

Contents lists available at ScienceDirect

### European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech



# Optimization of the metabolic stability of a fluorinated cannabinoid receptor subtype 2 (CB<sub>2</sub>) ligand designed for PET studies



197

Dominik Heimann <sup>a, 1</sup>, Frederik Börgel <sup>a, 1</sup>, Henk de Vries <sup>b</sup>, Marius Patberg <sup>a</sup>, Eliot Jan-Smith <sup>a</sup>, Bastian Frehland <sup>a</sup>, Dirk Schepmann <sup>a</sup>, Laura H. Heitman <sup>b</sup>, Bernhard Wünsch <sup>a, c, \*</sup>

<sup>a</sup> Institut f
ür Pharmazeutische und Medizinische Chemie der Universit
ät M
ünster, Corrensstraße 48, D-48149 M
ünster, Germany
 <sup>b</sup> Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
 <sup>c</sup> Cells-in-Motion Cluster of Excellence (EXC 1003–CiM), Westf
älische Wilhelms-Universit
ät M
ünster, Germany

### ARTICLE INFO

Article history: Received 23 October 2017 Received in revised form 13 January 2018 Accepted 16 January 2018

Keywords: CB<sub>2</sub> receptor ligands Amide bioisosteres Fluorinated carbazole derivatives Structure affinity relationships Metabolic stabilization Identification of metabolites PET

### 1. Introduction

#### ABSTRACT

The central CB<sub>2</sub> receptor represents a promising target for the treatment of neuroinflammatory diseases as CB<sub>2</sub> activation mediates anti-inflammatory effects. Recently, the F-18 labeled PET radiotracer [<sup>18</sup>F]**7a** was reported, which shows high CB<sub>2</sub> affinity and high selectivity over the CB<sub>1</sub> subtype but low metabolic stability due to hydrolysis of the amide group. Based on these findings twelve bioisosteres of **7a** were synthesized containing a non-hydrolysable functional group instead of the amide group. The secondary amine **23a** ( $K_i = 7.9$  nM) and the ketone **26a** ( $K_i = 8.6$  nM) displayed high CB<sub>2</sub> affinity and CB<sub>2</sub>:CB<sub>1</sub> selectivity in *in vitro* radioligand binding studies. Incubation of **7a**, **23a** and **26a** with mouse liver microsomes and LC-quadrupole-MS analysis revealed a slightly higher metabolic stability of secondary amine **23a**, but a remarkably higher stability of ketone **26a** in comparison to amide **7a**. Furthermore, a logD<sub>7.4</sub> value of  $5.56 \pm 0.08$  was determined for ketone **26a** by micro shake-flask method and LC-MS quantification.

© 2018 Elsevier Masson SAS. All rights reserved.

The relaxing and euphoric properties of Cannabis sativa have led to a worldwide use as therapeutic and intoxicant. In 1964 one of the responsible psychoactive compounds,  $\Delta^9$ -tetrahydrocannabinol (THC), was isolated and characterized for the first time [1]. With these findings it was possible to unravel the endogenous cannabinoid (endocannabinoid) system in the following decades. Today it is known that it is a complex lipid signaling network, which comprises the arachidonic acid-derived ligands N-arachidonovlethanolamide (anandamide, AEA) [2] and 2arachidonovlglycerol (2-AG) [3], the two classical cannabinoid receptors  $(CB_1 \text{ and } CB_2)$  [4] [5], and the enzymes responsible for the biosynthesis (e.g. N-acyltransferase, diacylglycerol lipase) and inactivation (e.g. fatty acid amide hydrolases, monoacylglycerol lipases) of the natural ligands. The affiliation of further ligands (e.g. 2-arachidonoylglycerol ether, *N*-arachidonoyldopamine, hemopressin) and other receptors (e.g. transient receptor potential vanilloid type 1) is still discussed [6], [7].

The two classical cannabinoid receptors (CB<sub>1</sub> and CB<sub>2</sub>) belong to the class of  $G_{i/o}$  protein coupled receptors and show a 44% sequence homology [8]. They differ mainly in their expression pattern. Due to an increased expression in peripheral tissues (e.g. immune cells; reproductive, cardiovascular, gastrointestinal and respiratory system) the CB<sub>2</sub> receptor was designated as the peripheral receptor [9]. Compared to the CB<sub>1</sub> receptor, which is mainly expressed in the brain, the CB<sub>2</sub> receptor expression in the central nervous system (CNS) is rather low [8], [10]. However, the presence of CB<sub>2</sub> receptors could be shown in microglia, human cerebral microvascular endothelial cells and human fetal astrocytes [9] [10], [11]. Especially under neuroinflammatory conditions the receptor is overexpressed [12] and activation by an agonist leads to anti-inflammatory effects

\* Corresponding author. Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.

https://doi.org/10.1016/j.ejmech.2018.01.048 0223-5234/© 2018 Elsevier Masson SAS. All rights reserved.

E-mail address: wuensch@uni-muenster.de (B. Wünsch).

<sup>&</sup>lt;sup>1</sup> Both authors contributed equally to this work.

[9]. Therefore, the receptor is an interesting target for neurodegenerative and neuroinflammatory disorders like Alzheimer's disease, Huntington's disease, multiple sclerosis, depression and schizophrenia [9].

In order to examine expression sites and the neurophysiological function of the CB<sub>2</sub> receptor, adequate tools are required. Besides CB<sub>2</sub> receptor knockout mice [13], several agonists (e.g. IWH 133) [14], antagonists (e.g. SR144528 and AM630) [15] [16], and partly unselective antibodies [17] are currently used in research. Another possibility to investigate the CB<sub>2</sub> receptor expression and distribution is the use of positron emission tomography (PET) tracers. This approach is a non-invasive method that can be used to quantitatively visualize expression patterns of the receptor under healthy and pathological conditions, to monitor the progress of a neuroinflammation, and to determine pharmacokinetic (e.g. uptake into the CNS, reversibility of target binding and wash-out) and pharmacodynamic properties of new therapeutics [18]. So far, appropriate <sup>11</sup>C or <sup>18</sup>F labeled tracers don't exist possessing high CB<sub>2</sub> affinity and sufficient selectivity over other targets, suitable physicochemical (e.g. moderate lipophilicity) and pharmacokinetic properties (e.g. good penetration into the CNS, the absence of radiolabeled metabolites). In recent years, numerous attempts have been made to address this problem.

Trisubstituted pyridine derivative [<sup>11</sup>C]RSR-056 (**1**) reveals high CB<sub>2</sub> affinity ( $K_i = 2.5$  nM) and has an experimentally determined optimal log D<sub>7.4</sub> value of 1.94 for a CNS PET tracer. However, the metabolic stability in male Wistar rats is rather low [19]. The thiophene based PET tracer [<sup>11</sup>C]AAT-015 (**2**) is washed out rapidly from mouse/rat spleen tissue. A specific binding to the CB<sub>2</sub> receptor couldn't be shown in PET studies [20]. Moreover, both PET tracers **1** and **2** contain <sup>11</sup>C radioisotopes with a short half-life of 20 min, limiting broad application in clinics without cyclotron nearby. Radiotracers containing fluorine-18 with a halflife of 110 min are therefore preferred. 4-Oxoquinoline derivative

[<sup>18</sup>F]RS-126 (**3**) contains <sup>18</sup>F but shows rapid *in vivo* metabolic defluorination. Penetration of the intact tracer into the brain could therefore not be confirmed [21]. Brain penetrating radio-metabolites were also shown for [ $^{18}$ F]29 (4), which makes the interpretation of the images difficult. In addition, the radiofluorination to obtain 4 has proven to be quite challenging. Radiochemical vields did not exceed 16 + 8.7%, when an automated module was used [22]. Similar problems occurred during the radiosynthesis of a PET tracer with OCD<sub>2</sub><sup>18</sup>F moiety described by Hortala et al. Due to a three-step radiosynthesis, the overall radiochemical yield was low (0.3-1.6%) [23]. The radiofluorination to yield [<sup>18</sup>F]CB91 (5) also caused problems as an unexpected non-radioactive peak appeared in the HPLC chromatogram [24]. In 2016, the quinolineamine [<sup>18</sup>F]MA3 (6) was reported, displaying high CB<sub>2</sub> affinity and selectivity over the human  $CB_1$  receptor, but a rapid wash-out from brain (Fig. 1) [25].

Very recently, we reported the synthesis, radiosynthesis and biological evaluation of the CB<sub>2</sub> receptor radiotracer [<sup>18</sup>F]**7a** containing a comparable aryl-oxadiazolyl-alkyl moiety as [<sup>18</sup>F]MA3 (**6**) [26], [27]. In addition to high CB<sub>2</sub> affinity and selectivity over the CB<sub>1</sub> receptor, the penetration into the mouse brain and low defluorination tendency in vivo could be demonstrated. In further studies the high lipophilicity of 7a (log D = 3.82 - 4.21) [26] should be reduced, which can contribute to a high non-specific binding. Furthermore, fast metabolic hydrolysis of the amide to the corresponding amine [<sup>18</sup>F]**8** and carboxylic acid **9** was observed during in vivo experiments with mice (Fig. 2). In this work, we aim to synthesize metabolically more stable fluorinated CB<sub>2</sub> receptor ligands by replacing the hydrolysis-sensitive amide group by functional groups, which can't be hydrolyzed. CB<sub>2</sub> and CB<sub>1</sub> receptor affinity will determine the selection of a new generation of CB2-PET-tracer.



Fig. 1. Potential CB2 receptor radioligands for PET imaging.



Scheme 1. Reagents and reaction conditions: (a) H<sub>2</sub>NOH·HCl, Na<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>O, MeOH/EtOH, rt  $\rightarrow$  reflux. (b) 4-chlorobutyryl chloride, EtNiPr<sub>2</sub>, toluene, 0 °C  $\rightarrow$  rt  $\rightarrow$  reflux.

### 2. Synthesis

In a first approach, the amide of **7a** was replaced by secondary and tertiary amines. In addition to the bromine atom described by Rühl et al. in 2-position of the phenyl moiety, compounds with a chlorine atom in 2-position described by Cheng et al. (see also 6) were synthesized in order to reduce the molecular mass and to slightly increase the polarity [28], [29]. For the preparation of 23a-c and 24a-c a convergent synthesis was designed. For this purpose, nitriles 10 and 11 were treated with an excess of hydroxylamine hydrochloride under basic conditions [26], [30]. Whilst 1.3 equivalents of hydroxylamine hydrochloride led to a yield of 75% of 13, an increase to 3 equivalents and reduction of the temperature decreased the yield to 59% of 12 due to an increased formation of by-products. Treatment of the resulting benzamidoximes 12 and 13 with 4-chlorobutyryl chloride and ethyldiisopropylamine afforded the alkyl halides 14 and 15, respectively (Scheme 1).

The second building block **21** · HCl was prepared according to literature [31]. Carbazole **16** was deprotonated with *n*-

butyllithium and subsequently treated with ethylene sulfate to yield the hydroxyalkylated carbazole **17**, which was nitrated with nitric acid at 0 °C. Hydrogenation catalyzed by Pd/C provided the primary aromatic amine **21**, which was precipitated as hydrochloride salt **21**•HCl (Scheme 2). Coupling of **21**•HCl with **14** was performed with triethylamine and tetrabutylammonium iodide in toluene. Common polar aprotic solvents like acetonitrile, *N*,*N*-dimethylformamide and pyridine led to increased formation of polar side products. The secondary amine **23c** was further methylated with iodomethane in the presence of triethylamine to provide the tertiary amine **24c** in 23% yield (Scheme 2).

Different deoxofluorination reagents (DAST, XtalFluor- $E^{\text{®}}$  and Fluolead<sup>TM</sup>) were investigated for the conversion of the alcohols **23c** and **24c** to the corresponding fluoroalkanes **23a** and **24a**. However, all attempts failed to give the fluoroalkanes **23a** and **24a**. It is assumed that the amine-moiety is responsible for side reactions. Hence, it was decided to introduce the fluorine atom at an earlier stage into the compounds. Therefore, fluoroethyl tosylate in the presence of sodium hydride was used for the fluoroalkylation of carbazole in the first step of the synthesis,



Scheme 2. Reagents and reaction conditions: (a) 1. *n*-BuLi, ethylene sulfate, THF,  $-78 \degree C \rightarrow rt$ ; 2. H<sub>2</sub>SO<sub>4</sub> 97%, water, reflux. (b) NaH, DMF, TsOCH<sub>2</sub>CH<sub>2</sub>F,  $0\degree C \rightarrow rt$ . (c) HNO<sub>3</sub> 65%, CH<sub>2</sub>Cl<sub>2</sub>,  $0\degree C$ . (d) 1. H<sub>2</sub>, Pd/C 10%, THF, 1 bar, rt; 2. HCl in Et<sub>2</sub>O. (e) **14** or **15**, NEt<sub>3</sub>, Bu<sub>4</sub>NI, toluene, reflux. (f) CH<sub>3</sub>I, NEt<sub>3</sub>, CH<sub>3</sub>CN, reflux.



Scheme 3. Reagents and reaction conditions: (a) 1.  $MeO_2C(CH_2)_3COCI$ ,  $BF_3 \cdot Et_2O$ ,  $50 \circ C$ ; 2. NaOH,  $H_2O$ , MeOH,  $0 \circ C \rightarrow rt$ . (b) 1.  $COMU^{\textcircled{B}}$ ,  $EtNiPr_2$ , benzamidoxime 12 or 13, THF,  $rt \rightarrow 0 \circ C \rightarrow rt$ ; 2. toluene, reflux. (c)  $Et_3SiH$ ,  $F_3CCO_2H$ ,  $55 \circ C$ . (d) **26a**,  $NaBH_4$ , MeOH, EtOAc,  $0 \circ C \rightarrow rt \rightarrow 60 \circ C$  or **26b**,  $LiBH_4$ , THF,  $0 \circ C \rightarrow rt$ . (e)  $H_2NOH \cdot HCI$ ,  $NaOAc \cdot 3H_2O$ , EtOH 80%,  $rt \rightarrow reflux$ .



Scheme 4. Reagents and reaction conditions: (a) succinic anhydride, DMF, 120 °C. (b) COMU<sup>®</sup>, EtNiPr<sub>2</sub>, carbazolamine hydrochloride 22 · HCl, THF, rt → 0 °C → rt.

leading to 74% yield of carbazole **18** [32], [33]. As described for the alcohol **17**, the fluoro derivative was nitrated with nitric acid and subsequently reduced with hydrogen and Pd/C to afford the carbazolamine hydrochloride **22**. HCl in 75% yield over two steps. Alkylation of **22**. HCl with chloroalkanes **14** and **15** led to the secondary amines **23a**-**b**, which were transformed into tertiary amines **24a**-**b** upon treatment with iodomethane (Scheme 2).

In a second approach, the amide of **7a** was replaced bioisosterically by a ketone. Therefore, fluoroethylcarbazole **18** was reacted with 4-(methoxycarbonyl)butanoyl chloride and  $BF_3 \cdot Et_2O$ in a Friedel-Crafts acylation. Usage of aluminum chloride as lewis acid resulted in a halogen exchange of the fluorine atom with a chloride atom, as described in the literature [34]. Therefore, a fluoride-containing Lewis acid was used. The obtained ester was directly hydrolyzed with sodium hydroxide to the carboxylic acid **25**. In this case glutaric anhydride as acylation reagent in combination with Lewis acids had turned out to be too unreactive. After activation with COMU<sup>®</sup>, **25** was coupled with amidoximes **12** and **13** to give the corresponding O-acylamidoximes. Cyclization was performed in a one pot procedure by heating to reflux in toluene (Scheme 3).

The ketones **26a** and **26b** were used to further modify the functional group in the tetramethylene spacer. Oximes **29a-b** were obtained by treatment of **26a-b** with hydroxylamine hydrochloride in the presence of the weak base sodium acetate.

Triethylsilane was used for the reduction of **26a-b** to the alkanes **27a-b**. Reduction of **26a** to alcohol **28a** was performed with NaBH<sub>4</sub> in a mixture of methanol and ethyl acetate. Since the conversion of ketone **26a** was incomplete due to its poor solubility, **26b** was reacted with the more reactive lithium borohydride in THF, which resulted in a higher yield of 63%.

In order to better understand replacement of the amide by bioisosteric functional groups, the parent amide **7b** with a chlorine atom in 2-position had to be prepared. For this purpose, amidoxime **13** was reacted with succinic anhydride as described in literature [29] and the resulting carboxylic acid **30** was coupled with **22**.HCl in the presence of COMU<sup>®</sup> (Scheme 4).

### 3. Receptor affinity



| Table 1                      |                    |
|------------------------------|--------------------|
| CB1 and CB2 binding affinity | of test compounds. |

| Compd        | R <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R <sup>2</sup> | Х  | $K_i (hCB_2) \pm SEM [nM]^a$ | Displacement (hCB <sub>1</sub> ) <sup>b</sup> |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|------------------------------|-----------------------------------------------|
| 7a           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F              | Br | $2.9 \pm 0.4$                | 22 % <sup>c</sup>                             |
| 7b           | re la construction de la constru | F              | Cl | $1.5 \pm 0.1$                | 10%                                           |
|              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |                              |                                               |
| 23a          | Å o o i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F              | Br | $7.9 \pm 1.4$                | - 10%                                         |
| 23b          | <sup>2</sup> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F              | Cl | $7.1 \pm 1.2$                | 10%                                           |
| 23c          | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OH             | Br | $99 \pm 22$                  | 9%                                            |
| 24a          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F              | Br | $128 \pm 12$                 | - 10%                                         |
| 24b          | N > 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F              | CI | $110 \pm 8.3$                | - 10%                                         |
| 24c          | ĊH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OH             | Br | 55%                          | 12%                                           |
| 26a          | Å e e i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F              | Br | $8.6 \pm 2.4$                | 59%                                           |
| 26b          | 25 <b></b> 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F              | Cl | $11 \pm 1.8$                 | 44%                                           |
|              | ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |                              |                                               |
| 27a          | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F              | Br | $13 \pm 0.5$                 | 28%                                           |
| 27b          | r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F              | Cl | 15 ± 1.7                     | 37%                                           |
| 28a          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F              | Br | $20 \pm 2.7$                 | 9%                                            |
| 28b          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F              | Cl | n.d. <sup>d</sup>            | n.d. <sup>d</sup>                             |
|              | о́н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |    |                              |                                               |
| 29a          | S <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F              | Br | 56%                          | 5%                                            |
| 29b          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F              | Cl | n.d. <sup>d</sup>            | n.d. <sup>d</sup>                             |
|              | ЙОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |    |                              |                                               |
| CP 55,940    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    | $8.44 \pm 0.2$               | $9.26 \pm 0.1$                                |
| WIN 55,212-2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    | $8.57 \pm 0.2$               | $8.72 \pm 0.2$                                |
| HU 210       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    | $9.78 \pm 0.04$              | $9.55 \pm 0.06$                               |

The reported K-values are mean values of three independent experiments (n = 3)

<sup>b</sup> Due to the low hCB<sub>1</sub> affinity, only the radioligand displacement at a test compound concentration of 1 µM is given. Mean value of two independent experiments (n = 2). <sup>c</sup> Mean value of four experiments (n = 4).

d n.d. = not determined due to low stability.

The CB<sub>1</sub> and CB<sub>2</sub> receptor affinity was determined in competition binding experiments with the radioligand [<sup>3</sup>H]CP-55,940 and fragments of CHO-K1 cells expressing the CB<sub>1</sub> or CB<sub>2</sub> receptor. Rimonabant (SR141716A) and AM630 were used for the identification of the non-specific binding of the radioligand towards CB<sub>1</sub> and CB<sub>2</sub> receptors, respectively.

As shown in Table 1, amide 7b with a 2-chloro-4-fluorophenyl substituent represents a ligand with a high CB<sub>2</sub> affinity  $(K_i = 1.5 \text{ nM})$  and selectivity over the CB<sub>2</sub> receptor (>500), which is comparable to lead compound **7a** ( $K_i = 2.9 \text{ nM}$ ). These results correlate with the affinity data of the CB<sub>2</sub> receptor PET tracer [<sup>18</sup>F] MA3 (6), which has the same phenyl substitution pattern [25].

Replacement of the NH-C=O-moiety by two methylene groups slightly decreased CB<sub>2</sub> receptor affinity as reflected by K<sub>i</sub> values of 13 nM and 15 nM for alkanes 27a and 27b. This result indicates that the amide group increases CB<sub>2</sub> affinity but is not essential for binding at the CB<sub>2</sub> receptor. Moreover, the replacement of the amide group by an ethylene group led to increased lipophilicity. This effect could contribute to the high CB<sub>2</sub> affinity, since in principle lipophilic compounds preferentially bind to the cannabinoid receptors.

The secondary and tertiary amines 23a,b and 24a,b, with a methylene moiety instead of the carbonyl moiety of the amides 7a,b, show an increased hydrophilicity in comparison to the alkanes 27a and 27b. Secondary amines 23a and 23b possess additional H-bond donor and acceptor groups compared to the alkanes and display high CB<sub>2</sub> receptor affinity with K<sub>i</sub> values of 7.9 nM and 7.1 nM, respectively. This is consistent with the published data of CB<sub>2</sub> receptor PET-tracer [<sup>18</sup>F]MA3 (**6**,  $K_i = 0.8$  nM) with arylamine substructure [25]. Replacement of the aliphatic fluorine atom by a polar hydroxy group (23c) led to 13-fold decreased CB2 affinity  $(K_i = 99 \text{ nM})$ . Also, the conversion of the secondary amines **23a**,**b** into tertiary methylamines 24a,b resulted in a 16-fold loss of CB2 affinity. The significantly reduced CB<sub>2</sub> affinity of alcohol 24c confirms that the polar hydroxyethyl moiety is not tolerated by the CB<sub>2</sub> receptor.

The secondary alcohol 28a possesses similar pharmacological properties as the secondary amine **23a**. With a  $K_i$  (hCB<sub>2</sub>) of 20 nM, **28a** is a selective CB<sub>2</sub> receptor ligand that has slightly lower CB<sub>2</sub> affinity than the amide 7a.

Ketones 26a and 26b exhibit an electron withdrawing effect on the carbazole system and mimic, due to the sp<sup>2</sup>-hybridized carbonyl moiety, the planar structure of the amide group of **7a,b**. With K<sub>i</sub>(hCB<sub>2</sub>) values of 8.6 nM and 11 nM, the ketones **26a** and **26b** reveal high CB<sub>2</sub> affinity, respectively, and about 100-fold selectivity over the CB<sub>1</sub> subtype. In contrast, a much lower affinity was recorded for oxime **29a**. At a test compound concentration of  $1 \mu M$ , only 56% of the radioligand was displaced, suggesting a  $K_i$  (hCB<sub>2</sub>) value in this concentration range. It is possible that the low affinity of oxime **29a** is due to low stability as observed for the analog **29b**.

Compounds with a 2-chloro-4-fluoro substitution pattern of the terminal phenyl ring show comparable CB<sub>2</sub> affinity as the corresponding 2-bromo-4-fluoro substituted derivatives. With exception of the moderate affine tertiary amines **24**, the *K*<sub>i</sub> values differ only by 0.8-2.4 nM. In the case of the tertiary amines 24 a difference of 18 nM was observed, which is due to the moderate CB<sub>2</sub> affinity in the 120 nM range. In relative terms, the K<sub>i</sub> values of the amide bioisosteres differ only by 10-22%.

### 4. Metabolism studies of 7a, 23a and 26a

In vivo studies with mice of [<sup>18</sup>F]7a showed low metabolic stability. Radiochromatograms of murine brain samples at 60 min after injection of [<sup>18</sup>F]**7a** revealed only 35% of intact radiotracer [<sup>18</sup>F] 7a [26]. Therefore, the metabolic stability of secondary amine 23a and ketone 26a was determined in vitro and compared to the

Table 2 *In vitro* metabolic stability of potent CB<sub>2</sub> ligands **7a 23a** and **26a** 

| Compd.           | amount of intact parent [%]<br>(90 min, without NADPH, n=4) | amount of intact parent $\pm$ SEM [%] (90 min, with NADPH, n = 4)                   |
|------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 7a<br>23a<br>26a | $73.3 \pm 1.5 \\ 84.9 \pm 1.7 \\ 99.1 \pm 0.4$              | $\begin{array}{l} 69.8 \pm 0.5 \\ 75.1 \pm 2.9^{a} \\ 98.2 \pm 0.6^{b} \end{array}$ |

One-Way ANOVA, post hoc mean comparison Tukey Test compared to 7a.

p > .05.

<sup>b</sup> p < .05.

in vitro metabolic stability of amide 7a. The structures of the main metabolites were analyzed in order to identify metabolically labile structural elements and prove whether the bioisosteric replacement of the amide inhibits cleavage at the original amide position in the side chain. Compounds 23a and 26a were selected due to their high CB<sub>2</sub> affinity and selectivity and the same substitution pattern at the phenyl moiety as the lead compound 7a.

### 4.1. Stability over time

For the in vitro stability studies, mouse liver microsomes were used with and without addition of the cofactor NADPH. After incubation of the test compounds (75  $\mu$ M) for 90 min at 37 °C, the samples were analyzed by LC-quadrupole-MS. The amount of intact parent compound (in %) was calculated via external calibration in combination with an internal standard (ISTD).

The data in Table 2 indicate that an exchange of the amide moiety (NHC(=O)) of **7a** by an aminomethylene  $(NHCH_2)$  moiety (23a) only slightly increased the metabolic stability upon incubation with mouse liver microsomes and NADPH. However, ketone 26a was not metabolically degraded, as 98.2% of the parent ketone 26a were still intact after an incubation period of 90 min. Ketone **26a** showed a significantly higher metabolic stability compared to secondary amine **23a** and amide **7a** (p < .05).

In a second experiment it was shown that degradation of amide 7a and amine 23a took place even in the absence of NADPH. Possible explanations for this observation are a low residual concentration of naturally occurring NADPH in the microsomal preparation or, alternatively, a NADPH independent metabolism, by e.g. microsomal amidases. Therefore, compounds 7a, 23a and 26a were also incubated in murine blood serum for the identification of metabolites.

### 4.2. Identification of metabolite structures

For further investigation of the metabolism, incubated samples were analyzed using LC-qToF-MS, which allowed the identification of metabolites through exact masses and fragmentation experiments. To further analyze the stability, compounds 7a, 23a and 26a (75 µM) were also incubated in mouse blood serum.

In Fig. 3 the metabolites formed after incubation of amide 7a with mouse liver microsomes and NADPH are displayed. Metabolite 7a-F was obtained by defluorination. Although this metabolite was formed in minor amounts, the F-atom of the potential positron emitter is lost. The oxidative N-dealkylation resulted in carbazole 7a-D, which was subsequently hydrolyzed to form the primary amine 7a-E. This metabolite can also be formed by hydrolysis of the parent compound 7a followed by N-dealkylation of 7a-A. Again, the F-atom bearing the radioactivity is lost in metabolites 7a-D and 7a-E. Although the position of the hydroxy group in the carbazole moiety of metabolite 7a-C could not be assigned unequivocally, the 6-position is most likely bearing the OH moiety. Another primary aromatic amine **7a-B** resulted from amide hydrolysis. The structure of the *N*-oxide **7a-G** was confirmed by fragmentation analysis (Fig. 4).

Since fragmentation of N-oxide **7a-G** led to a fragment (m/z)523.0572) formed by the loss of water, an aromatic hydroxylation was excluded. However, the loss of oxygen provided the fragment m/z 525.0704 (parent **7a**), which was reported for *N*-oxides [35].



Fig. 3. Proposed structures of metabolites identified 90 min after incubation of 7a with mouse liver microsomes and NADPH. \* The marked metabolites were also formed without NADPH



Fig. 5. Proposed structures of metabolites identified 90 min after incubation of sec. amine 23a with mouse liver microsomes and NADPH. \* The marked metabolites were also formed without NADPH.

Furthermore, the fragment *m*/*z* 184.0713 proves the additional *O*-atom of **7a-G** somewhere at the carbazole moiety.

Incubation of amide **7a** with mouse liver microsomes in presence and absence of NADPH led to hydrolysis of the amide moiety resulting in the primary aromatic amine **7a-A** ( $[M+H]^+$  229.1123) and the carboxylic acid **7a-I** ( $[M+H]^+$  314.9716,  $[M-H]^-$  312.9630). This hydrolysis is most likely caused by hydrolases (amidases) in the microsomes and was also observed during incubation with



Fig. 6. Fragmentation of metabolite 23a-C.

mouse blood serum. For similar compounds the hydrolysis of the amide was reported as major clearance pathway in *in vivo* experiments with mice and rats [26], [29].

The pattern of metabolites formed upon incubation of secondary amine **23a** (Fig. 5) is very similar to those formed from amide 7a. The metabolites 23a-A (7a-A), 23a-E (7a-E) and 23a-I (7a-I) formed upon oxidative N-dealkylation of 23a are identical with the metabolites formed by amide hydrolysis of **7a**. Furthermore, the *N*oxide 23a-G was also formed and metabolites bearing an OHmoiety at the fluoroethyl side chain (23a-I) or in the carbazole system (23a-C) could be detected. The low stability of a possible hemiaminal led to the assumption, that the hydroxylation took place at the terminal carbon atom of the fluoroethyl residue (23a-J). Fragmentation of metabolite 23a-C with an aromatic hydroxy moiety is given in Fig. 6. Fragment m/z 257.1105 was obtained by  $\beta$ cleavage at the secondary amine. Cleavage of the C-N-bond led to fragment m/z 244.0994, which gave fragment m/z 198.0794 upon loss of the fluoroethyl side chain. All fragments contained an additional O-atom confirming the position of the additional OHmoiety at the carbazole system of metabolite 23a-C.

The secondary amine **23a** was also cleaved in the presence and absence of NADPH, which resulted in the primary aromatic amine **23a-A**. It was assumed that the primary aliphatic alcohol **23a-L** was formed by reduction of the intermediate aldehyde, released upon oxidative *N*-dealkylation. Additionally, the aldehyde could also be oxidized to afford the carboxylic acid **23a-I**. However, the intermediate aldehyde could not be detected after incubation with and without NADPH. After incubation of **23a** with NADPH both metabolites, primary amine **23a-A** and alcohol **23a-L**, were formed in high amounts. Obviously, oxidative *N*-dealkylation plays an important role in the metabolism of secondary amine **23a**.

Serum stability was also determined for the secondary amine **23a** and the amide **7a**. With mouse serum, both CB<sub>2</sub> ligands were metabolized to the primary aromatic amine (**7a**-**A** = **23a**-**A**) (Fig. 7). However, hydrolysis of amide **7a** gave larger amounts of primary amine **7a**-**A** than oxidative *N*-dealkylation of secondary amine **23a** after 90 min.

After an incubation period of 90 min more than 98% of parent ketone **26a** remained unchanged. Nevertheless, a few metabolites could be detected. Oxidative *N*-dealkylation (**26a-D**), hydroxylation of the fluoroethyl side chain (**26a-J**), as well as hydroxylation of the carbazole moiety (**26a-C**) were observed. Moreover, the metabolite **26a-M** having an additional OH moiety in the butanone linker could be identified (Fig. 8).

### 5. logD<sub>7.4</sub> value determination of ketone 26a

Another important parameter for the characterization of novel ligands is the lipophilicity. In this project, the logD<sub>7.4</sub> value of the most promising compound **26a** was determined. For this purpose, the recently developed micro shake flask method in our lab was used and adapted to the high lipophilicity [36]. In this method an exact amount of the respective compound was distributed between a defined volume of presaturated *n*-octanol and buffer (pH 7.4) layer. Afterwards, the concentration in the buffer layer was quantified by LC-quadrupole-MS with external calibration. Due to the high logD<sub>7.4</sub> value of ketone **26a** and its poor ability to be ionized in ESI positive or negative mode, large amounts of the buffer phase had to be injected into the LC-MS. As a reversed phase column was used, ketone **26a** was trapped at the front of the column, which allowed multiple injections of the same sample prior to gradient elution. This procedure enabled detection of ketone **26a** in the



Fig. 7. Incubation of amide 7a and sec. amine 23a with mouse serum. Comparison of the amount of formed primary amine 7a-A = 23a-A after 90 min.



Fig. 8. Proposed structures of metabolites identified 90 min after incubation of ketone 26a with mouse liver microsomes and NADPH.

subnanomolar range. The experimentally determined logD<sub>7.4</sub> value of **26a** was  $5.56 \pm 0.08$ . This value is higher than the reported logD value of **7a** (logD = 3.82 - 4.21) [26], which was determined by a quite different method (correlation of HPLC retention times).

Calculation of logD<sub>7,4</sub> values with ChemAxon<sup>®</sup>, consensus mode, led to the following order of lipophilicity: ketone **26a** ( $clogD_{7,4} = 6.76$ ) > secondary amine **23a** ( $clogD_{7,4} = 6.62$ ) > amide **7a** ( $clogD_{7,4} = 6.20$ ).

### 6. Conclusion

The aim of this study was the preparation of metabolically optimized CB<sub>2</sub> receptor ligands starting from the lead compound 7a. In order to prevent the *in vivo* amide hydrolysis of 7a. compounds with six alternative functional groups instead of the amide of 7a were synthesized, which are non-hydrolysable or difficult to hydrolyze. The CB<sub>2</sub> and CB<sub>1</sub> receptor affinity of these compounds was determined by in vitro radioligand binding studies. Especially the alkanes **27a** ( $K_i = 13 \text{ nM}$ ) and **27b** ( $K_i = 15 \text{ nM}$ ), the secondary amines **23a** ( $K_i$  = 7.9 nM) and **23b** ( $K_i$  = 7.1 nM) as well as the ketones **26a** ( $K_i$  = 8.6 nM) and **26b** ( $K_i$  = 11 nM) show high CB<sub>2</sub> affinity. Furthermore, all tested compounds possess high CB<sub>2</sub>:CB<sub>1</sub> selectivity. Since the alkanes 27a and 27b were classified as too lipophilic, the secondary amine 23a and ketone 26a were examined in more detail concerning pharmacokinetic aspects. During in vitro incubations over 90 min with mouse liver microsomes, secondary amine 23a was slightly and ketone 26a was considerably more stable than amide 7a. Further investigations of the formed metabolites demonstrated that the amide of the lead compound 7a was hydrolyzed predominantly, whereas *N*-dealkylation of the secondary amine in the biotransformation of **23a** played a major role. Since more than 98% of parent ketone **26a** remained unchanged after an incubation period of 90 min, the logD<sub>7.4</sub> value was determined using the micro shake-flask method with LC-MS quantification. A logD<sub>7.4</sub> value of  $5.56 \pm 0.08$  was found for **26a**. The ketone **26a** is a promising starting point for the development of a promising PET tracer. As shown for the synthesis of [<sup>18</sup>F]**7a** nucleophilic substitution of a tosylate precursor is envisaged to obtain [<sup>18</sup>F]**26a**.

### 7. Experimental

### 7.1. Chemistry, general methods

Oxygen and moisture sensitive reactions were carried out under nitrogen, dried with silica gel with moisture indicator (orange gel, Merck) and in dry glassware (Schlenk flask or Schlenk tube). Temperatures were controlled with dry ice/acetone ( $-78 \circ$ C), ice/ water (0 °C), Cryostat (Julabo FT 901 or Huber TC100E-F), magnetic stirrer MR 3001 K (Heidolph) or RCT CL (IKA<sup>®</sup>), together with temperature controller EKT HeiCon (Heidolph) or VT-5 (VWR) and PEG or silicone bath. All solvents were of analytical grade quality. Demineralized water was used. THF was distilled from sodium/ benzophenone. Methanol was distilled from magnesium methanolate. CH<sub>3</sub>CN and ethanol abs. were dried with molecular sieves (3 Å); DMF, ethyl acetate and toluene were dried with molecular sieves (4 Å). Thin layer chromatography (tlc): tlc silica gel 60 F<sub>254</sub> on aluminum sheets (Merck). Flash chromatography (fc): Silica gel 60, 40–63 µm (Merck); parentheses include: diameter of the column ( $\emptyset$ ), length of the stationary phase (1), fraction size (v) and eluent. Melting point: Melting point system MP50 (Mettler Toledo), open capillary, uncorrected. MS: MicroTOFQII mass spectrometer (Bruker Daltonics); deviations of the found exact masses from the calculated exact masses were 5 ppm or less; the data were analyzed with DataAnalysis (Bruker). NMR: NMR spectra were recorded on Agilent DD2 400 MHz and 600 MHz spectrometers; chemical shifts ( $\delta$ ) are reported in parts per million (ppm) against the reference substance tetramethylsilane and calculated using the solvent residual peak of the undeuterated solvent. IR: FT/IR IRAffinity-1 IR spectrometer (Shimadzu) using ATR technique.

#### 7.2. HPLC method for the determination of the purity

Equipment 1: Pump: L-7100, degasser: L-7614, autosampler: L-7200, UV detector: L-7400, interface: D-7000, data transfer: D-line, data acquisition: HSM-Software (all from LaChrom, Merck Hitachi); Equipment 2: Pump: LPG-3400SD, degasser: DG-1210, autosampler: ACC-3000T, UV-detector: VWD-3400RS, interface: DIONEX UltiMate 3000, data acquisition: Chromeleon 7 (Thermo Fisher Scientific); column: LiChropher® 60 RP-select B (5 µm), LiChro-CART<sup>®</sup> 250-4 mm cartridge; flow rate: 1.0 mL/min; injection volume: 5.0  $\mu$ L; detection at  $\lambda = 210$  nm; solvents: A: demineralized water with 0.05% (V/V) trifluoroacetic acid, B: acetonitrile with 0.05% (V/V) trifluoroacetic acid; gradient elution (% A): 0-4 min: 90%; 4–29 min: gradient from 90% to 0%; 29–31 min: 0%; 31-31.5min: gradient from 0% to 90%; 31.5-40 min: 90%. The purity of all compounds was determined by this method. With exception of compounds 23c, 24c and 28a, the purity of all test compounds is higher than 95%.

### 7.3. Synthetic procedures

#### 7.3.1. 2-Bromo-4-fluorobenzamidoxime (12) [26]

Methanol (64 mL) was added to a stirred solution of NH<sub>2</sub>OH · HCl (5.21 g, 75 mmol, 3 eq.) and Na<sub>2</sub>CO<sub>3</sub> (3.98 g, 38 mmol, 1.5 eq.) in water (16 mL). After stirring for 20 min, 2-bromo-4fluorobenzonitrile (10, 5.00 g, 25 mmol, 1 eq.) was added and the reaction mixture was heated at 86 °C for 20 h. The methanol was removed in vacuo and the aqueous suspension was diluted with ethyl acetate (100 mL). The organic layer was separated from the aqueous layer and washed with water  $(2 \times 20 \text{ mL})$  and brine (20 mL). The combined aqueous layers were washed with ethyl acetate ( $2 \times 50$  mL). The combined ethyl acetate layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated to dryness in vacuo. The residue was purified by fc ( $\emptyset$  = 6.5 cm, l = 15 cm, v = 100 mL, cyclohexane/ethyl acetate 60:40,  $R_f = 0.34$  (cyclohexane/ethyl acetate 5:5)). Colorless solid, mp 120-121 °C, yield 3.43 g (59%). Purity (HPLC): 96.4%  $(t_R\!=\!3.7$  and  $3.9\,min).$   $C_7H_6BrFN_2O$  (233.0 g/mol). Exact mass (APCI): m/z = 232.9722 (calcd. 232.9720 for  $C_7 H_7^{79} BrFN_2 O$  $[M + H^+]$ ). <sup>1</sup>H NMR (600 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 5.81 (s, 2H, NH<sub>2</sub>), 7.28 (td, J = 8.5/2.6 Hz, 1H, 5-H), 7.42 (dd, J = 8.5/6.2 Hz, 1H, 6-H), 7.60 (dd, J = 8.7/2.6 Hz, 1H, 3-H), 9.45 (s, 1H, N-OH). <sup>13</sup>C NMR (101 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 114.5 (d, J = 21.1 Hz, 1C, C-5), 119.7 (d, J = 24.7 Hz, 1C, C-3), 122.6 (d, J = 9.9 Hz, 1C, C-2), 132.5 (d, J = 0.9 Hz, 1C, C-2)3.5 Hz, 1C, C-1), 132.7 (d, J = 8.9 Hz, 1C, C-6), 150.9 (1C, C=N), 161.7 (d, J = 249.6 Hz, 1C, C-4). FTIR (neat):  $\tilde{v}$  (cm<sup>-1</sup>) = 3483 (m, O-H), 3363 (m, N-H), 1664 (s, C=N), 1029 (m, C-Br, arom).

### 7.3.2. 3-(2-Bromo-4-fluorophenyl)-5-(3-chloropropyl)-1,2,4-oxadiazole (**14**)

*N*-Ethyl-*N*,*N*-diisopropylamine (2.6 mL, 15 mmol, 2 eq.) and 4chlorobutyryl chloride (0.85 mL, 7.6 mmol, 1 eq.) were added dropwise at  $0 \,^{\circ}$ C to a suspension of benzamidoxime **12** (1.78 g,

7.6 mmol, 1 eq.) in dry toluene (120 mL). The solution was stirred at room temperature for 6 h, followed by heating at reflux for 16 h. All volatiles were removed at reduced pressure and the residue was dissolved in ethyl acetate (350 mL). The solution was washed with water  $(2 \times 80 \text{ mL})$  and brine (80 mL), dried  $(Na_2SO_4)$  and the organic layer was concentrated under reduced pressure. The residue was purified by fc ( $\emptyset = 6 \text{ cm}$ , l = 16 cm, v = 60 mL, cyclohexane/ethyl acetate 95:5,  $R_f = 0.71$  (cyclohexane/ethyl acetate 3:7)). Colorless solid, mp 48–49°C, yield 2.25 g (92%). Purity (HPLC): 96.7% (t<sub>R</sub> = 22.7 min). C<sub>11</sub>H<sub>9</sub>BrClFN<sub>2</sub>O (319.6 g/mol). Exact mass (APCI): m/z = 318.9659 (calcd. 318.9644 for C<sub>11</sub>H<sup>79</sup><sub>10</sub>Br<sup>35</sup>ClFN<sub>2</sub>O  $[M + H^+]$ ). <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 2.26 (tt, I =7.2/6.5 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl), 3.17 (t, J = 7.4 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl),  $3.79 (t, J = 6.4 \text{ Hz}, 2\text{H}, CH_2CH_2CH_2Cl), 7.47 (ddd, J = 8.7/8.2/2.6 \text{ Hz}, J = 8.7/8.2/2.6$ 1H, 5-H), 7.84 (dd, J = 8.7/2.5 Hz, 1H, 3-H), 7.89 (dd, J = 8.7/6.1 Hz, 1H, 6-H). <sup>13</sup>C NMR (151 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 23.2 (1C, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl), 28.8 (1C, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl), 44.0 (1C, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl), 115.4 (d, J = 21.6 Hz, 1C, C-5), 121.3 (d, J = 25.0 Hz, 1C, C-3), 122.1 (d, J = 9.9 Hz, 1C, C-2), 124.4 (d, J = 3.6 Hz, 1C, C-1), 133.6 (d, J = 9.4 Hz, 1C, C-6), 162.8 (d, J = 253.3 Hz, 1C, C-4), 166.6 (1C, C-3<sub>oxadiazole</sub>), 178.9 (1C, C-5<sub>oxadiazole</sub>). FTIR (neat):  $\tilde{v}$  (cm<sup>-1</sup>) = 3078 (w, C-H, arom), 2958 (w, C-H, aliph), 1037 (m, C-Br, arom).

### 7.3.3. 9-(2-Fluoroethyl)carbazole (18)

Under N<sub>2</sub> atmosphere, carbazole (**16**, 3.01 g, 18 mmol, 1 eq.) was dissolved in dry DMF (80 mL) and cooled down to 0 °C. NaH (60% dispersion in Paraffin Oil, 1.44 g, 36 mmol, 2 eq.) was added and the mixture was stirred for 30 min at 0 °C. After the dropwise addition of fluoroethyl tosylate (4.72 g, 22 mmol, 1.2 eq.), the mixture was stirred at room temperature for 19 h. Water (10 mL) and a saturated Na<sub>2</sub>CO<sub>3</sub> solution (50 mL) were added and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (200 mL). The organic layer was washed with a saturated  $Na_2CO_3$  solution (50 mL) and water (2 × 50 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated under reduced pressure. The residue was purified by fc ( $\emptyset = 6.5$  cm, l = 20 cm, v = 60 mL, cyclohexane/ ethyl acetate 99:1,  $R_f = 0.51$  (cyclohexane/ethyl acetate 8:2)). Colorless solid, mp 85 °C, yield 2.83 g (74%). Purity (HPLC): 97.1%  $(t_R = 22.7 \text{ min})$ .  $C_{14}H_{12}FN$  (213.3 g/mol). Exact mass (APCI): m/ z = 214.1036 (calcd. 214.1027 for C<sub>14</sub>H<sub>13</sub>FN [M + H<sup>+</sup>]). <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3): \delta(\text{ppm}) = 4.58 (\text{dt}, J = 23.9/5.2 \text{ Hz}, 2\text{H}, \text{CH}_2\text{CH}_2\text{F}),$ 4.79 (dt, J = 46.8/5.3 Hz, 2H, CH<sub>2</sub>F), 7.23-7.29 (m, 2H, 3-H, 6-H), 7.41 (d, J = 7.9 Hz, 2H, 1-H, 8-H), 7.47 (ddd, J = 8.2/7.0/1.2 Hz, 2H, 2-H, 7-H), 8.11 (dt, J = 7.8/0.8 Hz, 2H, 4-H, 5-H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 43.5 (d, J = 22.9 Hz, 1C, CH<sub>2</sub>CH<sub>2</sub>F), 82.0 (d, J = 172.8 Hz, 1C, CH<sub>2</sub>F), 108.7 (d, J = 1.2 Hz, 2C, C-1, C-8), 119.5 (2C, C-3, C-6), 120.5 (2C, C-4, C-5), 123.2 (2C, C-4a, C-4b), 126.0 (2C, C-2, C-7), 140.6 (2C, C-8a, C-9a). FTIR (neat): v (cm<sup>-1</sup>) = 3047 (w, C-H, arom), 2947 (w, C-H, aliph), 1593 (m, C-C, arom).

#### 7.3.4. 9-(2-Fluoroethyl)-3-nitrocarbazole (20)

Fluoroethylcarbazole **18** (2.57 g, 12 mmol, 1 eq.) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (62 mL) and cooled down to 0 °C. HNO<sub>3</sub> 65% (1.2 mL, 18 mmol, 1.5 eq.) was added dropwise over 30 min and the solution was stirred at 0 °C for another 3 h. Afterwards, the reaction mixture was diluted with water (15 mL), neutralized with a saturated NaHCO<sub>3</sub> solution and the aqueous layer was diluted with water to 80 mL. After evaporation of CH<sub>2</sub>Cl<sub>2</sub> in vacuo, the aqueous layer was extracted with ethyl acetate (4 × 200 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. The residue was purified by fc with a gradient ( $\emptyset = 5$  cm, l = 15 cm, v = 60 mL, cyclohexane/ethyl acetate 5:5)). Yellow solid, mp 191–192 °C, yield 2.50 g (80%). Purity (HPLC): 98.7% (t<sub>R</sub> = 22.7 min). C<sub>14</sub>H<sub>11</sub>FN<sub>2</sub>O<sub>2</sub> (258.3 g/mol). Exact mass (APCI): m/z = 259.0885 (calcd. 259.0877 for C<sub>14</sub>H<sub>12</sub>FN<sub>2</sub>O<sub>2</sub> [M + H<sup>+</sup>]). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):

δ (ppm) = 4.66 (dt, J = 25.3/4.9 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>F), 4.85 (dt, J = 46.7/ 5.0 Hz, 2H, CH<sub>2</sub>F), 7.34–7.43 (m, 1H, 6-H), 7.42–7.51 (m, 2H, 1-H, 8-H), 7.58 (ddd, J = 8.3/7.1/1.1 Hz, 1H, 7-H), 8.17 (dd, J = 7.8/1.0 Hz, 1H, 5-H), 8.39 (dd, J = 9.1/2.2 Hz, 1H, 2-H), 9.01 (d, J = 2.2 Hz, 1H, 4-H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>): δ (ppm) = 44.1 (d, J = 22.1 Hz, 1C, CH<sub>2</sub>CH<sub>2</sub>F), 81.8 (d, J = 173.4 Hz, 1C, CH<sub>2</sub>F), 108.6 (d, J = 2.1 Hz, 1C, C-1), 109.6 (d, J = 1.0 Hz, 1C, C-8), 117.4 (1C, C-4), 121.2 (1C, C-5), 121.4 (1C, C-6), 121.9 (1C, C-2), 123.0 (1C, C-4a), 123.2 (1C, C-4b), 127.8 (1C, C-7), 141.2 (1C, C-3), 141.7 (1C, C-8a), 143.9 (1C, C-9a). FTIR (neat):  $\tilde{v}$  (cm<sup>-1</sup>) = 3055 (w, C-H, arom), 2920, 2850 (w, C-H, aliph), 1307 (s, NO<sub>2</sub>).

### 7.3.5. 9-(2-Fluoroethyl)carbazol-3-ammonium chloride (22·HCl)

Under N<sub>2</sub> atmosphere, nitrocarbazole **20** (2.50 g, 9.7 mmol, 1 eq.) was dissolved in dry THF (260 mL). Pd/C 10% (0.375 g) was added and the mixture was stirred for 23 h under H<sub>2</sub> atmosphere (balloon). After filtration through Celite<sup>®</sup>, the solvent was removed under reduced pressure and the residue was dissolved in Et<sub>2</sub>O (300 mL). A solution of HCl in Et<sub>2</sub>O (2 M, 5.0 mL, 10 mmol, 1.03 eq.) was added dropwise until the salt 22 · HCl precipitated completely. The precipitate was filtered off, washed with cold Et<sub>2</sub>O and dried under reduced pressure.  $R_f = 0.61$  (cyclohexane/ethyl acetate 3:7). Grey solid, mp 230-253 °C (decomposition), yield 2.41 g (94%). Purity (HPLC): 95.9% ( $t_R = 15.2 \text{ min}$ ).  $C_{14}H_{14}ClFN_2$  (264.7 g/mol). Exact mass (APCI): *m*/*z* = 229.1135 (calcd. 229.1136 for C<sub>14</sub>H<sub>14</sub>ClFN<sub>2</sub>  $[M + H^+]$ ). <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 4.72-4.87 (m, 4H, CH<sub>2</sub>CH<sub>2</sub>F), 7.23-7.28 (m, 1H, 6-H), 7.48-7.54 (m, 2H, 2-H, 7-H), 7.68 (d, J = 8.3 Hz, 1H, 8-H), 7.75 (d, J = 8.7 Hz, 1H, 1-H), 8.16 (d, J = 2.1 Hz, 1H, 4-H), 8.19 (d, J = 7.8 Hz, 1H, 5-H), 10.52 (s, 3H, -NH<sub>3</sub><sup>+</sup>). <sup>13</sup>C NMR (101 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 43.5 (d, J = 20.0 Hz, 1C, CH<sub>2</sub>CH<sub>2</sub>F), 83.0 (d, *J* = 167.7 Hz, 1C, CH<sub>2</sub>F), 110.4 (1C, C-8), 110.9 (1C, C-1), 115.2 (1C, C-4), 120.0 (1C, C-6), 121.0 (1C, C-5), 121.2 (1C, C-2), 121.9 (1C, C-4b), 122.8 (1C, C-4a), 123.6 (1C, C-3), 127.07 (1C, C-7), 139.8 (1C, C-9a), 141.3 (1C, C-8a). FTIR (neat):  $\tilde{v}$  (cm<sup>-1</sup>) = 3051 (w, C-H, arom), 2843 (m, C-H, aliph).

## 7.3.6. N-{3-[3-(2-bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl] propyl}-9-(2-fluoroethyl)carbazol-3-amine (**23a**)

Under N<sub>2</sub> atmosphere, triethylamine (0.20 mL, 1.5 mmol, 3 eq.), chloroalkane 14 (156 mg, 0.49 mmol, 1 eq.) and tetrabutylammonium iodide (181 mg, 0.49 mmol, 1 eq.) were sequentially added to a suspension of carbazolamine hydrochloride 22 HCl (144 mg, 0.54 mmol, 1.1 eq.) in dry toluene (20 mL). After the reaction mixture was heated at reflux for 68 h, the cold mixture was filtered and all volatiles were removed under reduced pressure. The residue was dissolved in ethyl acetate (40 mL). Afterwards, the organic layer was washed with HCl solution (1 M, 15 mL) and water  $(2 \times 15 \text{ mL})$ , dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. The residue was purified by fc ( $\emptyset = 2 \text{ cm}$ , l = 17 cm, v = 10 mL, cyclohexane/ ethyl acetate/dimethylethylamine 85:15:3,  $R_f = 0.64$  (cyclohexane/ ethyl acetate 6:4)). Brown solid, mp 103 °C, yield 137 mg (55%). Purity (HPLC): 96.2% ( $t_R = 20.9 \text{ min}$ ).  $C_{25}H_{21}BrF_2N_4O$  (511.4 g/mol). Exact mass (APCI): m/z = 511.0915 (calcd. 511.0940 for  $C_{25}H_{22}^{79}BrF_2N_4O$  [M + H<sup>+</sup>]). <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 2.15 (quint, J = 7.1 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.19 (t, J =7.4 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.27 (t, J = 6.8 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 4.61  $(dt, J = 27.3/4.6 \text{ Hz}, 2H, CH_2CH_2F), 4.74 (dt, J = 47.4/4.6 \text{ Hz}, 2H,$  $CH_2F$ ), 5.45 (s, 1H, NH), 6.86 (dd, J = 8.7/2.2 Hz, 1H, 8-H<sub>carb</sub>), 7.06 (t, J = 7.4 Hz, 1H, 6-H<sub>carb</sub>), 7.28 (d, J = 2.1 Hz, 1H, 4-H<sub>carb</sub>), 7.32-7.38 (m, 2H, 2-H<sub>carb</sub>, 7-H<sub>carb</sub>), 7.43 (td, *J* = 8.4/2.6 Hz, 1H, 5-H<sub>phenyl</sub>), 7.49 (d, J = 8.2 Hz, 1H, 1-H<sub>carb</sub>), 7.82–7.89 (m, 2H, 3-H<sub>phenyl</sub>, 6-H<sub>phenyl</sub>), 7.96 (d, J = 7.7 Hz, 1H, 5-H<sub>carb</sub>). <sup>13</sup>C NMR (101 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 23.6 (1C, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 25.5 (1C, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 42.9 (d,  $J = 20.4 \text{ Hz}, 1C, CH_2CH_2F), 43.1$  (1C, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 82.6 (d, J =167.9 Hz, 1C, CH<sub>2</sub>F), 101.5 (1C, C-4<sub>carb</sub>), 109.2 (1C, C-1<sub>carb</sub>), 110.0 (1C, C-2<sub>carb</sub>), 114.6 (1C, C-8<sub>carb</sub>), 115.4 (d, J = 21.6 Hz, 1C, C-5<sub>phenyl</sub>), 117.9 (1C, C-6<sub>carb</sub>), 120.0 (1C, C-5<sub>carb</sub>), 121.3 (d, J = 25.1 Hz, 1C, C-3<sub>phenyl</sub>), 122.1 (1C, C-4b<sub>carb</sub>), 122.2 (d, J = 10.2 Hz, 1C, C-2<sub>phenyl</sub>), 122.9 (1C, C-4a<sub>carb</sub>), 124.6 (d, J = 3.5 Hz, 1C, C-1<sub>phenyl</sub>), 125.1 (1C, C-7<sub>carb</sub>), 133.4 (1C, C-9a<sub>carb</sub>), 133.6 (d, J = 9.4 Hz, 1C, C-6<sub>phenyl</sub>), 140.4 (1C, C-8a<sub>carb</sub>), 142.3 (1C, C-3<sub>carb</sub>), 162.9 (d, J = 253.3 Hz, 1C, C-4<sub>phenyl</sub>), 166.7 (1C, C-3<sub>oxadiazole</sub>), 180.0 (1C, C-5<sub>oxadiazole</sub>). FTIR (neat):  $\bar{v}$  (cm<sup>-1</sup>) = 3379 (w, N-H), 3055 (w, C-H, arom), 2935 (w, C-H, aliph), 1593 (m, C-C, arom), 1573 (m, C-C, arom).

### 7.3.7. N-{3-[3-(2-bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl] propyl}-9-(2-fluoroethyl)-N-methylcarbazol-3-amine (**24a**)

Under N<sub>2</sub> atmosphere, triethylamine (0.16 mL, 1.1 mmol, 3 eq.) and iodomethane (0.24 mL, 3.8 mmol, 10 eq.) were added to a solution of secondary amine 23a (195 mg, 0.38 mmol, 1 eq.) in dry CH<sub>3</sub>CN (20 mL). After the reaction mixture was heated at reflux for 2.75 h, the cold mixture was filtered and all volatiles were removed in vacuo. The residue was dissolved in ethyl acetate (20 mL) and the mixture was washed with HCl solution (1 M, 10 mL) and water  $(3 \times 10 \text{ mL})$ . Afterwards, the organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. The residue was purified by fc ( $\emptyset = 2 \text{ cm}$ , l = 20 cm, v = 10 mL, cyclohexane/ethyl acetate/dimethylethylamine 92:8:3,  $R_f = 0.73$  (cyclohexane/ethyl acetate 6:4)). Brown resin, yield 73 mg (37%). Purity (HPLC): 95.8% ( $t_R = 21.2 \text{ min}$ ).  $C_{26}H_{23}BrF_2N_4O$  (525.4 g/mol). Exact mass (APCI): m/z = 525.1082(calcd. 525.1096 for  $C_{26}H_{24}^{79}BrF_2N_4O$  [M + H<sup>+</sup>]). <sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ):  $\delta$  (ppm) = 2.23 (quint, I = 7.2 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.01 (s, 3H, NCH<sub>3</sub>), 3.08 (t, *J* = 7.3 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.51 (t, *J* = 6.3 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 4.55 (dt, *J* = 23.7/4.7 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>F), 4.77 (dt, J = 46.8/5.2 Hz, 2H, CH<sub>2</sub>F), 7.05–7.13 (m, 2H, 5-H<sub>phenyl</sub>, 2-H<sub>carb</sub>), 7.17  $(t, J = 7.4 \text{ Hz}, 1\text{H}, 6\text{-H}_{carb}), 7.30 (d, J = 8.8 \text{ Hz}, 1\text{H}, 1\text{-H}_{carb}), 7.35 (d, J = 8.8 \text{Hz}, 100 \text{ Hz})$ 8.1 Hz, 1H, 8-H<sub>carb</sub>), 7.40–7.45 (m, 1H, 7-H<sub>carb</sub>), 7.47 (dd, J = 8.2/ 2.6 Hz, 1H, 3-H<sub>phenvl</sub>), 7.50–7.56 (m, 1H, 4-H<sub>carb</sub>), 7.80 (dd, J = 8.7/ 6.0 Hz, 1H, 6-H<sub>phenyl</sub>), 8.01 (d, J = 7.8 Hz, 1H, 5-H<sub>carb</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 24.0 (1C, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 24.3 (1C,  $NCH_2CH_2CH_2$ , 40.6 (1C,  $NCH_3$ ), 43.6 (d, J = 22.8 Hz, 1C,  $CH_2CH_2F$ ), 54.2 (1C, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 82.1 (d, J = 172.6 Hz, 1C, CH<sub>2</sub>F), 106.3 (1C, C- $4_{carb}$ ), 108.6 (1C, C- $8_{carb}$ ), 109.3 (1C, C- $1_{carb}$ ), 115.0 (d, J = 21.4 Hz, 1C, C-5<sub>phenyl</sub>), 115.9 (1C, C-2<sub>carb</sub>), 118.9 (1C, C-6<sub>carb</sub>), 120.5 (1C, C-5<sub>carb</sub>), 121.7 (d, J = 24.7 Hz, 1C, C-3<sub>phenyl</sub>), 122.9 (d, J = 9.7 Hz, 1C, C-2<sub>phenyl</sub>), 123.0 (1C, C-4b<sub>carb</sub>), 123.9 (1C, C-4a<sub>carb</sub>), 124.8 (d, J = 3.6 Hz, 1C, C-1<sub>phenyl</sub>), 125.9 (1C, C-7<sub>carb</sub>), 133.4 (d, J = 9.1 Hz, 1C, C-6<sub>phenyl</sub>), 134.9 (1C, C-9a<sub>carb</sub>), 141.1 (1C, C-8a<sub>carb</sub>), 144.1 (1C, C-3<sub>carb</sub>), 163.4 (d, J = 255.5 Hz, 1C, C-4<sub>phenyl</sub>), 167.3 (1C, C-3<sub>oxadiazole</sub>), 179.4 (1C, C-5<sub>oxa-</sub> diazole). FTIR (neat):  $\tilde{v}$  (cm<sup>-1</sup>) = 3051 (w, C-H, arom), 2947 (w, C-H, aliph), 1600 (m, C-C, arom), 1573 (m, C-C, arom).

### 7.3.8. 5-[9-(2-Fluoroethyl)carbazol-3-yl]-5-oxopentanoic acid (25)

Under N<sub>2</sub> atmosphere, BF<sub>3</sub>·Et<sub>2</sub>O (78.5 mL, 620 mmol, 33 eq.) was added to a mixture of 4-(methoxycarbonyl)butanoyl chloride (3.9 mL, 28 mmol, 1.5 eq.) and fluoroethylcarbazole 18 (4.00 g, 19 mmol, 1 eq.). The mixture was heated at 50 °C. After 2 h, additional acid chloride (1.3 mL, 9.4 mmol, 0.5 eq.) was added at room temperature and the reaction mixture was heated at 50 °C for another 19 h. At 0 °C NaOH solution (20%, 320 mL) was slowly added to the reaction mixture (violent reaction). The organic solvent was evaporated in vacuo and methanol (250 mL) was added dropwise at 0 °C. Stirring was continued at room temperature for 74 h. Afterwards, methanol was removed in vacuo and the pH value was adjusted to 1 with HCl 37%. The resulting suspension was filtered and washed with 50 °C warm ethyl acetate (200 mL). The aqueous layer was extracted with ethyl acetate ( $2 \times 200$  mL). The combined organic layers were washed with brine (100 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and the solvent was evaporated in vacuo. The residue was purified by fc with a gradient ( $\emptyset = 6 \text{ cm}$ , l = 18 cm, v = 60 mL,

cyclohexane/ethyl acetate/formic acid 80:20:0.5, 65:35:0.5, 50:50:0.5,  $R_f = 0.50$  (cyclohexane/ethyl acetate/formic acid 5:5:0.2)). The product was purified by recrystallization (ethyl acetate). Beige solid, mp 152 °C, yield 1.92 g (31%). Purity (HPLC): 96.1%  $(t_R = 19.6 \text{ min})$ .  $C_{19}H_{18}FNO_3$  (327.4 g/mol). Exact mass (APCI): m/ z = 328.1347 (calcd. 328.1343 for C<sub>19</sub>H<sub>19</sub>FNO<sub>3</sub> [M + H<sup>+</sup>]). <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 1.92 (quint, J = 7.3 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H), 2.37 (t, *J* = 7.4 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H), 3.18 (t, *I* = 7.3 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H), 4.73–4.90 (m, 4H, CH<sub>2</sub>CH<sub>2</sub>F), 7.30 (t, J = 7.4 Hz, 1H, 6-H), 7.51 (ddd, J = 8.3/7.1/1.2 Hz, 1H, 7-H),7.65–7.74 (m, 2H, 1-H, 8-H), 8.08 (dd, J = 8.7/1.6 Hz, 1H, 2-H), 8.31 (d, I = 7.7 Hz, 1H, 5-H), 8.88 (d, I = 1.3 Hz, 1H, 4-H).<sup>13</sup>C NMR (101 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 19.8 (1C, CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H), 33.0 (1C,  $CH_2CO_2H$ ), 37.1 (1C,  $CH_2CH_2CO_2H$ ), 43.1 (d, J = 20.1 Hz, 1C, CH<sub>2</sub>CH<sub>2</sub>F), 82.5 (d, *J* = 167.9 Hz, 1C, CH<sub>2</sub>F), 109.4 (1C, C-1), 110.1 (1C, C-8), 120.0 (1C, C-6), 120.7 (1C, C-5), 121.4 (1C, C-4), 122.0 (1C, C-4a), 122.6 (1C, C-4b), 125.8 (1C, C-2), 126.5 (1C, C-7), 128.4 (1C, C-3), 140.9 (1C, C-8a), 142.9 (1C, C-9a), 174.4 (1C, CO<sub>2</sub>H), 198.7 (1C, C=O). FTIR (neat):  $\tilde{v}$  (cm<sup>-1</sup>) = 3250–2300 (b, O-H), 1712 (s, C=O), 1670 (m, C=0).

### 7.3.9. 4-[3-(2-Bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl]-1-[9-(2-fluoroethyl)carbazol-3-yl]butan-1-one (**26a**)

Under N<sub>2</sub> atmosphere, N-ethyl-N,N-diisopropylamine (66 µL, 0.38 mmol, 2 eq.) and COMU<sup>®</sup> (106 mg, 0.25 mmol, 1.3 eq.) were added to a solution of carboxylic acid 25 (71 mg, 0.21 mmol, 1.1 eq.) in dry THF (2.5 mL). After the reaction mixture was stirred at room temperature for 30 min. it was cooled down to 0 °C and benzamidoxime **12** (45 mg, 0.19 mmol, 1 eq.) was added. Stirring was continued at room temperature for 24 h. Afterwards, THF was removed in vacuo, dry toluene (2 mL) was added and the mixture was heated at reflux for 24 h. All volatiles were removed under reduced pressure and the residue was dissolved in ethyl acetate (30 mL). The organic layer was washed with water  $(2 \times 10 \text{ mL})$  and brine (10 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. The residue was purified by fc with a gradient ( $\emptyset = 2 \text{ cm}$ , l = 15 cm, v = 10 mL, cyclohexane/ethyl acetate 85:15, 75:25,  $R_f = 0.50$ (cyclohexane/ethyl acetate 6:4)). Beige solid, mp 150°C, yield 61 mg (61%). Purity (HPLC): 96.0% (t<sub>R</sub> = 25.2 min). C<sub>26</sub>H<sub>20</sub>BrF<sub>2</sub>N<sub>3</sub>O<sub>2</sub> (524.3 g/mol). Exact mass (APCI): *m*/*z* = 524.0755 (calcd. 524.0780 for  $C_{26}H_{21}^{79}BrF_2N_3O_2$  [M + H<sup>+</sup>]). <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 2.22 (quint, J = 7.2 Hz, 2H, COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.17 (t, J = 7.4 Hz, 2H, COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.36 (t, J = 7.1 Hz, 2H, COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 4.72–4.91 (m, 4H, CH<sub>2</sub>CH<sub>2</sub>F), 7.29 (t, J = 7.5 Hz, 1H, 6-H<sub>carb</sub>), 7.43 (td, J = 8.4/2.5 Hz, 1H, 5-H<sub>phenvl</sub>), 7.52 (t, J = 7.6 Hz, 1H, 7-H<sub>carb</sub>), 7.68–7.74 (m, 2H, 1-H<sub>carb</sub>, 8-H<sub>carb</sub>), 7.82 (dd, *J* = 8.6/2.5 Hz, 1H, 3-H<sub>phenyl</sub>), 7.88 (dd, J = 8.7/6.1 Hz, 1H, 6-H<sub>phenyl</sub>), 8.10 (dd, J = 8.8/1.4 Hz, 1H, 2-H<sub>carb</sub>), 8.27 (d, J = 7.7 Hz, 1H, 5-H<sub>carb</sub>), 8.89 (d, J = 1.4 Hz, 1H, 4-H<sub>carb</sub>). <sup>13</sup>C NMR (101 MHz, DMSO-D<sub>6</sub>):  $\delta$  (ppm) = 21.0 (1C, COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 25.2 (1C, COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 36.6 (1C, COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 43.1 (d, J = 19.9 Hz, 1C, CH<sub>2</sub>CH<sub>2</sub>F), 82.5 (d, J = 167.8 Hz, 1C, CH<sub>2</sub>F), 109.4 (1C, C-1<sub>carb</sub>), 110.1 (1C, C-8<sub>carb</sub>), 115.4 (d, J = 21.6 Hz, 1C, C-5<sub>phenyl</sub>), 120.0 (1C, C-6<sub>carb</sub>), 120.6 (1C, C-5<sub>carb</sub>), 121.3 (d, J = 25.1 Hz, 1C, C-3<sub>phenyl</sub>), 121.5 (1C, C-4<sub>carb</sub>), 122.0 (1C, C-4a<sub>carb</sub>), 122.2 (d, J = 10.1 Hz, 1C, C-2<sub>phenyl</sub>), 122.5 (1C, C-4b<sub>carb</sub>), 124.5 (d, J = 3.5 Hz, 1C, C-1<sub>phenyl</sub>), 125.8 (1C, C-2<sub>carb</sub>), 126.5 (1C, C-7<sub>carb</sub>), 128.3 (1C, C-3<sub>carb</sub>), 133.6 (d, J = 9.4 Hz, 1C, C-6<sub>phenyl</sub>), 140.9 (1C, C-8a<sub>carb</sub>), 143.0 (1C, C-9a<sub>carb</sub>), 162.8 (d, *J* = 253.3 Hz, 1C, C-4<sub>phenyl</sub>), 166.6 (1C, C-3<sub>oxadiazole</sub>), 179.7 (1C, C-5<sub>oxadiazole</sub>), 198.3 (1C, C=0). FTIR (neat): v (cm<sup>-1</sup>) = 2935 (w, C-H, aliph), 1666 (m, C=O), 1593 (m, C-C, arom), 1573 (m, C-C, arom).

### 7.3.10. 3-{4-[3-(2-Bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl] butyl}-9-(2-fluoroethyl)carbazole (**27a**)

 $Et_3SiH$  (78 µL, 0.49 mmol, 2.5 eq.) was added dropwise to a

solution of ketone 26a (103 mg, 0.20 mmol, 1 eq.) in trifluoroacetic acid (0.80 mL). After the reaction mixture was heated at 55 °C for 3 h, the mixture was carefully dropped into water (10 mL) at 0 °C and the mixture was neutralized with NaOH. The aqueous suspension was extracted with ethyl acetate  $(3 \times 10 \text{ mL})$ . Afterwards, the organic layer was washed with water (10 mL) and brine (10 mL). dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. The residue was purified by fc ( $\emptyset = 2$  cm, l = 15 cm, v = 10 mL, cyclohexane/ethyl acetate 90:10,  $R_f = 0.73$  (cyclohexane/ethyl acetate 6:4)). Brownish resin, yield 77 mg (77%). Purity (HPLC): 97.4% ( $t_R = 27.9 \text{ min}$ ).  $C_{26}H_{22}BrF_2N_3O$  (510.4 g/mol). Exact mass (APCI): m/z = 510.0988(calcd. 510.0987 for  $C_{26}H_{23}^{79}BrF_2N_3O [M + H^+]$ ). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 1.83–1.93 (m, 2H, C-3<sub>carb</sub>-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.93-2.02 (m, 2H, C-3<sub>carb</sub>-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 2.88 (t, J = 7.4 Hz, 2H, C- $3_{carb}$ -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 3.02 (t, J = 7.4 Hz, 2H, C- $3_{carb}$ -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 4.59 (dt, J = 23.8/5.2 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>F), 4.79 (dt, J = 46.8/5.2 Hz, 2H, CH<sub>2</sub>F), 7.10–7.15 (m, 1H, 5-H<sub>phenvl</sub>), 7.21–7.26 (m, 1H, 6-H<sub>carb</sub>), 7.30 (dd, J = 8.4/1.6 Hz, 1H, 2-H<sub>carb</sub>), 7.34 (d, J = 8.3 Hz, 1H, 1-H<sub>carb</sub>), 7.39 (d, J = 8.1 Hz, 1H, 8-H<sub>carb</sub>), 7.43-7.49 (m, 2H, 3-H<sub>phenyl</sub>, 7-H<sub>carb</sub>), 7.83 (dd, J = 8.7/6.0 Hz, 1H, 6-H<sub>phenyl</sub>), 7.90 (d, J = 0.6 Hz, 1H, 4-H<sub>carb</sub>), 8.07 (d, J = 7.8 Hz, 1H, 5-H<sub>carb</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) = 26.3 (1C, C-3<sub>carb</sub>-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 26.6 (1C, C-3<sub>carb</sub>-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 31.6 (1C, C-3<sub>carb</sub>-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 35.5 (1C, C-3<sub>carb</sub>-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 43.5 (d, J = 22.8 Hz, 1C, CH<sub>2</sub>CH<sub>2</sub>F), 82.0 (d, J = 172.7 Hz, 1C, CH<sub>2</sub>F), 108.5 (d, J = 1.1 Hz, 1C, C-1<sub>carb</sub>), 108.6 (d, J = 1.0 Hz, 1C, C-8<sub>carb</sub>), 115.0 (d, J = 21.4 Hz, 1C, C-5<sub>phenyl</sub>), 119.4 (1C, C-6<sub>carb</sub>), 120.0 (1C, C-4<sub>carb</sub>), 120.5 (1C, C-5<sub>carb</sub>), 121.7 (d, J = 24.7 Hz, 1C, C-3<sub>phenyl</sub>), 122.9 (d, J = 9.8 Hz, 1C, C-2<sub>phenyl</sub>), 123.1  $(1C, C-4b_{carb}), 123.4 (1C, C-4a_{carb}), 124.8 (d, J = 3.5 Hz, 1C, C-1_{phenyl}),$ 125.9 (1C, C-7<sub>carb</sub>), 126.7 (1C, C-2<sub>carb</sub>), 132.9 (1C, C-3<sub>carb</sub>), 133.4 (d, J = 9.1 Hz, 1C, C-6<sub>phenyl</sub>), 139.2 (1C, C-9a<sub>carb</sub>), 140.9 (1C, C-8a<sub>carb</sub>), 163.4 (d, J = 255.6 Hz, 1C, C-4<sub>phenvl</sub>), 167.3 (1C, C-3<sub>oxadiazole</sub>), 179.7 (1C, C-5<sub>oxadiazole</sub>). FTIR (neat):  $\tilde{v}$  (cm<sup>-1</sup>) = 2924 (w, C-H, aliph), 1600 (m, C-C, arom), 1570 (m, C-C, arom).

### 7.4. Receptor binding studies to determine $CB_1$ and $CB_2$ receptor affinity

<sup>3</sup>H]CP55940 displacement assays were used for the determination of affinity  $(K_i)$  values of ligands for the cannabinoid  $CB_1$  and Membrane aliquots  $CB_2$ receptors. containing 5 ug (CHOK1hCB<sub>1</sub>\_bgal) or 1 µg (CHOK1hCB<sub>2</sub>\_bgal) of membrane protein in 100 µL assay buffer (50 mM Tris-HCl, 5 mM MgCl<sub>2</sub>, 0.1% BSA, pH 7.4) were incubated at 30 °C for 1 h, in presence of 3.5 nM [<sup>3</sup>H] 1.5 nM [<sup>3</sup>H]CP55940 CP55940 (CHOK1hCB<sub>1</sub>\_bgal) or (CHOK1hCB<sub>2</sub>\_bgal). Initially, 1 µM of competing ligand was used, followed by six concentrations of competing ligand (between  $10^{-5.5}\,\text{M}$  and  $10^{-10.5}\,\text{M})$  when more than 50% displacement was found at 1 µM. Non-specific binding was determined in the presence of 10 µM AM630 (CHOK1hCB2\_bgal) or 10 µM SR141716A (CHOK1hCB1\_bgal). Incubation was terminated by rapid filtration through GF/C filters (Whatman International, Maidstone, UK), and followed by extensive washing using a Filtermate 96-well harvester (Perkin Elmer, Groningen, The Netherlands). Filter-bound radioactivity was determined by scintillation spectrometry using a 1450 Microbeta Wallac Trilux scintillation counter (Perkin Elmer).

Data analysis was performed by using the nonlinear regression curve fitting program GraphPad Prism 7.0 (GraphPad Software, Inc., San Diego, CA). From displacement assays,  $IC_{50}$  values were obtained by non-linear regression analysis of the displacement curves. The obtained  $IC_{50}$  values were converted into  $K_i$  values using the Cheng Prusoff equation [37] to determine the affinity of the ligands using a K<sub>D</sub> value of [<sup>3</sup>H]CP55940 of 0.93 nM at CB<sub>2</sub>R.

### Acknowledgement

Financial support by the Deutsche Forschungsgemeinschaft (*DFG, collaborative research center 656 "Molecular Cardiovascular Imaging*") is gratefully acknowledged.

### Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ejmech.2018.01.048.

### **Conflicts of interest**

There is no conflict of interest.

#### References

- Y. Gaoni, R. Mechoulam, Isolation, structure, and partial synthesis of an active constituent of Hashish, J. Am. Chem. Soc. 86 (1964) 1646–1647. https://doi. org/10.1021/ja01062a046.
- [2] E. Fride, R. Mechoulam, Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent, Eur. J. Pharmacol. 231 (1993) 313–314. https://doi.org/10.1016/0014-2999(93)90468-W.
- [3] T. Sugiura, S. Kondo, A. Sukagawa, S. Nakane, A. Shinoda, K. Itoh, A. Yamashita, K. Waku, 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain, Biochem. Biophys. Res. Commun. 215 (1995) 89–97. https://doi.org/10.1006/bbrc.1995.2437.
- [4] L.A. Matsuda, S.J. Lolait, M.J. Brownstein, A.C. Young, T.I. Bonner, Structure of a cannabinoid receptor and functional expression of the cloned cDNA, Nature 346 (1990) 561–564. https://doi.org/10.1038/346561a0.
- [5] S. Munro, K.L. Thomas, M. Abu-Shaar, Molecular characterization of a peripheral receptor for cannabinoids, Nature 365 (1993) 61–65. https://doi.org/ 10.1038/365061a0.
- [6] V. Di Marzo, The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation, Pharmacol. Res. 60 (2009) 77–84. https://doi.org/10.1016/j.phrs.2009.02.010.
- [7] A.S. Heimann, I. Gomes, C.S. Dale, R.L. Pagano, A. Gupta, L.L. de Souza, A.D. Luchessi, L.M. Castro, R. Giorgi, V. Rioli, E.S. Ferro, L.A. Devi, Hemopressin is an inverse agonist of CB<sub>1</sub> cannabinoid receptors, Proc. Natl. Acad. Sci. U. S. A 104 (2007) 20588–20593. https://doi.org/10.1073/pnas.0706980105.
- [8] C. Turcotte, M.-R. Blanchet, M. Laviolette, N. Flamand, The CB<sub>2</sub> receptor and its role as a regulator of inflammation, Cell. Mol. Life Sci. 73 (2016) 4449–4470. https://doi.org/10.1007/s00018-016-2300-4.
- M. Roche, D.P. Finn, Brain CB<sub>2</sub> receptors: implications for neuropsychiatric disorders, Pharmaceuticals 3 (2010) 2517–2553. https://doi.org/10.3390/ ph3082517.
- [10] H.-C. Lu, K. Mackie, An introduction to the endogenous cannabinoid system, Biol. Psychiatr. 79 (2016) 516–525. https://doi.org/10.1016/j.biopsych.2015. 07.028.
- [11] A. Klegeris, C.J. Bissonnette, P.L. McGeer, Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB<sub>2</sub> receptor, Br. J. Pharmacol. 139 (2003) 775–786. https://doi.org/10.1038/sj.bjp. 0705304.
- [12] K. Maresz, E.J. Carrier, E.D. Ponomarev, C.J. Hillard, B.N. Dittel, Modulation of the cannabinoid CB<sub>2</sub> receptor in microglial cells in response to inflammatory stimuli, J. Neurochem. 95 (2005) 437–445. https://doi.org/10.1111/j.1471-4159.2005.03380.x.
- [13] N.E. Buckley, K.L. McCoy, É. Mezey, T. Bonner, A. Zimmer, C.C. Felder, M. Glass, Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB<sub>2</sub> receptor, Eur. J. Pharmacol. 396 (2000) 141–149. https://doi. org/10.1016/S0014-2999(00)00211-9.
- [14] J.W. Huffman, J. Liddle, S. Yu, M.M. Aung, M.E. Abood, J.L. Wiley, B.R. Martin, 3-(1',1'-Dimethylbutyl)-1-deoxy-Δ<sup>8</sup>-THC and related compounds: synthesis of selective ligands for the CB2 receptor, Bioorg. Med. Chem. 7 (1999) 2905–2914. https://doi.org/10.1016/S0968-0896(99)00219-9.
- [15] M. Rinaldi-Carmona, F. Barth, J. Millan, J.M. Derocq, P. Casellas, C. Congy, D. Oustric, M. Sarran, M. Bouaboula, B. Calandra, M. Portier, D. Shire, J.C. Brelière, G.L. Le Fur, SR 144528, the first potent and selective antagonist of the CB<sub>2</sub> cannabinoid receptor, J. Pharmacol. Exp. Ther 284 (1998) 644-650.
- [16] R.A. Ross, H.C. Brockie, L.A. Stevenson, V.L. Murphy, F. Templeton, A. Makriyannis, R.G. Pertwee, Agonist-inverse agonist characterization at CB<sub>1</sub> and CB<sub>2</sub> cannabinoid receptors of L759633, L759656, and AM630, Br. J. Pharmacol. 126 (1999) 665–672. https://doi.org/10.1038/sj.bjp.0702351.
- [17] Y. Marchalant, P.W. Brownjohn, A. Bonnet, T. Kleffmann, J.C. Ashton, Validating antibodies to the cannabinoid CB2 receptor: antibody sensitivity is not evidence of antibody specificity, J. Histochem. Cytochem. 62 (2014) 395–404. https://doi.org/10.1369/0022155414530995.

- [18] M. Piel, I. Vernaleken, F. Rösch, Positron emission tomography in CNS drug discovery and drug monitoring, J. Med. Chem. 57 (2014) 9232–9258. https:// doi.org/10.1021/jm5001858.
- [19] R. Slavik, U. Grether, A. Muller Herde, L. Gobbi, J. Fingerle, C. Ullmer, S.D. Krämer, R. Schibli, L. Mu, S.M. Ametamey, Discovery of a high affinity and selective pyridine analog as a potential positron emission tomography imaging agent for cannabinoid type 2 receptor, J. Med. Chem. 58 (2015) 4266–4277. https://doi.org/10.1021/acs.jmedchem.5b00283.
- [20] A. Haider, A. Muller Herde, R. Slavik, M. Weber, C. Mugnaini, A. Ligresti, R. Schibli, L. Mu, S. Mensah Ametamey, Synthesis and biological evaluation of thiophene-based cannabinoid receptor type 2 radiotracers for PET imaging, Front. Neurosci. 10 (2016) 350. https://doi.org/10.3389/fnins.2016.00350.
- [21] R. Slavik, A. Müller Herde, A. Haider, S.D. Krämer, M. Weber, R. Schibli, S.M. Ametamey, L. Mu, Discovery of a fluorinated 4-oxo-quinoline derivative as a potential positron emission tomography radiotracer for imaging cannabinoid receptor type 2, J. Neurochem. 138 (2016) 874–886. https://doi.org/10. 1111/jnc.13716.
- [22] R.-P. Moldovan, R. Teodoro, Y. Gao, W. Deuther-Conrad, M. Kranz, Y. Wang, H. Kuwabara, M. Nakano, H. Valentine, S. Fischer, M.G. Pomper, D.F. Wong, R.F. Dannals, P. Brust, A.G. Horti, Development of a high-affinity PET radioligand for imaging cannabinoid subtype 2 receptor, J. Med. Chem. 59 (2016) 7840–7855. https://doi.org/10.1021/acs.jmedchem.6b00554.
- [23] L. Hortala, J. Arnaud, P. Roux, D. Oustric, L. Boulu, F. Oury-Donat, P. Avenet, T. Rooney, D. Alagille, O. Barret, G. Tamagnan, F. Barth, Synthesis and preliminary evaluation of a new fluorine-18 labelled triazine derivative for PET imaging of cannabinoid CB<sub>2</sub> receptor, Bioorg. Med. Chem. Lett 24 (2014) 283-287. https://doi.org/10.1016/j.bmcl.2013.11.023.
- [24] G. Saccomanni, G. Pascali, S.D. Carlo, D. Panetta, M. de Simone, S. Bertini, S. Burchielli, M. Digiacomo, M. Macchia, C. Manera, P.A. Salvadori, Design, synthesis and preliminary evaluation of <sup>18</sup>F-labelled 1,8-naphthyridin- and quinolin-2-one-3-carboxamide derivatives for PET imaging of CB2 cannabinoid receptor, Bioorg. Med. Chem. Lett. 25 (2015) 2532–2535. https://doi.org/ 10.1016/j.bmcl.2015.04.055.
- [25] M. Ahamed, D. van Veghel, C. Ullmer, K. van Laere, A. Verbruggen, G.M. Bormans, Synthesis, biodistribution and in vitro evaluation of brain permeable high affinity type 2 cannabinoid receptor agonists [<sup>11</sup>]CMA2 and [<sup>18</sup>]FMA3, Front. Neurosci. 10 (2016) 431. https://doi.org/10.3389/fnins.2016. 00431.
- [26] R. Teodoro, R.-P. Moldovan, C. Lueg, R. Günther, C.K. Donat, F.-A. Ludwig, S. Fischer, W. Deuther-Conrad, B. Wünsch, P. Brust, Radiofluorination and biological evaluation of N-aryl-oxadiazolyl-propionamides as potential radioligands for PET imaging of cannabinoid CB<sub>2</sub> receptors, Org. Med. Chem. Lett. 3 (2013) 11. https://doi.org/10.1186/2191-2858-3-11.
- [27] C. Lueg, D. Schepmann, R. Günther, P. Brust, B. Wünsch, Development of fluorinated CB<sub>2</sub> receptor agonists for PET studies, Bioorg. Med. Chem. 21 (2013) 7481–7498. https://doi.org/10.1016/j.bmc.2013.09.040.
- [28] T. Rühl, W. Deuther-Conrad, S. Fischer, R. Günther, L. Hennig, H. Krautscheid, P. Brust, Cannabinoid receptor type 2 (CB<sub>2</sub>)-selective N-aryl-oxadiazolylpropionamides: synthesis, radiolabelling, molecular modelling and biological evaluation, Org. Med. Chem. Lett. 2 (2012) 32. https://doi.org/10.1186/2191-2858-2-32.
- [29] Y. Cheng, B.K. Albrecht, J. Brown, J.L. Buchanan, W.H. Buckner, E.F. DiMauro, R. Emkey, R.T. Fremeau Jr., J.-C. Harmange, B.J. Hoffman, L. Huang, M. Huang, J.H. Lee, F.-F. Lin, M.W. Martin, H.Q. Nguyen, V.F. Patel, S.A. Tomlinson, R.D. White, X. Xia, S.A. Hitchcock, Discovery and optimization of a novel series of N-arylamide oxadiazoles as potent, highly selective and orally bioavailable cannabinoid receptor 2 (CB<sub>2</sub>) agonists, J. Med. Chem. 51 (2008) 5019–5034. https://doi.org/10.1021/jim800463f.
- [30] M. Krasavin, A.V. Sosnov, R. Karapetian, I. Konstantinov, O. Soldatkina, E. Godovykh, F. Zubkov, R. Bai, E. Hamel, A.A. Gakh, Antiproliferative 4-(1,2,4oxadiazol-5-yl)piperidine-1-carboxamides, a new tubulin inhibitor chemotype, Bioorg. Med. Chem. Lett 24 (2014) 4477–4481. https://doi.org/10.1016/j. bmcl.2014.07.089.
- [31] C. Lueg, F. Galla, B. Frehland, D. Schepmann, C.G. Daniliuc, W. Deuther-Conrad, P. Brust, B. Wünsch, Hydroxyalkylation with cyclic sulfates: synthesis of carbazole derived CB<sub>2</sub> ligands with increased polarity, Arch. Pharm. 347 (2014) 21–31. https://doi.org/10.1002/ardp.201300255.
- [32] J. Henrottin, A. Zervosen, C. Lemaire, F. Sapunaric, S. Laurent, B. van den Eynde, S. Goldman, A. Plenevaux, A. Luxen, N<sup>1</sup>-Fluoroalkyltryptophan analogues: synthesis and in vitro study as potential substrates for indoleamine 2,3dioxygenase, ACS Med. Chem. Lett. 6 (2015) 260–265. https://doi.org/10. 1021/ml500385d.
- [33] M. Fujinaga, T. Yamasaki, J. Yui, A. Hatori, L. Xie, K. Kawamura, C. Asagawa, K. Kumata, Y. Yoshida, M. Ogawa, N. Nengaki, T. Fukumura, M.-R. Zhang, Synthesis and evaluation of novel radioligands for positron emission tomography imaging of metabotropic glutamate receptor subtype 1 (mGluR1) in rodent brain, J. Med. Chem. 55 (2012) 2342–2352. https://doi.org/10.1021/ jm201590g.
- [34] G. Bauer, G. Hägele, P. Sartori, Polyhalogenierte Ethane in der Kinnear-Perren-Reaktion, Phosphorus Sulfur Relat. Elem. 8 (2006) 95–98. https://doi.org/10. 1080/03086648008078168.
- [35] H. Ibrahim, F. Couderc, P. Perio, F. Collin, F. Nepveu, Behavior of N-oxide

derivatives in atmospheric pressure ionization mass spectrometry, Rapid Commun. Mass Spectrom. RCM 27 (2013) 621-628. https://doi.org/10.1002/ rcm.6493.

[36] F. Galla, C. Bourgeois, K. Lehmkuhl, D. Schepmann, M. Soeberdt, T. Lotts, C. Abels, S. Ständer, B. Wünsch, Effects of polar  $\kappa$  receptor agonists designed for the periphery on ATP-induced Ca<sup>2+</sup> release from keratinocytes, Med.

Chem. Commun 7 (2016) 317–326. https://doi.org/10.1039/C5MD00414D.
[37] C. Yung-Chi, W.H. Prusoff, Relationship between the inhibition constant (K<sub>1</sub>) and the concentration of inhibitor which causes 50 per cent inhibition (I<sub>50</sub>) of an enzymatic reaction, Biochem. Pharmacol. 22 (1973) 3099–3108. https://doi.org/10.1016/0006-2952(73)90196-2.