 (100), 151 (2).

Hydrogenation of 23. Compound 23 (20 mg) in EtOAc (10 ml) was hydrogenated in the presence of 10% Pd-C (100 mg) for 5 hr. The usual work-up gave a bibenzyl derivative (24) (15 mg), whose physical and spectral data were identical to those of the bibenzyl (24) prepared from 22.

Conversion of 19 to 13. To 19 (175 mg) in MeOH (40 ml) was added Ba(OH)₂ (2 ml) and stirred for 4 hr at room temp. The reaction mixture was neutralized with Amberlite IR 120 (H⁺), filtered and the conc. filtrate (126 mg) dissolved in MeOH (10 ml) was treated with CH_2N_2 -Et₂O (5 ml) for 2 hr at 0-5°. 1 N H₂SO₄ was added and the mixture stirred for 2 hr at 80-90°. Extraction with EtOAc gave a residue which was purified by prep. TLC (CHCl₃-EtOAc 4:1) to give macrophyllol (13) (26 mg). [α]_D -54.8° (Me₂CO; c 0.80); HRMS: [M]⁺ (found: 330.1096; calc. for C₁₈H₁₈O₆ 330.1103), whose physical and spectral data were identical to those of (-)-macrophyllol (13) prepared from 5.

Acknowledgements—We thank Dr G. Murata, Department of Botany, Kyoto University, for his identification of the plants. A part of this work was supported by a Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare (Y.A.).

REFERENCES

- 1. Asahina, Y. and Asano, J. (1930) Chem. Ber. 63, 429.
- 2. Ueno, Y. (1937) Yukugaku Zasshi 57, 602.
- 3. Asahina, Y. and Asano, J. (1930) Yakugaku Zasshi 50, 580.
- 4. Asahina, Y. and Asano, J. (1931) Yakugaku Zasshi 51, 595.
- 5. Asahina, Y. and Asano, J. (1931) Yakugaku Zasshi 51, 749.
- 6. Yagi, A., Washida, Y., Takata, N. and Nishioka, I. (1972) Chem. Pharm. Bull. 20, 1755.
- 7. Ueno, Y. and Mori, R. (1931) Yakugaku Zasshi 51, 227.
- 8. Suzuki, H., Ikeda, T., Matsumoto, T. and Noguchi, M. (1977) Agric. Biol. Chem. 41, 1815.
- Yamato, M., Kitamura, T., Hashigaki, K., Kuwano, Y., Yoshida, N. and Koyama, T. (1972) Yakugaku Zasshi 92, 367.

- Budzikiewicz, H., Djerassi, C. and Williams, D. H. (1964) Structural Elucidation of Natural Products by Mass Spectrometry. Vol. 2, p. 207. Holden-Day, San Francisco.
- Biemann, K., Dejough, D. C. and Schnoes, H. K. (1963) J. Am. Chem. Soc. 85, 1763.
- 12. Behrend, R. and Roth, P. (1904) Lieb. Ann. Chem. 331, 359.
- Hudsen, C. S. and Dale, J. K. (1915) J. Am. Chem. Soc. 87, 1264.
- 14. Pettit, G. R., Cragg, G. M., Herald, D. L., Schmidt, J. M. and Lohavanijaya, P. (1982) *Can. J. Chem.* **60**, 1374.
- Hamel, E. and Lin, C. M. (1983) Biochem. Pharmacol. 32, 3864.
- Lemieux, R. U. and Stevens, J. D. (1965) Can. J. Chem. 43, 2059.
- Mizutani, K., Kasai, R. and Tanaka, O. (1980) Carbohydr. Res. 87, 19.
- 18. Arakawa, H. and Nakazaki, M. (1959) Chem. Ind. 671.
- 19. Arakawa (1960) Bull. Chem. Soc. Jpn 33, 200.
- Asakawa, Y., Takikawa, K., Toyota, M. and Takemoto, T. (1982) Phytochemistry 21, 2481.
- 21. Kasai, R., Okihara, M., Asakawa, J., Mizutani, K. and Tanaka, O. (1979) Tetrahedron 35, 1427.
- Valio, I. F., Burden, R. S. and Schwabe, W. W. (1969) Nature 223, 1176.