View Article Online View Journal

# ChemComm

# Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: R. A. Fernandes and R. A. Kunkalkar, *Chem. Commun.*, 2019, DOI: 10.1039/C8CC09785B.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/chemcomm

# ChemComm



## Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 29 January 2019. Downloaded by Iowa State University on 1/29/2019 1:06:23 PM

Lewis Acid-Catalyzed Annulative Partial Dimerization of 3-Aryloxyacrylates to 4-Arylchroman-2-ones: Synthesis of Analogues of Tolterodine, RORγ Inhibitor and a GPR40 Agonist

Rupesh A. Kunkalkar<sup>a</sup> and Rodney A. Fernandes\*<sup>a</sup>

A beguiling annulative partial dimerization of 3-aryloxyacrylates to 4-arylchroman-2-ones catalyzed by Lewis acid ( $BF_3 \cdot OEt_2$ ) has been developed. The reaction involves two molecules of 3aryloxyacrylate, resulting in the loss of one propiolate molecule to furnish 4-arylchroman-2-one, an important structural motif found in many natural products. This methodology has been elaborated to synthesize analogues of tolterodine, RORy inhibitors and a GPR40 agonist.

The molecular rearrangements occupy an important niche in synthetic organic chemistry<sup>1</sup> and are important for building unusual complexities in the products from rather simple substrates or easy-to-make starting materials. Many natural products and valuable compounds have been synthesized by molecular rearrangements.<sup>1,2</sup> Acid-catalyzed rearrangements offer a unique opportunity in cascade reactions, leading to several bonds being formed in a single operation. Such reactions are sought after for being atom economic and highly resource conservative. Atkinson and co-workers had shown a remarkable 1,5-hydride shift in acyclic systems containing  $\alpha$ , $\beta$ unsaturated ketones, creating an intermediate enolate that cyclized with the benzylic cation to give a cyclic product.<sup>3a</sup> Latter, Reinhoudt et al.<sup>3b</sup> described a similar 1,5-hydride shift, to produce fused heterocycles. Noguchi et al.3c also reported similar chemistry for preparing fused pyridine compounds. Extensive work by Dalibor Sames and co-workers<sup>4</sup> on such hydride transfer cyclization (called HT-cyclization) has opened a new avenue for several types of substrates to be employed for 1,5-hydride shift and subsequent cyclization. In their work, the aryl-alkyl ether 1 failed to rearrange initially when BF<sub>3</sub>·OEt<sub>2</sub> was used, but the desired HT-cyclized product 2 was obtained with  $Sc(OTf)_3$  in a sealed tube (Scheme 1A).  $^{4c}$  We believed that, an aryl methyl group would also provide an active hydride to the

CO<sub>2</sub>Et

32

pendant aryloxyacrylate in compound 3a, followed by in-situ

enolate cyclization to give benzopyran 4 (Scheme 1B). However,

to our delight, it delivered an annulative partially dimerized/

rearranged product 4-arylchroman-2-one **5a** with two molecules of **3a** being involved with a concomitant loss of one

propiolate molecule (Scheme 1C). Such an annulative partial

dimerization is hitherto unknown to the best of our knowledge

and much to our astonishment that several substrates underwent the HT-cyclization in the seminal work of Sames et

Scheme 1 Hydride transfer cyclization and a new partial annulative dimerization.

BF3.OEt2 (0.5 equiv)

DCE, 80 °C, 94%

This method is simple, and 4-arylchroman-2-ones (4aryldihydrocoumarin),<sup>6</sup> an important structural motif found in many natural products<sup>7,8</sup> (Figure 1, for e.g. the calomelanols **6a-**h,<sup>7a-c</sup> poinsettifolactone **6i**<sup>7d</sup> and gnetumontanin C **6j**<sup>7f</sup>), could be obtained in one step from the substrates of type **3**. Further, the 4-arylchroman-2-ones could serve as intermediates for drugs and bioactive compounds like tolterodine **7**,<sup>9</sup> the GPR40 agonists **8**<sup>10</sup> and the ROR $\gamma$  inhibitor (–)-ML209 **9**<sup>8e</sup> (Figure 1).

<sup>&</sup>lt;sup>a.</sup> Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India . E-mail: <u>rfernand@chem.iitb.ac.in</u>

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

e in al.<sup>4</sup> Product **5a** was characterized by <sup>1</sup>H and <sup>13</sup>C NMR and HRMS data. Further the structure was confirmed unambiguously by single crystal XRD (Scheme 1).<sup>5</sup>  $\frac{MeO_2C}{H} \underbrace{\frac{K}{SC(OTf)_3(0.1 \text{ equiv})}_{S0 \ C} \underbrace{\frac{K}{SC(OTf)_3(0.1 \text{ equiv})}_{CL_2(2, 24 \text{ h}, 91\%)} \underbrace{\frac{K}{SC(OTf)_3(0.$ 

Published on 29 January 2019. Downloaded by Iowa State University on 1/29/2019 1:06:23 PM



The reaction of 3a as model compound with various Lewis and Brønsted acids was first optimized to reveal that BF<sub>3</sub>·OEt<sub>2</sub> (0.5 equiv) in 1,2-dichloroethane (DCE) at 0.02 M concentration and 80 °C were optimum requirement giving the product 5a in 94% yield in 4 h (see Table 1 in SI for details). The minor Zacrylates (Z-3) obtained during the preparation of 3 were found to provide the same product 5. Thus, the reaction does not necessitate the separation of the two geometric isomers of the 3-aryloxyacrylates. With the optimized conditions, the scope and limitations of the annulative partial dimerization was investigated as shown in Scheme 2, to furnish the 4arylchroman-2-ones 5 in good to excellent yields. The reaction worked well with alkyl, aryl, methoxy or methylacetate substituents on the aryloxy part of the substrate **3a-j** to give 4arylchroman-2-ones 5a-j in 44-94% yields. The product 5j required 3 days for the complete consumption of 3j and was obtained in moderate yield (44%, a reaction at 80 °C gave poor yields). It can be noted that since the para-position in **3a-j** was blocked, the electrophilic substitution occurred at the orthoposition. When the para- and/or ortho-position was free e.g., in 3k-n, the reaction resulted in substitution exclusively at the para-position to give 5k-n respectively. The trend in yields could be a result of increased nucleophilicity of phenol because of the alkyl groups or due to steric crowding. This was more evident for **3o** and **3p**, which gave coumarins **5o** and **5p**, respectively, through oxonium-arylation and 4-aryloxy elimination rather than O-C migration. Halide substituted substrates also reacted well to give 4-arylchroman-2-ones 5n and 5q-u in good yields of 52-71%. The halide group can be used as handle for various coupling reactions for molecular diversity. The aryl ring needs to be nucleophilic enough for the electrophilic substitution. Hence, substrates with electron-withdrawing groups, 3v and 3w, did not undergo this reaction. When the ortho positions were blocked, the substrates 3x-z gave un-cyclized  $\beta$ , $\beta$ -bis-



Scheme 2 Annulative partial dimerization/rearrangement of various ethyl 3aryloxyacrylates 3. NR = No reaction.

arylacetates **5x-z** in good yields, because of no ortho-hydroxy group for lactonization.

We further considered synthetic modifications of the 4aryldihydrocoumarins. The 4-arylchroman-2-one 5k was elaborated efficiently to 8a, a GPR40 agonist by first phenolic OH alkylation to 10 and then lactone hydrolysis (Scheme 3).<sup>9,10</sup> GPR40 is a G-protein-coupled receptor primarily expressed in pancreatic  $\beta$ -cells. It is an attractive therapeutic target to control type 2 diabetes. GPR40 agonists are known to stimulate insulin secretion and reduce circulating glucose levels in a glucose dependent manner.<sup>11</sup> Compound **8a** showed ED<sub>50</sub> = 4.8  $\mu$ M at the Human GPR40 receptor.<sup>10</sup> The DiBAL-H reduction of 5a and 5q to the lactols and further one-pot reductive amination gave tolterodine analogues 7'a and 7'q in good yields (Scheme 3).<sup>9,12</sup> Tolterodine, traded as detrol is an antimuscarinic drug<sup>13a</sup> that is used for the treatment of urinary incontinence and acts on M2 and M3 subtypes of muscarinic receptors.13b The 4-aryldihydrocoumarins 5a and 5q were converted to **9'a** and **9'q** by reacting with piperidine (Scheme 3). RORyt, a retinoic acid-related orphan receptor plays a key role in the differentiation of TH17 cells. Antagonizing the activity of RORyt transcription is a potential means to treat TH17-related autoimmune diseases.<sup>14</sup> Littman et al.<sup>8e</sup> prepared several diphenylpropanamides and found (-)-ML209 9 (Figure 1) as a significant ROR $\gamma$  inhibitor (ROR $\gamma$  essay: IC<sub>50</sub> = 0.5  $\mu$ M).

We further considered mechanistic studies for ascertaining the series of intermediary steps. A reaction on two different, mixed substrates was carefully examined (Scheme 4), with one chosen to have both ortho-positions substituted to avoid cyclization, thus expecting to give three products instead of four if there was cross-over of aryl groups. Indeed the reaction delivered three products as expected. For example, the reaction

Journal Name

Journal Name

of equimolar amounts of **3x** and **3b** (Scheme 4, entry 1) provided



Scheme 3 Synthesis of GPR40 agonist 8a, tolterodine analogues (7'a & 7'q) and probable ROR $\gamma$  inhibitors (9'a & 9'q).

**5b** (27%), **5x** (25%) and the aryl group cross-over product **5bx** (37%, structure confirmed by single crystal XRD).<sup>5</sup> Similarly, compounds **5by**, **5ay**, **5cy** and **5az** (entries 2-5) were obtained as cross-over products and is an extension of this method to obtain compounds with two different aryl moieties. It also indicated the cleavage of C3-O aryloxy-acrylate bond.

The cleavage of C3-O bond was further supported by the reaction of compound 11 (Scheme 5), to give the usual product 5b (68%) and the fused naphthyl coumarin 12 (33%), which arises from the naphthyl propiolate that is formed by the cleavage of C3-O bond. 2-Naphthol (58%) was also isolated from this reaction. This was similar to compounds 50 and 5p (Scheme 2). To substantiate this claim we prepared separately 2naphthyl propiolate 13, and reacted it with BF<sub>3</sub>·OEt<sub>2</sub> to give 12 in 45% yield. Further, the reaction of *n*-decyl 3-aryloxyacrylate **14** with  $BF_3 \cdot OEt_2$  gave the phenol **15** (quant), *n*-decylpropiolate 16 (35%) and n-decanol (46%). This clearly indicated the cleavage of the C3-O bond. A deuterium labelling study was also conducted (Scheme 5). The di-deuterated 3-aryloxyacrylate 3b', obtained in good yield with deuterium incorporation as D<sup>1</sup> (84%) and D<sup>2</sup> (78%) was treated with BF<sub>3</sub>·OEt<sub>2</sub> (0.5 equiv) to provide compound 5b'. This had D<sup>1</sup> (80%), while there was loss at D<sup>2</sup> (18%). The loss at D<sup>2</sup> could be attributed to the reversible enolization (see reaction mechanism, Scheme 6). It also indicated that the  $\beta$ -hydrogen of the acrylate that corresponds to D<sup>1</sup> is not involved.

Considering the various experiments and results, the mechanism as shown in Scheme 6 is proposed. Co-ordination of  $BF_3 \cdot OEt_2$  with the carbonyl group of **3** gives the oxo-carbenium ion **18**. The C3-O bond cleavage of another molecule of **3** gives the <sup>+</sup>BF<sub>3</sub>-phenoxide **19** that undergoes electrophilic substitution with **18** to produce **21**. Next, the O- to C-aryl migration and

aromatization gives **23** via the enol **22**. The loss  $p_{ticle}$  the deuterium experiment could be due of the transformed enolization (**22** to **23**). The lactonization of **23** gives **5**. The O-C



| entry | R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> , R <sup>4</sup> ( <b>3</b> )                                         | yield <b>A</b>  | yield <b>B</b>  | yield <b>C</b>   |
|-------|------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|------------------|
| 1     | $R^1 = R^2 = R^3 = Me, R^4 = H$                                                                                        | <b>5b</b> , 27% | <b>5x</b> , 25% | <b>5bx</b> , 37% |
| 2     | $R^1 = R^2 = i$ -Pr, $R^3 = Me$ , $R^4 = H$                                                                            | <b>5b</b> , 30% | <b>5y</b> , 25% | <b>5by</b> , 35% |
| 3     | $R^1 = R^2 = i$ -Pr, $R^3 = R^4 = Me$                                                                                  | <b>5a</b> , 32% | <b>5y</b> , 21% | <b>5ay</b> , 32  |
| 4     | $\mathbf{R}^1 = \mathbf{R}^2 = i\text{-}\mathbf{Pr},  \mathbf{R}^3 = t\text{-}\mathbf{Bu},  \mathbf{R}^4 = \mathbf{H}$ | <b>5c</b> , 28% | <b>5y</b> , 23% | <b>5cy</b> , 34% |
| 5     | $R^1 = Et$ , $R^2 = OEt$ , $R^3 = R^4 = Me$                                                                            | <b>5a</b> , 27% | <b>5z</b> , 24% | <b>5az</b> , 32% |
|       |                                                                                                                        |                 |                 |                  |

Scheme 4 Cross-over experiments of mixed 3-aryloxyacrylates



Scheme 5 Experiments to ascertain C3-O bond cleavage in 3-aryloxyacrylates and deuterium labelling study.

#### **Journal Name**

aryl-migration was proved by the reaction of **24** (prepared separately) to give the product **5aa** in 92% yield (Scheme 6). The presence of ortho-substituents directs the electrophilic substitution at para position. This prevents cyclization, giving the 3,3-bis-arylacetates **5x-z** as there is no ortho-hydroxyl group for lactonization.



In summary, we have developed a beguiling annulative partial dimerization/rearrangement of 3-aryloxyacrylates under Lewis-acid conditions to 4-arylchroman-2-ones (4-aryldihydrocoumarins), which are important structural motifs in many natural products. The reaction occurs through C3-O aryloxy bond cleavage, electrophilic aromatic substitution, O-C aryl-migration and lactonization. This method is important, as addition of a phenol to alkyl/aryl propiolate delivers **3** and in one step would further provide 4-arylchroman-2-ones **5**.

We thank SERB New Delhi (EMR/2017/000499) for financial support. R.A.K. thanks UGC, India for a research fellowship.

## **Conflicts of interest**

There are no conflicts of interest to declare.

### Notes and references

(1) (a) C. M. Rojas, *Molecular Rearrangements in Organic Synthesis*, 2016, 1st Edn., John Wiley and Sons. (b) S. Moulay, *Chem. Edu. Res. Prac.*, 2002, **3**, 33.

(2) (a) A. S. Kende, *Pure & Appl. Chem.*, 1997, **69**, 407; (b) J. Marco-Contelles, E. Soriano, Rearrangements in Natural Product Synthesis. In *Modern Tools for the Synthesis of Complex Bioactive Molecules*. J. Cossy, S. Arseniyadis, Eds.; Wiley: Hoboken, NJ, 2012; pp 243–269.

(3) (a) R. S. Atkinson, R. H. Green, *J. Chem. Soc., Perkin Trans. 1,* 1974, 394. (b) W. H. N. Nijhuis, W. Verboom, D. N. Reinhoudt, *J. Am. Chem. Soc.,* 1987, **109**, 3136. (c) M. Noguchi, H. Yamada, T. A. Sunagawa, *J. Chem. Soc., Perkin Trans. 1,* 1998, 3327.

(5) CCDC 1873459 (**5a**) and 1873458 (**5bx**) contains the supplementary crystallographic data.

(6) For recent synthesis of 4-aryldihydrocoumarins see: (a) J. Oyamada, Kitamura, T. *Tetrahedron* 2006, **62**, 6918; (b) J. C. Allen, G. Kociok-Köhn, C. G. Frost, *Org. Biomol. Chem.*, 2012, **10**, 32; (c) I. Ibrahem, G. Ma, S. Afewerki, A. Córdova, *Angew. Chem., Int. Ed.*, 2013, **52**, 878; (d) L. Caruana, M. Mondatori, V. Corti, S. Morales, A. Mazzanti, M. Fochi, L. Bernardi, *Chem. Eur. J.*, 2015, **21**, 6037; (e) G. Yue, K. Lei, H. Hirao, J. S. Zhou, *Angew. Chem., Int. Ed.*, 2015, **54**, 6531; (f) G. -T. Li, Z. -K. Li, Q. Gu, S.-L. You, *Org. Lett.*, 2017, **19**, 1318.

(7) For 4-aryldihydrocoumarin natural products see: (a) F. Asai, M. linuma, T. Tanaka, M. Mizuno, *Phytochemistry*, 1991, **30**, 3091;
(b) F. Asai, M. linuma, T. Tanaka, M. Mizuno, *Heterocycles*, 1992, **33**, 229;
(c) M. linuma, T. Tanaka, M. Takenaka, M. Mizuno, F. Asai, *Phytochemistry*, 1992, **31**, 2487;
(d) B. T. Ngadjui, G. W. F. Kapche, H. Tamboue, B. M. Abegaz, J. D. Connolly, *Phytochemistry*, 1999, **51**, 119;
(e) X. Sun, A. T. Sneden, *Planta Med.*, 1999, **65**, 671;
(f) X. M. Li, M. Lin, Y. H. Wang, X. Liu, *Planta Med.*, 2004, **70**, 160.

(8) For bioactivities of 4-aryldihydrocoumarins see: (a) Q. Xiong, W. Fan, Y. Tezuka, I. K. Adnyana, P. Stampoulis, M. Hattori, T. Namba, S. Kadota, *Planta Med.*, 2000, **66**, 127; (b) N. Tabanca, R. S. Pawar, D. Ferreira, J. P. Marais, S. I. Khan, V. Joshi, I. A. Khan, *Planta Med.*, 2007, **73**, 1107; (c) K. V. Sashidhara, S. P. Singh, S. V. Singh, R. K. Srivastava, K. Srivastava, J. K. Saxena, S. K. Puri, *Eur. J. Med. Chem.*, 2013, **60**, 497; (d) S. Xu, M. Y. Shang, G. X. Liu, F. Xu, X. Wang, C. C. Shou, S. Q. Cai, *Molecules*, 2013, **18**, 5265; (e) J. R. Huh, E. E. Englund, H. Wang, R. Huang, P. Huang, F. Rastinejad, J. Inglese, C. P. Austin, R. L. Johnson, W. Huang, D. R. Littman, *ACS Med. Chem. Lett.*, 2013, **4**, 79.

(9) B. D. Gallahher, B. R. Taft, B. H. Lipshutz, Org. Lett., 2009, **11**, 5374 and references therein.

(10) F. Song, S. Lu, J. Gunnet, J. Z. Xu, P. Wines, J. Proost, Y. Liang, C. Baumann, J. Lenhard, W. V. Murray, K. T. Demarest, G. -H. Kuo, *J. Med. Chem.* **2007**, *50*, 2807.

(11) C. F. Burant, Diabetes Care, 2013, 36, S175.

(12) For selected synthesis of tolterodine see: (a) G. Chen, N. Tokunga, T. Hayashi, *Org. Lett.*, 2005, **7**, 2285; (b) F. Ulgheri, M. Marchetti, O. Piccolo, *J. Org. Chem.*, 2007, **72**, 6056; (c) S. Soergel, N. Tokunga, K. Sasaki, K. Okamoto, T. Hayashi, *Org. Lett.*, 2008, **10**, 589; (d) K. Yoo, H. Kim, J. Yun, *J. Org. Chem.*, 2009, **74**, 4232.
(13) (a) P. V. Kerrebroeck, K. Kreder, U. Jonas, N. Zinner, A. Wein, *Urology*, 2001, **57**, 414; (b) D. J. Sellers, T. Yamanishi, C. R. Chapple, C. Couldwell, K. Yasuda, R. Chess-Williams, *J. Auton Pharmacol.*, 2000, **20**, 171.

(14) (a) T. Hirose, R. J. Smith, A. M. Jetten, *Biochem. Biophy. Res. Commun.*, 1994, **205**, 1976; (b) U. Guendisch, J. Weiss, F. Ecoeur, J. C. Riker, K. Kaupmann, J. Kallen, S. Hintermann, D. Orain, J. Dawson, A. Billich, C. Guntermann, *PLoS One* 2017, **12**, e0188391.