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In our synthetic studies toward huperzine A, a diastereoselective ′-alkylation of the -amido--methyl hexenone 4 was real-
ized through a dianion intermediate which significantly enhanced the reactivity. Under the attempted Heck reaction conditions, 
an unexpected and unprecedented palladium-catalyzed intramolecular -arylation of 3 was observed, which generated 18 with 
bicyclo[3.3.1]nonane framework in satisfactory yield.  
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Lycopodium alkaloid huperzine A (1, Figure 1) was isolated 
by Liu et al. from Huperzia serrata, a plant with a long his-
tory of being used in traditional Chinese medicine, and was 
identified to be a highly potent, selective and reversible 
AChE inhibitor [1]. Structurally, huperzine A contains a 
bicyclo[3.3.1]nonane carbon skeleton featured in lycodine 
family, which is further fused to a pyridone ring. The intri-
guing molecular architecture combined with the promise to 
become an anti-neurodegenerative agent [2] has aroused 
continuous interest from the synthetic community [3]. As 
part of our enduring interest in total synthesis of bioactive 
terpenoids [4], herein we report the results of our asymmet- 

 

 

Figure 1  Huperzine A (1) and selected lycopodium alkaloids. 

ric synthetic studies toward huperzine A. 
As outlined in Scheme 1, the N-protected -aminoketone 

2 was selected as the key precursor for the target molecule 
in the retrosynthetic analysis. A traceless convergent strat-
egy was envisioned to construct the key precursor 2, which 
was anticipated to be fashioned from 3 via an intramolecu-
lar Heck reaction 4[5] during which the initial chirality at the 
methyl group would vanish [6]. Enone 3 was envisaged to 
stem from -amidocyclohexenone 4 and bromide 5 in a 
substrate-controlled diastereoselective alkylation process,  

 

 

Scheme 1  Retrosynthetic analysis. 
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while 4 could further be reduced to 6 by using a coupling 
reaction to install the amido function. With the amido group 
to be introduced at an early stage of the synthesis, it was 
envisioned that the multistep procedure of Curtius rear-
rangement to fashion an amino group, which had always 
been employed in all the previous huperzine A synthetic 
routes, could be avoided.   

Based on a chiral-pool strategy, the synthesis of 6 was 
achieved via two different procedures by employing 
(+)-pulegone as the starting material (Scheme 2). In the first 
procedure, pulegone was transformed into 6 in three steps 
with 37% overall yield. Treating pulegone with aqueous 
hydrogen peroxide in the presence of potassium hydroxide 
produced epoxide 7 as a mixture of two isomers [7], the 
exposure of which to LDA followed by treatment with 
PhN(Tf)2 afforded triflate 8 in 68% yield over two steps. 
Subsequent cleavage of the epoxide with periodic acid pro-
duced ketone 6 in a moderate yield.  

The alternative access to 6 was shorter and more efficient 
(Scheme 2). Thus, a site-selective deprotonation of 
pulegone with LDA was followed by treament with the tri-
flating reagent to give the inseparable isomers 9 and 10 in 
ca. 1:6 ratio as determined by 1H NMR spectroscopy with 
94% overall yield. Subsequent selective ozonolytic cleavage 
of the more electron-rich olefinic double bond in 10 pro-
ceeded smoothly to generate 6 in 63% yield over two steps 
from pulegone. Compound 6 is properly functionalized and 
holds good potentials to become a versatile chiral building 
block in natural product synthesis [8]. 

The Buchwald-Hartwig coupling reaction was next ex-
plored to install the amido group [9]. With Pd2(dba)3 as the 
catalyst and t-Bu-XPhos as the ligand, the base and the sol-
vent were examined briefly (Table 1). The optimal condi-
tions included cesium carbonate as the base and toluene as 
the solvent, which delivered the coupling product in 83% 
yield. To the best of our knowledge, this represents a rare 
example of palladium-catalyzed cross coupling reaction 
employing a simple -trifloxy enone as the substrate [10], 
which provides facile access to -amido-,-unsaturated 
ketone. Because ()-pulegone is also commercially availa-
ble, both enantiomers of the chiral building block 4 could be 
readily obtained in optically pure form according to the 
above protocol.  

 

 

Scheme 2  Synthesis of 6 from (+)-pulegone. 

Table 1  Coupling of -trifloxy enone 6 with BocNH2 

 

Entry Base Solvent Temp., time Yield (%)

1 K2CO3 t-BuOH 80 °C, 5 h 43 

2 K2CO3 toluene 90 °C, 5 h 53 

3 Cs2CO3 toluene 80 °C, 5 h 83 

 
The bromopyridine 5 was readily prepared in three steps 

with 43% overall yield according to the known procedures 
[3i, 11] (Scheme 3). The diastereoselective alkylation reac-
tion between 4 and 5 was then carefully studied with LDA 
as the base. After tremendous experimentations, it was 
found that the equivalent of the base was crucial for 
achieving satisfactory diastereoselectivity. Under the opti-
mal conditions, 4 was exposed to 2.2 equiv LDA at 50 °C 
to form the putative intermediate dianion A and reacted 
with 5 before quenching at 10 °C to furnish the kinetically 
controlled coupling product 14 in 83% yield with 12:1 dia-
stereoselectivity favoring the desired trans isomer [12]. No 
alkylation reaction took place when 1.0 equiv LDA was 
employed, while dimerization of 5 occurred when 4.0 
eqivalent LDA was used. The reaction temperature also 
played a role. The diastereoselectivity eroded to 1:1 when 
the reaction was quenched at 20 °C. Amide 14 could be 
converted to imide 3 in a quantitative yield. It is noteworthy 
that the formation of dianion A contributed significantly to 
the observed reactivity of the alkylation process [13]. Actu-
ally, imide 15, which precluded the formation of a dianion, 
could only generate 3 in 25% yield in the corresponding 
alkylating process. 

With precursors 14 and 3 in hand, the stage was set for 
investigating the cyclization reaction. We first tried the in-
tramolecular Heck reaction of 14. Unfortunately, 14 gave  

 

 

Scheme 3  Synthesis of 3 via diastereoselective alkylation. 
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either no reaction or decomposed products under tested 
conditions. We reasoned that the amide group, which might 
undergo deprotonation under the reaction conditions to ren-
der its coordinating ability further enhanced, along with the 
assistance of the vicinal carbonyl group, could associate the 
catalyst metal to engender a complex that probably deac-
tivated the catalyst. With this assumption in mind, we 
turned our attention to the reaction of imide 3 in which such 
a complex was impossible to form.  

After numerous attempts, it was found that a cyclization 
product could be obtained in as high as 65% yield (Scheme 
4) [14]. Although this cyclization product was initially mis-
takenly assigned as the expected 2 based on spectroscopic 
studies including 1H NMR, COSY, and NOESY, we were 
surprised to find that the real product was 18 with a 
1-methylbicyclo[3.3.1]nonane skeleton stemming from an 
unprecedented intramolecular -arylation, as revealed by the 
X-ray crystallographic structure [15]. The X-ray data also 
disclosed that the compound was not optically pure, which 
suggested that partial racemization of the substrate had oc-
curred under the reaction conditions [16]. Interestingly, we 
did not detect any Michael addition product which was 
dominant in Mann’s relevant studies [11], indicating the 
-amido group played a crucial role in the current reaction.  

Our proposed mechanism of the observed -arylation is 
depicted in Scheme 5. Under the reaction conditions, 3 un-
derwent oxidative addition with the Pd(0) catalyst to furnish 
the palladium species I, which proceeded to give II via 
-deprotonation and ligand exchange. The subsequent re-
ductive elimination produced 18 with concomitant regener-
ation of Pd(0) catalyst.  

In conclusion, an unexpected and unprecedented palla- 
dium-catalyzed intramolecular -arylation was observed,  

 

 
Scheme 4  Palladium catalyzed -arylation of 3. 

 

Scheme 5  Proposed mechanism for the palladium catalyzed -arylation 
of 3. 

which generated bicyclo[3.3.1]nonane framework 18 in 
satisfactory yield. The synthesis of the precursor for the 
arylation reaction featured a diastereoselective alkylation, 
which was powered by the formation of a dianion interme-
diate. The new chiral building blocks 4 and 6 could find 
applications in natural product synthesis. To divert the cy-
clization process away from the current -arylation pathway, 
fine-tunings of the electronic and/or steric properties of the 
substrates are entailed. Alternative reactions, such as oxida-
tive Heck reaction [17], may also be explored to achieve the 
huperzine skeleton. Efforts along these lines are currently 
being actively pursued and will be reported in due course. 
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