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Several 3,4-dihydroisocoumarins and phthalides were synthesized by an effective Heck–Matsuda reac-
tion involving an ortho carboxybenzenediazonium salt with a series of styrenes bearing electron donating
and electron withdrawing groups, methylvinyl ketone, and methyl acrylate. The reaction was carried out
in an open-flask with 1% mol of palladium acetate in aqueous ethanol at �80 �C, giving the correspondent
3-aryl-3,4-dihydroisocoumarins and phthalides with good overall yields. The electronic nature of the
group attached to the olefin is a key feature for the regioselectivity of the cyclization step.

� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

The 3-aryl-3,4-dihydroisocoumarins1 and phthalides2 are fami-
lies of natural products that stand out for displaying an extensive list
of biological activities. For example, 3-aryl-3,4-dihydroisocoumarin
1,1b isolated from Haloxylon scoparium, is an efficient GABAA induc-
tor and phthalide 2,2b isolated from Ligusticum chuanxiong, has
remarkable vasorelaxation activity (Fig. 1).

Many synthetic methods are available in the literature for the
preparation of these scaffolds.3–5 However, only a few of them are
capable of producing the two basic cores in a divergent manner.
Among the methods available, the ortho lithiation of arenes is the
most used.6 Another common strategy is the acid- (or base-) med-
iated cyclization of alkenes and alkynes.7 However, these strategies
have their drawbacks, such as the need for structurally complex
starting materials. Less frequently used methods include condensa-
tion reactions such as the Horner–Witting reaction and/or the use
of metal catalysis.8,9

Regarding the methods using transition metal catalysts,9 palla-
dium, and copper are by far the most common metals employed.
Moreover, these methods often employ the protected ortho arene
derivatives as the arylating agent.10 Recently, the Heck–Matsuda
(HM) reaction reappeared as an effective alternative for attaching
an aryl group to styrene double bonds.11 Unlike the conventional
Heck reactions, the HM reaction employs arenediazonium salts
ll rights reserved.
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as electrophiles and no r-donor ligands (phosphines, for example)
are needed for high catalytic activity.

The ortho carboxybenzenediazonium tetrafluoroborate salt 4 is
a particularly interesting diazonium salt, which is extensively used
in aryne chemistry.12 Its use in Merweein coupling is also known,13

but application in the Heck–Matsuda reaction is somewhat rare.14

In this work we extend the applicability of this arenediazonium
salt in the efficient synthesis of dihydroisocoumarins and phtha-
lides in a concise manner.

2. Results and discussion

We chose styrene 3 as a model olefin for optimization studies. We
began with 5 mol % of the Pd(OAc)2, at 40 �C and ethanol as the
solvent to obtain the desired stilbene 5 in a moderate 64% yield, after
30 min (entry 1, Table 1). Increasing the temperature to 60 �C pro-
vided 5 in 82% yield, and at 80 �C (oil bath temperature) we obtained
almost quantitative yield of stilbene 5 in only 10 min (entries 2 and
3). We then set this temperature as the optimal one for this transfor-
mation. Next, we evaluated the influence of the catalyst loading. To
O
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Figure 1. Examples of dihydroisocoumarins and phthalides.
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Scheme 1. Regiocontrolled synthesis of a dihydroisocoumarin.

Table 2
Synthesis of dihydroisocoumarins and phthalides

Entry Olefin Additive Product %a

1 (3) H2SO4

O

O

(12)

76

2
OAc

(6) None

O

O

OH
(9)

63

3
OMe

(13) None

O

O

OMe
(14)

45

4 (15) H2SO4

O

O

(16)

61

5
Cl

(17) H2SO4

Cl

O

O

(18)

62

6

O
(10)

None
O

O

O
(11)

65

7
NO2

(19) Et3N
O

O

NO2
(20)

62

8

O

O
(21) Et3N

O

O

O

O
(22)

82

a Yields after purification.

Table 1
Method optimization

N2BF4

OH

O

Pd(OAc)2
HO2C

T(°C), t(min)

(3) (4) (5)[open-flask]

Entry Ta (�C) t (min) Solvent Pd (mol %) Yieldb (%)

1 40 30 EtOH 5 64
2 60 30 EtOH 5 82
3 80 10 EtOH 5 99
4 80 10 EtOH 2.5 99
5 80 10 EtOH 1.0 99
6 80 10 EtOH 0.5 81
7 80 10 MeCN 5 —

a Oil bath temperature.
b Yields after purification.
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our delight, reducing the catalyst loading from 5 mol % down to
1 mol % did not cause any significant drop in yields (entries 4 and
5). Further decrease in the catalyst loading to 0.5 mol % provided a
good 81% yield of stilbene 5 (entry 6). A slight excess of the arene-
diazonium salt (10% excess) is recommended for an efficient reac-
tion, and the use of bases is detrimental for the reaction in EtOH
leading to decomposition of the arenediazonium, possibly with the
formation of the corresponding arynes.12 Somewhat surprising,
the reaction seems to be inhibited when using MeCN as a solvent.

Once optimal conditions were established, we moved forward
to p-AcO-styrene 6, since previous results suggested that the pres-
ence of the electron withdrawing acetyl group is advantageous in
this type of HM reaction.15 As predicted, initial tests showed that
besides formation of the expected primary Heck adduct 7; we also
obtained the phenolic derivative 8 due to the loss of the acetyl
group in the acidic ethanolic medium. However, extending the
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Figure 2. Rationale for the regioselective cyclization: (a) with EDG to
dihydroisocoumarins (b) with EWG to phthalides.
reaction time to 60 min, we obtained the corresponding dihydro-
isocoumarin 9 regioselectively in 63% yield (Scheme 1).

The formation of dihydroisocoumarin 9 is straightforward and
can be explained by both the acidification of the medium and the
electronic nature16 of the Heck adduct 8 (Fig. 2). The observation that
the electronic nature of the aryl group on the starting styrene might
be controlling the cyclization outcome prompted us to investigate
the formation of phthalides from olefins bearing electron-with-
drawing groups. Keeping this principle in mind, we carried out a
63%(3)

O

ON2
CO2H
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(23)

Scheme 2. ‘One-pot’ formation of isocoumarin 23.
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Figure 3. Rationale for the synthesis of isocoumarin 23.
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reaction of methyl vinyl ketone with arenediazonium 4. Gratify-
ingly, the reaction went smoothly providing the anticipated phthal-
ide 11 in 65% yield. Since two important frameworks can now be
obtained from this type of Heck reaction, a more extensive investiga-
tion on the electronic nature of the starting olefin was carried out
(Table 2).

In agreement with the mechanistic proposal (Fig. 2), we found
that olefins bearing electron-withdrawing groups provide the
phthalide core (Table 2, entries 6–8), whereas those bearing elec-
tron-donating groups generate the dihydroisocoumarin core
(Table 2, entries 1–5).

The one-pot cyclization took place only in the synthesis of com-
pounds 9, 11, and 14. In the case of dihydroisocoumarins 12, 16,
and 18, the desired product was obtained after reaction with the
acid. On the other hand, phthalides 20 and 22 were formed after
reaction with the base. It is worth mentioning that yields can be
improved if the cyclization step is preceded by chromatographic
purification of the Heck product. For example, the overall yield
for dihydroisocoumarins 12 goes up to 94% if the Heck product is
isolated and then submitted to cyclization under acidic conditions.
Nevertheless, we found the one-pot sequence advantageous on
practical and economic grounds.

Another interesting feature of this protocol is the fact that the
Pd catalyst used in the Heck reaction can be converted into a mild
Lewis acid thus promoting the acid catalyzed cyclization of the
Heck adduct into the isocoumarin system in a sequential manner.
To achieve that, ethanol was simply evaporated, replaced by
DMSO,17 and the reaction placed under O2. This procedure pro-
vided the unsaturated isocoumarin 23 in 63% yield from styrene
3 in a one-pot procedure (Scheme 2). Attempts to oxidize dihydro-
isocoumarin 12 into 23 using the same reaction conditions
(Pd(OAc)2, O2, DMSO) failed, which indicates that compound 12
is not an intermediate in this process.

Formation of the isocoumarin 23 can be explained by the oxida-
tion of the Pd(0), generated in the Heck step, to Pd(II) by oxygen,
followed by the formation of the p–olefin palladium(II) complex
2418 (Fig. 3). Next, the added base (sodium acetate) forms a carbox-
ylate anion 25, which attacks the double bond regioselectivity.
Subsequent b-hydride elimination affords the isocoumarin 23
and Pd(0), which undergoes re-oxidation by O2, closing the cata-
lytic cycle. Further applications of this protocol and the reuse of
the catalyst are currently under investigation.
3. Conclusion

Expeditious and concise syntheses of 3,4-dihydroisocoumarins
and phthalides can be accomplished from the Heck–Matsuda reac-
tion of styrenes, methylvinyl ketones, and acrylates. 6-Membered
dihydroisocoumarins or the 5-membered phthalide can be assem-
bled quickly using a one-pot procedure from some substrates.
These preliminary results indicate that the type of skeleton
generated depends upon the electronic nature of the group
attached to the olefin. Electron rich styrenes provided the dihydro-
isocoumarin skeleton, whereas electron deficient olefins provided
the phthalide skeleton. The protocol can also be used for the direct
synthesis of isocoumarins by converting the Pd(0) generated
during the Heck arylation into the mild Lewis acid Pd(II) in a
sequential manner.
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