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A cDNA encoding a novel copper amine oxidase (CAO) was cloned and sequenced from the Chinese club
moss Huperzia serrata (Huperziaceae), which produces the Lycopodium alkaloid huperzine A. A 2043-bp
open reading frame encoded an Mr 76,854 protein with 681 amino acids. The deduced amino acid
sequence shared 44–56% identity with the known CAOs of plant origin, and contained the active site con-
sensus sequence of Asn-Tyr-Asp/Glu. The phylogenetic tree analysis revealed that HsCAO from the prim-
itive vascular plant H. serrata is closely related to Physcomitrella patens subsp CAO. The recombinant
enzyme, heterologously expressed in Escherichia coli, catalyzed the oxidative deamination of aliphatic
and aromatic amines. Among them, the enzyme accepted cadaverine as the best substrate to catalyze
the oxidative deamination to D1-piperideine, which is the precursor of the Lycopodium alkaloids. Fur-
thermore, a homology modeling and site-directed mutagenesis studies predicted the active site architec-
ture, which suggested the crucial active site residues for the observed substrate preference. This is the
first report of the cloning and characterization of a CAO enzyme from the primitive Lycopodium plant.

� 2012 Published by Elsevier Ltd.
Copper amine oxidases (CAOs) (EC 1.4.3.21) are quinoenzymes,
and are widely distributed in bacteria, yeasts, fungi, plants and
animals.1–6 The enzymes catalyze the oxidative deamination of pri-
mary amines to the corresponding aldehydes, with the concomitant
reduction of dioxygen to hydrogen peroxide via a ping-pong mech-
anism involving a covalently bound redox cofactor, 2,4,5-trihydr-
oxyphenylalanine quinone (TPQ), and a copper ion Cu2+ (Fig. 1A).
The CAOs are homodimeric proteins consisting of 70–90 kDa sub-
units, each of containing a single copper ion and the covalently
bound cofactor TPQ, formed by the post-translational modification
of the CAO’s conserved tyrosine side chain within the consensus
active site sequence of Asn-Tyr-Asp/Glu (Fig. 2).7 Among the mem-
bers of the Cu-TPQ class CAOs, the plant enzymes are generally cat-
alytically more active than those from animals.8

The Lycopodium alkaloids are quinolizine, or pyridine and
a-pyridone type alkaloids, and a number of the alkaloids have been
isolated from 54 species of the Lycopodium plant.9 For example,
Huperzia serrata (Thunb.) Trev. (Huperziaceae, recently reclassified
by taxonomists, formerly Lycopodium serrata), produces the Lycopo-
dium alkaloid huperzine A, which is a potent inhibitor of acetylcho-
linesterase and thus a promising drug for Alzheimer’s disease.10,11

Although the biosynthesis of the Lycopodium alkaloids remains
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poorly understood, various studies, including an EST analysis,12,13

suggested that it is initiated by the decarboxylation of lysine to form
cadaverine, with the subsequent formation of D1-piperideine,
which is catalyzed by CAO (Fig. 1B).9 However, CAO genes involved
in the biosynthesis of the Lycopodium alkaloids have been still
uncovered. In order to shed light on the biosynthesis of the Lycopo-
dium alkaloids in H. serrata, we performed PCR screening of CAO
enzymes, by using primers based on the conserved sequences of
the known CAOs. Here we report the cloning and characterization
of a novel CAO from the primitive vascular plant H. serrata. The
enzyme accepted cadaverine as the best substrate to catalyze the
oxidative deamination to D1-piperideine, which is the precursor
of the Lycopodium alkaloids. This is the first report describing a
CAO enzyme from a primitive Lycopodium plant.

The cDNA encoding a novel CAO (HsCAO) was cloned and se-
quenced from the roots of H. serrata by RT-PCR, using degenerate
primers based on the conserved sequences of the known plant
CAO enzymes.14 The terminal sequences of the cDNA were deter-
mined by the 30- and 50-RACE methods. The full-length cDNA con-
tained a 2043 bp ORF encoding an Mr 76,854 protein with 681
amino acids (Fig. 2). The nucleotide sequence has been deposited
in the GenBank database (GenBank ID: JN247732). No additional
cDNAs encoding CAO isomers were obtained in this study. The de-
duced amino acid sequence shared 44–56% identity with those of
the known plant CAOs: 56.5% identity to Solanum lycopersicum
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Figure 1. Proposed mechanism of CAOs. (A) Overall proposed reaction mechanism from primary amine to aldehyde, catalyzed by CAOs. (B) Proposed biosynthetic pathway
from lysine to D1-piperideine.

Figure 2. Comparison of the primary sequences of HsCAO and other plant CAOs. The predicted secondary structures, a-helices (rectangles), b-strands (arrows), and loops
(bold lines) of HsCAO are also diagrammed. The secondary structure was predicted by the PredictProtein site (http://www.predictprotein.org). The CAO’s conserved
consensus sequence Asn-Tyr-Asp/Glu, and the copper binding histidine residues are marked with # and @, respectively. The Tyr, Lys, Asp, and Asn residues, which are though
to play a crucial role in the activation of catalytic center TPQ, are marked with $. The regions that employed to design the degenerated primers F1, F2, R1 and R2 were
indicated with closed squares. Abbreviations (GenBank accession numbers): HsCAO, Huperzia serrata CAO; SLAO, Solanum lycopersicum CAO (CAI39243); PPAO, Physcomitrella
patens CAO (XP_001772536); LSAO, Lathyrus sativus CAO (CAH10210); PSAO, Pisum sativum CAO (Q43077).
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Figure 3. Phylogenetic analysis of plant and bacterial CAO enzymes. HsCAO is highlighted by an arrow. The optimal tree with the sum of branch length = 7.18335546 is
shown. Bootstrap values (%) out of 1000 resamplings are at each node. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances
used to infer the phylogenetic tree. The evolutionary distances are in the units of number of amino acid substitutions per site. The indicated scale represents 0.1 amino acid
substitutions per site.
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CAO (SLAO), 54.6% identity to Physcomitrella patens CAO (PPAO),
45.4% to Lathyrus sativus CAO (LSAO), and 44.2% to Pisum sativum
CAO (PSAO). A sequence analysis revealed that HsCAO contains
the conserved active site consensus sequence, Asn-Tyr-Asp/Glu.7

The active site tyrosine side chain within the Asn-Tyr-Asp/Glu se-
quence is the post-translationally modified to form the covalently-
bound co-factor, TPQ. In addition, HsCAO contains the three histi-
dine residues (His465, His467 and His627) for copper ion binding,
as well as the two active-site residues (Tyr308 and Asp322) con-
served in the CAO family enzymes. Furthermore, a phylogenetic
tree analysis revealed that HsCAO, from the primitive vascular
plant H. serrate, is closely related to Physcomitrella patens subsp
CAO (Fig. 3).15

The full-length cDNA of HsCAO was sub-cloned into the
pET22b(+) vector, and the recombinant HsCAO protein, with a
hexahistidine-tag at the C-terminus, was expressed in Escherichia
coli BLR and BL21(DE3)pLysS, and purified to homogeneity by
Ni-chelating affinity column chromatography.16,17 The purified
protein migrated as a single band with an Mr of 78 kDa, in good
agreement with the calculated value of 77,676 Da (Fig. 4). In con-
trast, a gel-filtration experiment yielded an Mr of 162 kDa, suggest-
ing that the recombinant HsCAO is a homodimeric enzyme, as in
the case of the known CAOs.1,2,7

As previously reported for the copper-containing amine oxi-
dases (phenethylamine oxidase and histamine oxidase from Arth-
robacter globiformis),18,19 the catalytically active, recombinant
HsCAO protein was obtained only in the presence of CuSO4, and
was present in the soluble fraction when expressed in E. coli BLR.
In fact, when the catalytically active recombinant HsCAO was re-
acted with phenylhydrazine,20 which is the conventional method
to detect the covalently bound Cu-TPQ cofactor at the active site,
a UV spectra analysis revealed a peak with maximal absorption
at 448 nm, corresponding to the phenylhydrazone, as previously
observed for the known CAOs.1,2,5,7,21 In contrast, the absence of
CuSO4, the inactive, Cu2+-free recombinant HsCAO protein did
not afford the peak in the phenylhydrazine reaction. These



Table 1
Steady-state kinetic parameters of recombinant HsCAO

Substrate KM (mM) Kcat (s�1) Kcat/KM (s�1 mM�1)

H2N NH2

cadaverine 
0.3 1.0 3.3

H2N
NH2

putrescine 
1.2 1.9 1.6

H2N
H
N NH2

spermidine 

0.8 2.3 2.9

H2N
NH

N

histamine 

0.7 1.8 2.6

H2N

benzylamine 

0.5 1.4 2.8

H2N
N

4-aminomethylpyridine 

1.9 3.1 1.6

H2N

N

3-aminomethylpyridine 

1.2 1.9 1.6

N

H2N

2-aminoethylpyridine 

1.7 2.9 1.7

Figure 4. SDS–PAGE of recombinant HsCAO purified by Ni-chelating affinity
column chromatography. The arrow indicates the recombinant HsCAO, at 78 kDa.
M, protein molecular weight markers; lane 1, protein solution after Ni-chelating
affinity column purifications.
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observations suggested that the catalytically active, recombinant
HsCAO is a copper/TPQ-containing homodimeric enzyme, and the
active site tyrosine side chain within the Asn-Tyr-Asp/Glu
sequence is post-translationally modified to form the covalently-
bound cofactor TPQ.

An LC–ESIMS analysis22 revealed that the catalytically active,
recombinant HsCAO accepts cadaverine as the amine substrate to
produce D1-piperideine, which is the putative biosynthetic precur-
sor of the Lycopodium alkaloids9 (Fig. 5). The piperideine-forming
Figure 5. LC–ESIMS analysis of the enzymatic formation of D1-piperideine from cadave
activity was maximal at pH 8.0, within the range of pH 6.8–8.5. In
contrast, when EDTA or the inactive form of HsCAO was added to
the enzyme reaction mixture, the piperideine-forming activity
was undetectable. Furthermore, since the CAO family enzymes
rine by HsCAO. Ion chromatograms extracted with m/z 84 and m/z 103 are shown.



Figure 6. Overall structure of the homology model of HsCAO. (A) Both monomer A (blue) and B (silver) are represented by ribbon models. The catalytic center TPQ410 is
represented with an orange CPK model. The copper ion binding histidine residues His465, His467, and His627, are indicated with pink CPK models. (B and C) Comparison of
the homology model of (B) HsCAO and the crystal structure of (C) PASO. The catalytic center, TPQ410 is represented with an orange stick model. The copper ion binding
histidine residues, His465, His467, and His627, are indicated by pink stick models. The four residues, Tyr308, Lys318, Asp322, and Asn409, in HsCAO, and the equivalent four
residues in PSAO, are shown with black stick models. The copper ion molecule and the hydrogen bonds are indicated by a light-blue sphere and green dotted lines,
respectively.
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are known to exhibit broad substrate specificities,1,2,23 we also
tested the aliphatic (putrescine and spermidine) and aromatic
(histamine, benzylamine, tyramine, 4-aminomethylpyridine, 3-
aminomethylpyridine, and 2-aminoethylpyridine) primary amines
as substrates,24 and measured the steady-state kinetic parameters
(Table 1).25 These analyses demonstrated that HsCAO also accepts
all of the tested substrates, excepted for tyramine. Interestingly,
the steady-state kinetics analyses of HsCAO revealed a
KM = 0.3 mM and a kcat = 1.0 s�1 for cadaverine, with respect to
the hydrogen peroxide formation activity, representing the best
catalytic efficiency (kcat/KM) among the substrates tested. This is
in sharp contrast to the previously reported L. sativus CAO (LSAO)
and P. sativum CAO (PSAO), as the former even accepts tyramine,
while latter exhibits better catalytic efficiency (kcat/KM) for putres-
cine. These observations indicated that HsCAO is functionally dif-
ferent from LSAO and PSAO, and suggested that HsCAO is
involved in the biosynthesis of the Lycopodium alkaloids. To test
this hypothesis, further metabolomic and proteomic analyses, such
as developmental or inducible variation of HsCAO in the alkaloid
biosynthesis, are required.

To clarify the structural basis for the HsCAO enzyme reaction, a
homology model was constructed,26 based on the X-ray crystal
structure of P. sativum CAO (PSAO).27 The model consists of resi-
dues 28–671 of both monomers A and B (Fig. 6A). In the Rama-
chandran plot calculated for the model, a total of 84.9% of the
residues in the model are in the most favored regions, and 14.4%
are in the additional allowed regions. The homology model pre-
dicted that HsCAO shares the same overall fold, consisting of a
large b-sandwich domain and two a/b domains, as in the case of
PSAO. Upon dimerization, residues 383–386 are linked to the other
monomer to complete the wall of the active-site cavity in each
monomer. The Tyr in the catalytic center (corresponding to TPQ)
and the copper ion binding site, consisting of three histidine resi-
dues, are sterically conserved within each monomer (Tyr410 for
the catalytic center, and His465, His467 and His627 for the copper
ion binding site), and sit at the bottom of the internal active-site
cavity (Fig. 6B). In addition, Tyr, Lys, Asp and Asn, which are
thought to play crucial roles in the activation of the TPQ catalytic
center of PSAO, are present within each monomer (Tyr308,
Lys318, Asp322, and Asn409) (Fig. 2 and 7B). Therefore, HsCAO
may also catalyze the oxidative deamination of primary amines
to the corresponding aldehydes via a ping-pong mechanism, by
exploiting TPQ and Cu2+, as in the cases of the other CAOs. On
the other hand, the homology modeling study suggested that 14
residues lining the active-site cavity and entrance of PSAO are un-
iquely altered in these regions of HsCAO. Especially, the internal
active-site residues Phe140, Tyr168, Phe298, Phe304, Thr383, and
Gly3510 in PSAO are substituted with Ile160, Phe190, Tyr320,
Tyr326, Ser406 and Phe3840 in HsCAO, respectively (Fig. 6B and
C), which may account for the different substrate specificities
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and catalytic activities between these enzymes, as shown in the
steady-state kinetics studies.

To test this hypothesis, we constructed a set of point mutants of
HsCAO (I160F, F190Y, Y320F, Y326F, S406T and F384G), and inves-
tigated the mechanistic consequences of the mutagenesis.28 The
mutants were thus expressed in E. coli, at levels comparable to that
of the wild type enzyme, and purified to homogeneity by a Ni-che-
late affinity column. The enzymatic activities of the mutants were
evaluated with the hydrogen peroxide assay by using the sub-
strates used for wild type HsCAO. All of the mutants lost the activ-
ity within the range of pH 6.8–8.5, suggesting that the residues are
crucial for the catalytic activities of HsCAO. Presumably, the single
substitution of the residues resulted in conformational changes in
the active site, which lead to the loss of the enzyme activity.

This is the first report of the cloning and characterization of a
novel CAO enzyme from the primitive club moss H. serrata, which
produces the Lycopodium alkaloid huperzine A, a potent inhibitor
of acetylcholinesterase. The deduced amino acid sequence shares
44–56% identity with the known plant CAOs, and contains the ac-
tive site consensus sequence of Asn-Tyr-Asp/Glu. Furthermore,
functional analyses demonstrated that HsCAO exhibits the best
substrate specificity for cadaverine, which is the proposed biosyn-
thetic precursor of the Lycopodium alkaloids. Although further
metabolomic and proteomic studies are needed, this report con-
tributes to the clarification of the pooly understood biosynthetic
machinery of the Lycopodium alkaloids.
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