3-ARYL-3,4-DIHYDROISOCOUMARINS WITH AMINO-ACID FRAGMENTS

S. V. Shilin, O. V. Shablykina,^{*} V. V. Ishchenko, Yu. N. Zabolotnaya, and V. P. Khilya

New amino-acid derivatives of 3-aryl-3,4-dihydroisocoumarins were prepared via acylation of the amine of natural amino acids by phenoxyacetic acids containing 3,4-dihydroisocoumarin substituents on the benzene ring.

Keywords: isocoumarins, dihydroisocoumarins, 3-aryl-3,4-dihydroisocoumarins, activated esters method, *N*-hydroxysuccinimide, amino-acid derivatives.

In continuation of research on new syntheses of isocoumarins modified by natural amino-acid fragments [1], we focused on 3,4-dihydroisocoumarin derivatives mainly because natural compounds with the 1-oxoisochromane core are dominated by saturated species [2]. Dihydroisocoumarins in living subjects can be associated with their unsaturated analogs, e.g., glycosides of dihydrohomalicine and homalicine [3], the aglycons of which are 3-(3-hydroxyphenyl)-3,4-dihydroisocoumarin and 3-(3-hydroxyphenyl)isocoumarin, respectively. According to recent reports [4, 5], dihydroisocoumarins are often encountered among compounds produced by fungal microorganisms. Furthermore, ochratoxin A [6] and amicoumacin B [7], two of few known natural isocoumarins with amino-acid fragments, also contain a 3,4-dihydroisocoumarin ring and are characterized by high biological activity.

Starting 3-phenyl-3,4-dihydroisocoumarins **10–12** with a hydroxyacetic-acid fragment as a linker for attaching amino acids were synthesized by known methods [8] using an equivalent amount of ethyl chloroacetate instead of methyl bromoacetate as indicated in the article (Scheme 1).

1: 4-OH, R = H; 2: 4-OH, R = CH₃; 3: 2-OH, R = CH₃; 4: 4-OCH₂COOEt, R = H; 5: 4-OCH₂COOEt, R = CH₃ 6: 2-OCH₂COOEt, R = CH₃; 7, 10: 4-OCH₂COOH, R = H; 8, 11: 4-OCH₂COOH, R = CH₃; 9, 12: 2-OCH₂COOH, R = CH₃

a. ClCH₂COOEt, K₂CO₃, Me₂CO; b. 1. OH⁻, 2. H⁺; c. 1. NaBH₄, 2. H⁺

Scheme 1

Activated esters [9, 10] were used as before [1] to attach amino acids to the carboxylic group of **10–12** through an amide bond. Thus, the acid group to be modified was converted to the *N*-hydroxysuccinimide (SuOH) ester (Scheme 2).

The resulting esters 13–15 reacted with an optically pure natural L-amino acid to give *N*-acyl amino-acid derivatives 16–18 (Table 1).

Taras Shevchenko Kiev National University, 64/13 Vladimirskaya St., Kiev, 01601, Ukraine, e-mail: shablykina@ukr.net. Translated from *Khimiya Prirodnykh Soedinenii*, No. 4, July–August, 2016, pp. 516–521, original article submitted September 30, 2015.

TABLE 1. Yields and Melting Points of 16-18

Amino acid	Compound	mp,°C	Yield, %	Compound	mp,°C	Yield, %	Compound	mp,°C	Yield, %
Glycine	16a	206-207	78	17a	237–238	44			
Alanine	16b	176-177	57						
Leucine				17c	196–197	65			
Norleucine				17d	177-178	69			
β -Alanine				17e	92–93	74	18e	144-145	70
Phenylalanine	16f	169-170	69						
Tyrosine	16g	123-124	40				18g	147-148	53
Tryptophan	16h	178-179	78				18h	205-206	69
Methionine				17i	186-187	69	18i	88-89	66
Asparagine	16j	169-170	73						
Citrulline	16k	159-160	27				18k	157-158	57
$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ $									
$\begin{array}{c} 0 \\ 7 \\ 7 \\ 5 \\ 5 \\ 5 \\ 17e \end{array}$ $\begin{array}{c} CH_3 \\ 0 \\ H \\ COOH \\ H_3C \\ 2 \\ 0 \\ H \\ H_3C \\ 18e \end{array}$									

16a, **17a**: R = H; **16b**: $R = CH_3$; **17c**: $R = CH_2CH(CH_3)_2$; **17d**: $R = (CH_2)_3CH_3$; **16f**: $R = CH_2Ph$; **16g**, **18g**: $R = CH_2(4-HOC_6H_4)$ **16h**, **18h**: $R = CH_2(indol-3-yl)$; **17i**, **18i**: $R = CH_2CH_2SCH_3$; **16j**: $R = CH_2CONH_2$; **16k**, **18k**: $R = (CH_2)_3NHCONH_2$ **10**, **13**, **16**: $R_1 = H$; **11**, **14**, **17**: $R_1 = CH_3$

i. 1. DCC, anhydr. dioxane, RT, 2. SuOH; ii. 1. amino acid, NaHCO₃, dioxane - H₂O (1:1), RT, 2. HCl

Scheme 2

An advantage of the modified activated-ester method used by us was the ability to carry out the two-step synthesis of the amino-acid derivatives without isolating intermediate succinimide esters 13-15. The completion of their formation was monitored using TLC. TLC also indicated that the conversion was high and side products did not form during the transformation of 13-15 into 16-18.

Yields of the derivatives were low in several instances. This was related primarily to specifics of the isolation of these products. Thus, the dicyclohexylurea formed from dicyclohexylcarbodiimide (DCC) was filtered off before amino-acid derivatives **16–18** were precipitated according to the procedure in the Experimental section. This led to partial loss of the target compound for slightly soluble compounds (e.g., tyrosine derivatives) and those precipitating from the reaction mixture simultaneously with the urea.

Conversely, the main losses of products that were highly soluble in aqueous solutions (in particular, citrulline derivatives) occurred during their isolation in the last step, i.e., crystallization from weakly acidic aqueous solutions. Of course, the target compounds could be isolated by extraction from aqueous solutions. However, separation of them from other organic components was problematical (chromatography of amino-acid derivatives with a free carboxylic acid is extremely difficult). Thus, the simplicity of the procedure used by us compensated fully in several instances for the slight quantitative losses.

Structural changes on going from the (isocoumarinyl)phenoxyacetic acids described by us [1] to the (3,4-dihydroisocoumarinyl)phenoxyacetic acids presented herein could affect considerably the activity of the carboxylic acid, which could not lie in the same plane with the phenoxyl fragment because the isochromone 3- and 4-positions were saturated. The reactivity and, as a result, the time required to form the activated ester of **10**, in which the carboxylic acid was distant from the isochromanone substituent, were practically the same as those for the unsaturated analog. We found that **10**, like the corresponding isocoumarin derivative [1], reacted completely with *N*-hydroxysuccinimide in 2–3 h and produced activated ester **13**.

A different picture was observed for compounds with an isochromone substituent in the position *ortho* to the hydroxyacetic acid on the phenyl ring. [4-Methyl-2-(3,4-dihydroisocoumarin-3-yl)phenoxy]acetic acid (12) was significantly more active than [4-methyl-2-(isocoumarin-3-yl)phenoxy]acetic acid. The activated ester of dihydroisocoumarin 12 required 3–4 h to form (Experimental section) whereas at least 96 h were required for the conversion into the ester of the corresponding acid with an isocoumarin fragment [1].

Racemates of dihydroisocoumarins 10–12 were formed from the reactions of 7–9 with NaBH₄. Therefore, subsequent addition of the optically pure amino acid should produce a mixture of diastereomers. However, as a rule, PMR spectra of 16–18 had only one set of resonances because the chemical shifts (CSs) of the isomers were obviously the same. Instances where resonances of certain protons were more complicated were explained completely by steric hindrance to rotation around single bonds because they were observed in spectra of compounds with rather bulky *ortho* substituents. For example, methylene resonances of hydroxyacetic acids in PMR spectra of 17c, 18g, i, and k were rather broad multiplets (Experimental section) although this group appeared in spectra of most compounds as a narrow 2H singlet. ¹³C NMR spectra of all amino-acid dihydroisocoumarin ring (67 and 34 ppm, respectively) were characteristic of these heterocyclic systems. Resonances of carboxylic acids fell in the range 165–174 ppm. The hydroxyacetic-acid methylene CS depended on its position on the phenyl ring and was 78–79 ppm for 16 and 17 with the *para*-position and 74–75 ppm for *ortho* derivatives 18. IR spectra given in the Experimental section band (1730–1700 cm⁻¹ with a maximum at 1720 as a rule) and strong absorption bands of single C–O bonds (~1240 and 1120 cm⁻¹) were consistently observed.

EXPERIMENTAL

The course of reactions and purity of products were monitored by TLC on Merck 60 F_{254} plates using CHCl₃–MeOH (9:1). Melting points were measured on a Kofler apparatus. NMR spectra were recorded on a Varian Mercury-400 spectrometer vs. TMS (internal standard) (Scheme 2 shows the proton numbering). IR spectra were taken on a PerkinElmer BX II spectrometer. Elemental analyses were obtained using a Vario Micro Cube instrument and agreed with those calculated.

The method for synthesizing 10–12 was published [8] and also gives the yields, melting points, elemental analyses, mass spectra, and PMR spectra of 10 and 12 and their synthetic intermediates 7 and 9.

Ethyl 2-[4-(1-Oxo-1*H***-isochromen-3-yl)phenoxy]acetate (4).** Yield 86%, mp 100–101°C. IR spectrum (KBr, v, cm⁻¹): 3433 (br), 3052, 2981, 1747, 1726, 1634, 1604, 1514, 1314, 1299, 1238, 1207, 1184, 1072, 1027, 1013, 845, 825, 753, 689. ¹H NMR spectrum (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 1.31 (3H, t, J = 7.2, CH₂CH₃), 4.22 (2H, q, J = 7.2, CH₂CH₃), 4.75 (2H, s, 4'-OCH₂), 7.02 (2H, d, J = 8.4, H-3', 5'), 7.16 (1H, s, H-4), 7.49 (1H, t, J = 7.6, H-7), 7.59 (1H, d, J = 7.6, H-5), 7.75 (1H, t, J = 7.6, H-6), 7.85 (2H, d, J = 8.4, H-2', 6'), 8.16 (1H, d, J = 7.6, H-8). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 14.7, 33.5, 61.4, 65.4, 101.3, 115.7, 120.1, 125.4, 126.9, 127.2, 128.7, 129.4, 135.9, 138.2, 153.1, 159.7, 162.0, 169.1.

Ethyl 2-[2-Methyl-4-(1-oxo-1*H***-isochromen-3-yl)phenoxy]acetate (5).** Yield 92%, mp 198–199°C. IR spectrum (KBr, v, cm⁻¹): 3432 (br), 3080, 3063, 2976, 2924, 2910, 1758, 1730, 1633, 1606, 1564, 1507, 1481, 1430, 1334, 1295, 1267, 1243, 1209, 1145, 1081, 1026, 957, 887, 820, 799, 756, 689. ¹H NMR spectrum (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 1.30 (3H, t, J = 8.0, CH₂CH₃), 2.33 (3H, s, CH₃-3'), 4.22 (2H, q, J = 8.0, CH₂CH₃), 4.81 (2H, s, 4'-OCH₂), 6.92 (1H, d, J = 7.6, H-5'), 7.22 (1H, s, H-4), 7.52 (1H, t, J = 7.6, H-7), 7.62 (1H, d, J = 7.6, H-5), 7.68–7.72 (2H, m, H-2', 6'), 7.80 (1H, t, J = 7.6, H-6), 8.15 (1H, d, J = 7.6, H-8). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 14.7, 16.7, 61.4, 65.6, 101.1, 112.4, 120.0, 124.7, 124.9, 126.9, 127.4, 127.9, 128.7, 129.5, 136.0, 138.3, 153.3, 157.9, 162.1, 169.2.

Ethyl 2-[4-Methyl-2-(1-oxo-1*H***-isochromen-3-yl)phenoxy]acetate (6).** Yield 78%, mp 134–135°C. IR spectrum (KBr, v, cm⁻¹): 3422 (br), 3112, 1034, 2986, 2925, 1757, 1720 (br), 1621, 1603, 1563, 1504, 1478, 1448, 1408, 1384, 1339, 1323, 1286, 1262, 1244, 1211 (br), 1150, 1083, 1034, 1017, 949, 884, 858, 797, 785, 767, 693. ¹H NMR spectrum (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 1.25 (3H, t, J = 7.0, CH₂CH₃), 2.28 (3H, s, CH₃-5'), 4.23 (2H, q, J = 7.0, CH₂CH₃), 4.83 (2H, s, 2'-OCH₂), 6.94 (1H, d, J = 8.0, H-3'), 7.15 (1H, br.d, J = 8.0, H-4'), 7.52–7.59 (3H, m, H-5, 7, 6'), 7.75 (1H, s, H-4), 7.80 (1H, t, J = 7.8, H-6), 8.13 (1H, d, J = 7.8, H-8). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 14.7, 20.7, 61.5, 66.0, 107.8, 113.6, 120.5, 127.2, 128.6, 129.0, 129.3, 130.8, 131.8, 135.7, 138.3, 150.0, 153.8, 162.0, 169.0.

2-[2-(4-Carboxymethoxy-3-methylphenyl)-2-oxoethyl]benzoic Acid (8). Yield 83%, mp 162–163°C. IR spectrum (KBr, v, cm⁻¹): 3449 (br), 2915, 2563 (br), 1727, 1688, 1602, 1500, 1433, 1379, 1330, 1242, 1217, 1137, 1082, 928, 803, 786, 730, 650. ¹H NMR spectrum (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 2.31 (3H, s, CH₃-3'), 4.67 (2H, s, CH₂), 4.75 (2H, s, CH₂), 6.89 (1H, d, J = 8.0, H-5'), 7.25 (1H, d, J = 7.6, H-3), 7.36 (1H, t, J = 7.6, H-5), 7.49 (1H, t, J = 7.6, H-4), 7.82 (1H, br.s, H-2'), 7.86 (1H, br.d, J = 8.0, H-6'), 7.96 (1H, d, J = 7.6, H-6), 12.58 (2H, br.s, 2 COOH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 16.7, 44.8, 65.5, 111.5, 126.8, 127.5, 128.6, 130.6, 131.1, 131.2, 131.4, 132.5, 133.4, 138.0, 160.4, 169.0, 170.6.

2-[2-Methyl-4-(1-oxo-1*H***-isochroman-3-yl)phenoxy]acetic Acid (11).** Yield 87%, mp 153–154°C. IR spectrum (KBr, v, cm⁻¹): 3449 (br), 3120, 3075 (br), 2946, 2907, 1734 (br), 1690 (br), 1607, 1510, 1460, 1423, 1365, 1341, 1275 (br), 1231 (br), 1128, 1082, 987, 914, 896, 831, 806, 751, 736, 696, 656, 644. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 2.23 (3H, s, CH₃-3'), 3.16 (1H, dd, J = 16.4, 2.1, H-4 α), 3.40 (1H, dd, J = 16.4, 12.0, H-4 β), 4.74 (2H, s, CH₂O-4'), 5.60 (1H, dd, J = 12.0, 2.1, H-3), 6.90 (1H, d, J = 7.8, H-5'), 7.28 (1H, br.d, J = 7.8, H-6'), 7.34 (1H, br.s, H-2'), 7.43 (1H, d, J = 7.6, H-5), 7.47 (1H, t, J = 7.6, H-7), 7.65 (1H, t, J = 7.6, H-6), 7.98 (1H, d, J = 7.6, H-8). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 16.8, 34.6, 65.5, 79.9, 111.8, 125.4, 126.0, 126.8, 128.2, 128.5, 129.7, 130.0, 131.7, 134.6, 140.4, 156.7, 165.4, 170.9.

General Synthesis of Amino-acid Derivatives 16–18. A solution of the acid (10–12, 2 mmol) and SuOH (0.26 g, 2.2 mmol) in anhydrous dioxane (20 mL) at room temperature was stirred vigorously, treated with DCC (0.46 g, 2.2 mmol), and stirred at room temperature for 2–3 h (16 and 17) or 3–4 h (18) (course of reactions monitored by TLC). The resulting activated ester was added to a solution of the appropriate amino acid (2.2 mmol) and NaHCO₃ (0.28 g) in H₂O (20 mL). The mixture was stirred at room temperature for 2 h with TLC monitoring of the reaction. The precipitate of dicyclohexylurea was filtered off. The filtrate was poured into H₂O (100 mL). The resulting solution was acidified with dilute HCl until weakly acidic. The resulting precipitate was filtered off and recrystallized from *i*-PrOH.

N-{2-[4-(1-Oxoisochroman-3-yl)phenoxy]acetyl}glycine (16a). IR spectrum (KBr, v, cm⁻¹): 3393 (br), 3319, 3059 (br), 2937, 2861, 1764, 1708, 1648, 1613, 1557, 1515, 1460, 1450, 1412, 1291, 1249, 1193, 1124, 1077, 1032, 1006, 834, 750, 692. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 3.16 (1H, dd, J = 16.4, 2.6, H-4 α), 3.39 (1H, dd, J = 16.4, 12.0, H-4 β), 3.83 (2H, d, J = 4.0, CH₂COOH), 4.56 (2H, s, CH₂O-4'), 5.56 (1H, dd, J = 12.0, 2.6, H-3), 7.03 (2H, d, J = 8.4, H-3', 5'), 7.39–7.51 (4H, m, H-5, 7, 2', 6'), 7.64 (1H, t, J = 7.6, H-6), 7.97 (1H, d, J = 7.6, H-8), 8.41 (1H, br.t, J = 4.0, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm): 34.6, 41.1, 67.5, 79.8, 115.4, 125.4, 128.3, 128.5, 128.7, 130.1, 132.4, 134.6, 140.4, 158.4, 165.4, 168.7, 171.7.

N-{2-[4-(1-Oxoisochroman-3-yl)phenoxy]acetyl}alanine (16b). IR spectrum (KBr, v, cm⁻¹): 3389 (br), 3042, 2993, 2928, 2611, 2540, 1728, 1711, 1627, 1546, 1517, 1461, 1438, 1370, 1348, 1278, 1249, 1221, 1183, 1122, 1087, 1011, 998, 913, 857, 825, 800, 742, 692. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm, J/Hz): 1.37 (1H, d, J = 7.2, CH[CH₃]COOH), 3.17 (1H, br.d, J = 16.4, H-4α), 3.34 (1H, dd, J = 16.4, 12.0, H-4β), 4.33 (1H, m, CH[CH₃]COOH), 4.49 (2H, s, CH₂O-4'), 5.56 (1H, br.d, J = 16.4, H-3), 7.00 (2H, d, J = 8.0, H-3', 5'), 7.37 (1H, d, J = 7.6, H-5), 7.40–7.45 (3H, m, H-7, 2', 6'), 7.59 (1H, t, J = 7.6, H-6), 7.98 (1H, d, J = 7.6, H-8), 8.10 (1H, br.d, J = 7.6, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm): 16.97, 33.8, 47.13, 66.6, 78.9, 124.6, 127.7, 114.6, 127.4, 127.9, 129.2, 131.4, 133.8, 139.6, 157.7, 164.6, 167.2, 173.64.

^{*}The amino-acid COOH proton resonance was not observed in PMR spectra because of exchange.

CH[CH₂<u>Ph</u>]COOH), 7.37–7.46 (5H, m, H-7, 5, 2', 6'), 7.60 (1H, t, J = 8.0, H-6), 7.98–8.03 (2H, m, NH, H-8). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 33.8, 36.4, 52.9, 66.6, 78.9, 114.5, 124.7, 126.3, 127.4, 127.8, 128.0, 128.9, 129.2, 131.5, 133.7, 137.3, 139.5, 157.7, 164.5, 167.4, 172.5.

N-{2-[4-(1-Oxoisochroman-3-yl)phenoxy]acety]}tyrosine (16g). IR spectrum (KBr, v, cm⁻¹): 3430, 3070, 3033, 2934, 2862, 2743, 1719, 1690, 1666, 1613, 1531, 1517, 1461, 1444, 1349, 1298, 1279, 1221, 1179, 1126, 1072, 990, 836, 742. ¹H NMR spectrum* (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 2.86 (1H, dd, J = 13.2, 9.2, CH[CH_α(4-HOC₆H₄)]COOH), 3.00 (1H, dd, J = 13.2, 4.4, CH[CH_β(4-HOC₆H₄)]COOH), 3.18 (1H, br.d, J = 16.8, H-4α), 3.35 (1H, dd, J = 16.8, 10.8, H-4β), 4.41-4.47 (1H, m, CH[CH₂(4-HOC₆H₄)]COOH), 4.50 (2H, s, CH₂O-4'), 5.63 (1H, br.d, J = 10.8, H-3), 6.65 (2H, d, J = 8.0, H-3", 5" (4-HOC₆H₄)), 6.91 (2H, d, J = 7.2, H-3', 5'), 7.00 (2H, d, J = 8.0, H-2", 6" (4-HOC₆H₄)), 7.24-7.50 (4H, m, H-5, 7, 2', 6'), 7.67 (1H, t, J = 7.2, H-6), 7.98 (1H, d, J = 7.2, H-8), 8.21 (1H, br.d, J = 6.0, NH), 9.25 (1H, br.s, 4-HOC₆H₄). ¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 34.6, 36.4, 54.0, 67.2, 79.8, 115.3, 115.7, 125.4, 128.1, 128.3, 128.6, 128.7, 130.1, 130.8, 132.2, 134.6, 140.5, 156.6, 158.5, 165.4, 168.1, 173.5.

N-{2-[4-(1-Oxoisochroman-3-yl)phenoxy]acetyl}tryptophan (16h). IR spectrum (KBr, v, cm⁻¹): 3464, 3411 (br), 3382, 3062, 2938, 2910, 2866, 2533 (br), 1719, 1711, 1629, 1612, 1546, 1516, 1460, 1426, 1365, 1355, 1338, 1294, 1278, 1249, 1222, 1184, 1122, 1087, 1069, 1011, 824, 755, 745. ¹H NMR spectrum* (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 3.12–3.19 (2H, m, H-4α, CH[CH_α(indol-3-yl)]COOH), 3.25 (1H, dd, J = 14.0, 4.8, CH[CH_β(indol-3-yl)]COOH), 3.42 (1H, dd, J = 16.4, 12.0, H-4β), 4.51 (2H, s, CH₂O-4'), 4.55–4.58 (1H, m, CH[CH₂(indol-3-yl)]COOH), 5.63 (1H, dd, J = 12.0, 2.0, H-3), 6.91 (2H, d, J = 8.4, H-3', 5'), 6.98 (1H, t, J = 7.2, H-5'' (indol-3-yl)), 7.07 (1H, t, J = 7.2, H-6'' (indol-3-yl)), 7.14 (1H, br.s, H-2''), 7.35 (1H, d, J = 7.6, H-4''), 7.40–7.50 (4H, m, 5, 7, 2', 6'), 7.56 (1H, d, J = 7.6, H-7''), 7.67 (1H, t, J = 7.6, H-6), 7.99 (1H, d, J = 7.6, H-8), 8.20 (1H, br.d, J = 6.8, NH), 10.89 (1H, s, NH (indol-3-yl)). ¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 26.7, 33.8, 52.6, 66.5, 78.9, 109.5, 111.3, 114.5, 118.0, 118.3, 120.8, 123.6, 124.6, 127.1, 127.4, 127.7, 127.8, 129.2, 131.4, 133.8, 136.0, 139.6, 157.6, 164.6, 167.3, 172.9.

N-{2-[4-(1-Oxoisochroman-3-yl)phenoxy]acetyl}asparagine (16j). IR spectrum (KBr, v, cm⁻¹): 3406 (br), 3076, 2928, 2857, 1720 (br), 1676 (br), 1608, 1534, 1502, 1460, 1438 (br), 1276 (br), 1229 (br), 1117, 1086, 1070, 1032, 996, 807, 749, 693. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 2.56–2.61 (1H, m, CH[CH_αCONH₂]COOH), 2.67–2.72 (1H, m, CH[CH_βCONH₂]COOH), 3.18 (1H, br.d, J = 16.8, H-4α), 3.34 (1H, dd, J = 16.8, 12.0, H-4β), 4.51 (2H, m, CH₂O-4'), 4.58 (1H, m, CH[CH₂CONH₂]COOH), 5.56 (1H, br.d, J = 12.0, H-3), 5.95 (1H, br.s, CH[CH₂CONH_α]COOH), 7.01 (2H, br.d, J = 7.2, H-3', 5'), 7.38–7.45 (5H, m, H-5, 7, 2', 6', CH[CH₂CONH_β]COOH), 7.59 (1H, t, J = 7.2, H-6), 7.98 (1H, d, J = 7.2, H-8), 8.19 (1H, br.d, J = 6.8, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm): 34.6, 37.0, 49.2, 67.6, 79.7, 115.5, 125.4, 128.3, 128.5, 128.7, 130.1, 132.4, 134.6, 140.4, 158.4, 165.4, 168.1, 172.3, 173.1.

N-{2-[4-(1-Oxoisochroman-3-yl)phenoxy]acetyl}citrulline (16k). IR spectrum (KBr, v, cm⁻¹): 3465, 3388, 3333 (br), 3069, 2928, 2878, 2594, 2548, 1721, 1642 (br), 1589, 1552, 1515, 1460, 1432, 1370, 1349, 1278, 1249, 1184, 1122, 1087, 1071, 1006, 913, 894, 822, 740, 691. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 1.42 (2H, m, CH[CH₂CH₂CH₂NHCONH₂]COOH), 1.68 (1H, m, CH[CH_α(CH₂)₂NHCONH₂]COOH), 1.80 (1H, m, CH[CH_β(CH₂)₂NHCONH₂]COOH), 2.99 (2H, m, CH[(CH₂)₂CH₂NHCONH₂]COOH), 3.19 (1H, br.d, J = 16.4, H-4α), 3.35 (1H, dd, J = 16.4, 10.8, H-4β), 4.31 (2H, br.s, NHCONH₂), 4.54 (2H, m, CH₂O-4'), 5.57 (1H, br.d, J = 10.8, H-3), 5.95 (1H, br.s, NHCONH₂), 7.01 (2H, d, J = 7.6, H-3', 5'), 7.38–7.45 (4H, m, H-5, 7, 2', 6'), 7.61 (1H, t, J = 7.2, H-6), 7.98 (1H, d, J = 7.2, H-8), 8.10 (1H, br.d, J = 6.8, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 27.4, 29.1, 34.0, 34.6, 52.3, 67.4, 79.8, 115.4, 125.4, 128.3, 128.5, 128.7, 130.1, 132.23, 134.6, 140.5, 158.5, 159.5, 165.4, 168.3, 174.1.

N-{2-[2-Methyl-4-(1-oxoisochroman-3-yl)phenoxy]acetyl}glycine (17a). IR spectrum (KBr, v, cm⁻¹): 3397 (br), 2926 (br), 2737, 2624, 2539, 1723 (br), 1630 (br), 1547, 1512, 1460, 1422, 1347, 1267 (br), 1227 (br), 1145, 1120, 1069, 1011, 990, 912, 889, 813, 770, 736, 692. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 2.27 (3H, s, CH₃-3'), 3.16 (1H, br.d, J = 16.8, H-4*α*), 3.39 (1H, m, H-4*β*), 3.84 (2H, br.d, J = 4.2, CH₂COOH), 4.58 (2H, s, CH₂O-4'), 5.60 (1H, br.d, J = 9.6, H-3), 6.92 (1H, d, J = 7.8, H-5'), 7.29 (1H, br.d, J = 7.8, H-6'), 7.35 (1H, br.s, H-2'), 7.42–7.49 (2H, m, H-5, 7), 7.65 (1H, t, J = 7.2, H-6), 7.97 (1H, d, J = 7.2, H-8), 8.23 (1H, br.t, J = 4.2, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 16.9, 34.6, 41.2, 67.8, 79.8, 112.2, 125.4, 126.0, 127.0, 128.3, 128.5, 129.7, 130.1, 132.0, 134.6, 140.4, 156.5, 165.4, 168.9, 171.7.

 $N-\{2-[2-Methyl-4-(1-oxoisochroman-3-yl)phenoxy]acetyl\}leucine (17c). IR spectrum (KBr, v, cm⁻¹): 3382 (br), 3070, 2959, 2871, 2733, 2531 (br), 1719 (br), 1624 (br), 1543, 1508, 1460, 1431, 1368, 1346, 1273, 1230, 1138, 1121, 1072, 1032, 994, 913, 812, 737, 692. ¹H NMR spectrum* (400 MHz, DMSO-d₆-CCl₄ 1:1, <math>\delta$, ppm, J/Hz): 0.84 (6H, d, J = 6.0, CH[CH₂CH(CH₃)_q]COOH), 0.88 (6H, d, J = 6.0, CH[CH₂CH(CH₃)_q]COOH), 1.52-1.63 (3H, m, CH[CH₂CH(CH₃)_q]COOH),

2.25 (3H, s, CH₃-3'), 3.16 (1H, dd, J = 16.4, J = 2.8, H-4 α), 3.32 (1H, dd, J = 16.4, 11.6, H-4 β), 4.28 (1H, m, C<u>H</u>[*i*-Bu]COOH), 4.53–4.64 (2H, m, CH₂O-4'), 5.51 (1H, dd, J = 11.6, 2.8, H-3), 6.87 (1H, d, J = 7.6, H-5'), 7.26 (1H, br.d, J = 7.6, H-6'), 7.34 (1H, br.s, H-2'), 7.42–7.49 (2H, m, H-5, 7), 7.65 (1H, t, J = 7.2, H-6), 7.97 (1H, d, J = 7.2, H-8), 8.19 (1H, br.d, J = 7.2, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 16.9, 22.1, 23.6, 25.1, 34.7, 50.9, 67.7, 79.8, 112.1, 125.4, 125.9, 126.8, 128.3, 128.5, 129.6, 130.0, 131.9, 134.6, 140.4, 156.7, 165.4, 168.2, 174.7.

N-{2-[2-Methyl-4-(1-oxoisochroman-3-yl)phenoxy]acetyl}norleucine (17d). IR spectrum (KBr, v, cm⁻¹): 3420 (br), 3385, 2958, 2933, 2864, 2539 (br), 1720, 1630, 1542, 1460, 1440, 1370, 1349, 1277, 1230, 1137, 1122, 1087, 812, 740, 690. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm, J/Hz): 0.90 (3H, m, CH[(CH₂)₃CH₃]COOH), 1.30 (4H, m, CH[CH₂(CH₂)₂CH₃]COOH), 1.68 (1H, m, CH[CH_α(CH₂)₂CH₃]COOH), 1.79 (1H, m, CH[CH_β(CH₂)₂CH₃]COOH), 2.31 (3H, s, CH₃-3'), 3.16 (1H, m, H-4α), 3.32 (1H, dd, J = 15.6, 12.0, H-4β), 4.29 (1H, m, CH[*n*-Bu]COOH), 4.53 (2H, s, CH₂O-4'), 5.51 (1H, dd, J = 12.0, J = 1.8, H-3), 6.86 (1H, d, J = 8.0, H-5'), 7.24 (1H, br.d, J = 8.0, H-6'), 7.29 (1H, br.s, H-2'), 7.37 (1H, d, J = 7.6, H-5), 7.43 (1H, t, J = 7.6, H-7), 7.60 (1H, t, J = 7.6, H-6), 7.89 (1H, br.d, J = 6.8, NH), 7.97 (1H, d, J = 7.6, H-8). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm): 13.6, 16.0, 21.5, 27.2, 30.5, 33.8, 51.4, 66.8, 79.0, 111.3, 124.6, 125.1, 126.0, 127.4, 127.7, 128.8, 129.2, 131.1, 133.7, 139.6, 155.8, 164.6, 167.5, 173.2.

N-{2-[2-Methyl-4-(1-oxoisochroman-3-yl)phenoxy]acetyl}-β-alanine (17e). IR spectrum (KBr, v, cm⁻¹): 3481 (br), 3416 (br), 3077, 2924, 2949, 2612 (br), 1728, 1648, 1610, 1546, 1508, 1461, 1439, 1367, 1358, 1271, 1226, 1194, 1135, 1122, 1080, 1032, 1000, 955, 910, 887, 821, 780, 736, 692. ¹H NMR spectrum (400 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm, J/Hz): 2.29 (3H, s, CH₃-3'), 2.42 (2H, m, NHCH₂CH₂COOH), 3.15 (1H, m, H-4*α*), 3.29–3.41 (3H, m, H-4*β*, NHCH₂CH₂COOH), 4.45 (2H, s, CH₂O-4'), 5.51 (1H, dd, J = 12.0, 2.4, H-3), 6.83 (1H, d, J = 8.0, H-5'), 7.25 (1H, br.d, J = 8.0, H-6'), 7.29 (1H, br.s, H-2'), 7.37 (1H, d, J = 7.2, H-5), 7.43 (1H, t, J = 7.2, H-7), 7.60 (1H, t, J = 7.2, H-6), 7.85 (1H, br.t, J = 3.6, NH), 7.97 (1H, d, J = 7.2, H-8), 12.45 (1H, br.s, COOH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ , ppm): 16.0, 33.6, 33.8, 34.4, 67.1, 79.0, 111.3, 125.2, 126.13, 127.4, 127.7, 128.8, 129.2, 129.2, 131.2, 133.7, 139.5, 155.7, 164.6, 167.5, 172.9.

N-{2-[2-Methyl-4-(1-oxoisochroman-3-yl)phenoxy]acetyl}methionine (17i). IR spectrum (KBr, v, cm⁻¹): 3425 (br), 3383, 2921, 2529 (br), 1719, 1711, 1630, 1543, 1508, 1461, 1439, 1370, 1348, 1277, 1259, 1229, 1138, 1122, 1088, 1064, 1032, 952, 814, 746, 691. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm, J/Hz): 1.90–2.01 (2H, m, CH[CH₂CH₂SCH₃]COOH), 2.05 (3H, m, CH[(CH₂)₂SCH₃]COOH), 2.31 (3H, s, CH₃-3'), 2.45 (2H, m, CH[CH₂CH₂SCH₃]COOH), 3.15 (1H, br.d, J = 16.4, H-4α), 3.33 (1H, dd, J = 16.4, 12.0, H-4β), 4.43 (1H, m, CH[(CH₂)₂SCH₃]COOH), 4.54 (2H, s, CH₂O-4'), 5.52 (1H, br.d, J = 12.0, H-3), 6.86 (1H, d, J = 8.8, H-5'), 7.25 (1H, br.d, J = 8.8, H-6'), 7.29 (1H, br.s, H-2'), 7.37 (1H, d, J = 7.6, H-5), 7.43 (1H, t, J = 7.6, H-7), 7.60 (1H, t, J = 7.6, H-6), 7.98 (1H, d, J = 7.6, H-8), 8.03 (1H, br.d, J = 6.0, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm): 14.4, 16.0, 29.5, 30.3, 33.8, 50.5, 66.9, 79.0, 111.3, 124.6, 125.1, 126.0, 127.4, 127.7, 128.8, 129.2, 131.1, 133.8, 139.6, 155.9, 164.6, 167.8, 172.8.

N-{2-[4-Methyl-2-(1-oxoisochroman-3-yl)phenoxy]acetyl}-β-alanine (18e). IR spectrum (KBr, v, cm⁻¹): 3433 (br), 3366, 3077, 3046, 2949, 2918, 1726, 1629, 1610, 1550, 1502, 1466, 1432, 1406, 1350, 1285, 1230, 1167, 1120, 1090, 1068, 1001, 915, 816, 753, 721, 694. ¹H NMR spectrum (400 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm, J/Hz): 2.34 (5H, m, CH₃-5', NHC<u>H</u>₂CH₂COOH), 3.19 (1H, dd, J = 16.8, 12.0, H-4α), 3.29–3.33 (3H, m, H-4β, NHCH₂C<u>H</u>₂COOH), 4.48 (2H, s, CH₂O-2'), 6.02 (1H, dd, J = 12.0, 2.4, H-3), 6.83 (1H, d, J = 8.0, H-3'), 7.11 (1H, br.d, J = 8.0, H-4'), 7.33 (1H, br.s, H-6'), 7.40 (1H, d, J = 7.6, H-5), 7.46 (1H, t, J = 7.6, H-7), 7.62 (1H, t, J = 7.6, H-6), 7.93 (1H, br.t, J = 6.0, NH), 8.01 (1H, d, J = 7.6, H-8), 12.09 (1H, br.s, COOH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm): 20.1, 33.1, 33.6, 34.4, 67.3, 74.3, 112.2, 124.5, 126.9, 127.1, 127.5, 127.7, 129.3, 129.6, 130.0, 133.8, 139.7, 152.2, 164.8, 167.5, 172.7.

N-{2-[4-Methyl-2-(1-oxoisochroman-3-yl)phenoxy]acetyl}tyrosine (18g). IR spectrum (KBr, v, cm⁻¹): 3392 (br), 3038, 2926, 2745, 2540, 1726, 1707, 1637, 1542, 1517, 1502, 1460, 1450, 1345, 1276, 1230 (br), 1120, 1066, 1032, 1011, 916, 845, 810, 748, 720, 694, 605. ¹H NMR spectrum* (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 2.28 (3H, s, CH₃-5'), 2.67–2.81 (1H, m, CH[CH_α(4-HOC₆H₄)]COOH), 2.92–2.97 (1H, m, CH[CH_β(4-HOC₆H₄)]COOH), 3.17 (1H, m, H-4α), 3.29 (1H, m, H-4β), 4.38 (1H, m, CH[CH₂(4-HOC₆H₄)]COOH), 4.47–4.58 (2H, m, CH₂O-2'), 5.90–5.99 (1H, m, H-3), 6.55–6.59 (2H, m, H-3", 5" (4-HOC₆H₄)), 6.72 (0.4H, d, J = 8.4, H-3'), 6.75 (0.6H, d, J = 8.4, H-3'), 6.87–6.91 (2H, m, H-2", 6" (4-HOC₆H₄)), 7.09 (1H, br.d, J = 8.4, H-4'), 7.33 (1H, br.s, H-6'), 7.40 (1H, t, H-5), 7.48 (1H, t, J = 7.2, H-7), 7.65 (1H, t, J = 7.2, H-6), 8.00 (1H, d, J = 7.2, H-8), 8.14 (1H, d, J = 7.2, NH), 9.22 (1H, br.s, 4-HOC₆H₄). ¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 20.9, 34.0, 36.4, 54.2, 67.8, 75.2, 113.0, 115.7, 125.4, 127.51, 127.8, 128.0, 128.1, 128.3, 128.5, 130.1, 130.4, 130.6, 130.8, 134.6, 140.4, 153.0, 156.6, 165.5, 168.2, 173.4.

N-{2-[4-Methyl-2-(1-oxoisochroman-3-yl)phenoxy]acetyl}tryptophan (18h). IR spectrum (KBr, v, cm⁻¹): 3411 (br), 3390, 3044, 2931 (br), 1720, 1711, 1631, 1535, 1502, 1460, 1432, 1349, 1290, 1274, 1233, 1117, 1069, 812, 747, 694. ¹H NMR spectrum* (400 MHz, DMSO-d₆, δ, ppm, J/Hz): 2.27 (3H, s, CH₃-5'), 3.07 (2H, m, H-4α, CH[CH_α(indol-3-yl)]COOH), 3.20–3.22 (2H, m, H-4β, CH[CH_β(indol-3-yl)]COOH), 4.43–4.62 (3H, m, CH₂O-2', CH[CH₂(indol-3-yl)]COOH), 5.83 (0.4H, m, H-3), 5.54 (0.6H, br.d, J = 10.6, H-3), 6.70–6.78 (1H, m, H-3'), 6.93 (1H, br.t, J = 7.4, H-5'' (indol-3-yl)), 6.99–7.17 (3H, m, H-4', 2'', 6''), 7.25–7.37 (3H, m, H-5, 6', 4''), 7.43–7.53 (2H, m, H-7, 7''), 7.65 (1H, br.t, J = 7.2, H-6), 7.98 (1H, br.s, H-8), 8.14 (1H, br.s, NH), 10.79 (1H, s, NH (indol-3-yl)). ¹³C NMR spectrum (100 MHz, DMSO-d₆, δ, ppm): 21.0, 27.6, 33.9, 53.4, 67.8, 74.2, 110.4, 112.1, 113.0, 118.8, 119.0, 121.6, 124.2, 125.4, 127.5, 127.7, 127.9, 128.3, 128.5, 130.1, 130.3, 130.7, 134.6, 136.8, 140.4, 153.0, 165.5, 168.2, 173.7.

N-{2-[4-Methyl-2-(1-oxoisochroman-3-yl)phenoxy]acetyl}methionine (18i). IR spectrum (KBr, v, cm⁻¹): 3394 (br), 3068, 3036, 2918 (br), 2560 (br), 1726 (br), 1693, 1606, 1535, 1502, 1461, 1441, 1350, 1277, 1228, 1163, 1117, 1085, 1070, 1031, 912, 807, 748, 693. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm, J/Hz): 1.83–2.01 (5H, m, CH[CH₂C<u>H</u>₂SC<u>H</u>₃]COOH), 2.28–2.34 (5H, m, CH₃-5', CH[C<u>H</u>₂CH₂SCH₃]COOH), 3.15 (1H, m, H-4α), 3.33 (1H, m, H-4β), 4.34 (1H, m, C<u>H</u>[(CH₂)₂SCH₃]COOH), 4.52–4.70 (2H, m, CH₂O-2'), 5.59–6.05 (1H, m, H-3), 6.90 (1H, br.d, J = 8.0, H-3'), 7.13 (1H, br.d, J = 8.0, H-4'), 7.35 (1H, br.s, H-6'), 7.40–7.43 (1H, m, H-5), 7.48 (1H, t, J = 7.6, H-7), 7.66 (1H, t, J = 7.6, H-6), 7.99 (1H, d, J = 7.6, H-8), 8.24 (1H, br.t, J = 8.4, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm): 15.2, 21.0, 30.3, 31.1, 33.8, 34.0, 51.4, 68.0, 75.3, 113.0, 125.4, 127.7, 127.9, 128.3, 128.5, 130.1, 130.3, 130.8, 134.6, 140.5, 153.0, 165.6, 168.6, 173.7.

N-{2-[4-Methyl-2-(1-oxoisochroman-3-yl)phenoxy]acetyl}citrulline (18k). IR spectrum (KBr, v, cm⁻¹): 3503, 3442, 3407, 3356, 3037, 2926 (br), 2863, 1731, 1713, 1669, 1608, 1561, 1530, 1503, 1461, 1444, 1354, 1284, 1230, 1130, 1120, 1070, 1016, 806, 752, 692. ¹H NMR spectrum* (400 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm, J/Hz): 1.34 (2H, m, CH[CH₂CH₂CH₂CH₂NHCONH₂]COOH), 1.60 (1H, m, CH[CH_α(CH₂)₂NHCONH₂]COOH), 1.74 (1H, m, CH[CH_β(CH₂)₂NHCONH₂]COOH), 2.34 (3H, s, CH₃-5'), 2.91 (2H, m, CH[(CH₂)₂CH₂NHCONH₂]COOH), 3.18 (1H, m, H-4α), 3.32 (2H, m, H-4β), 4.24 (1H, m, CH[(CH₂)₃NHCONH₂]COOH), 4.59 (2H, m, CH₂O-2'), 5.24 (2H, br.s, NHCONH₂), 5.85 (1H, br.s, NHCONH₂), 6.00 (1H, dt, J = 10.4, 1.6, H-3), 6.86 (1H, d, J = 8.4, H-3'), 7.11 (1H, br.d, J = 8.4, H-4'), 7.34 (1H, br.s, H-6'), 7.40 (1H, d, J = 7.6, H-5), 7.45 (1H, t, J = 7.6, H-7), 7.62 (1H, t, J = 7.6, H-6), 8.00 (1H, d, J = 7.6, H-8), 8.13 (1H, br.t, J = 6.0, NH). ¹³C NMR spectrum (100 MHz, DMSO-d₆–CCl₄ 1:1, δ, ppm): 20.1, 26.4, 28.2, 33.0, 33.2, 51.4, 67.1, 74.5, 112.3, 124.5, 126.8, 127.0, 127.5, 127.7, 129.3, 129.5, 130.0, 133.8, 139.7, 152.3, 158.6, 164.8, 167.5, 173.1.

REFERENCES

- 1. S. V. Shilin, O. V. Shablykina, V. V. Ishchenko, and V. P. Khilya, Chem. Nat. Compd., 50, 638 (2014).
- 2. R. A. Hill, Prog. Chem. Org. Nat. Prod., 49, 1 (1986).
- 3. T. R. Govindachari, P. C. Parthasarathy, H. K. Desai, and K. S. Ramachandran, Indian J. Chem., 13, 537 (1975).
- 4. J. E. Robles, I. R. Suarez, J. E. Diaz, A. I. Gray, R. Edrada-Ebel, and J. O. Igoli, *Chem. Nat. Compd.*, 50, 1101 (2014).
- 5. S. Li, M. Wei, G. Chen, and Y. Lin, Chem. Nat. Compd., 48, 371 (2012).
- 6. M. D. Northolt, H. P. van Egmond, and W. E. Paulsch, J. Food. Prot., 42, 485 (1979).
- 7. J. Itoh, T. Shomura, S. Omoto, S. Miyado, Y. Yuda, U. Shibata, and S. Inouye, Agric. Biol. Chem., 46, 1255 (1982).
- V. V. Ishchenko, N. M. Voevoda, O. V. Shablykina, A. V. Turov, and V. P. Khilya, *Chem. Heterocycl. Compd.*, 47 (10), 1212 (2012).
- 9. G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, J. Am. Chem. Soc., 85, 3039 (1963).
- A. A. Gershkovich and V. K. Kibirev, *Chemical Synthesis of Peptides* [in Russian], Naukova Dumka, Kiev, 1992, 360 pp.