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Copper-Catalyzed One-Pot Borylative Aldolisation ββββ-Fluoride 

Elimination for the Formal Addition of Acrylates to Carbonyl 

Moieties 
Corentin Rasson, Adrien Stouse, Arnaud Boreux, Virginie Cirriez and Olivier Riant*[a] 

Abstract: Herein, we report the copper-catalyzed domino 
borylation/aldolisation of methyl 2-fluoroacrylate with carbonyl 
compounds followed by an elimination to afford Morita-Baylis-Hillman 
(MBH) analogs. The optimal conditions described were shown to be 
compatible with a wide range of aldehydes and ketones. 
Unprecedented MBH adducts derived from ketones were efficiently 
synthesized. 

Recently domino reactions have emerged as highly efficient tools 
for the synthesis of complex structures.[1] The most prominent 
categories are the cationic[2], anionic[3], radical[4], pericyclic[5], 
photochemically induced[6] and transition metal-catalyzed[7] 
domino reactions. This last category relies mostly on expensive 
palladium[8], ruthenium[9] and rhodium[10] catalysts. More recently, 
copper-mediated conjugate additions have been exploited in the 
initiating step of the domino process. Several nucleophilic 
copper(I) species such as Cu-B[11], Cu-C[12], Cu-H[13] and Cu-Si[14] 
have been successfully employed in this strategy.  
 

The Morita-Baylis-Hillman (MBH) reaction[15] , a well-known 
domino reaction that allows the formal condensation of a Michael 
acceptor and an aldehyde or an aldimine (Scheme 1a), is now 
recognized as one of the powerful synthetic tool of organic 
synthesis.  However, this reaction still suffers from certain 
limitations such as high catalyst loading, low reaction rates, and, 
notably, its poor applicability to ketones. Numerous studies 
focused on modifying different parameters of the reaction have 
been realized[16] to try to overcome those drawbacks. Other 
synthetic routes have also been designed such as a nickel-
catalyzed hydroxycarboxylation of allenes,[17] hydroalumination of 
acetylenic esters[18] or aldol reactions using sulfurated or 
selenated substrates followed by oxidation/elimination.[19]  

 

Inspired by a report from the group of Ogoshi[20] on the 
concomitant β-elimination of boron and fluoride from a 
trifluoromethyl moiety, we realized that an analogous method 
could lead to the generation of an acrylate from an α-fluoro-β-
borylester. Such patterns can be obtained by the addition of Cu-
B species onto an α-fluoro-acrylate 2. The combination of this β-

borylation with an aldolisation on carbonyl 1 followed by a 
subsequent elimination would yield MBH adduct 4 (Scheme 1b). 
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Scheme 1. a. Classical MBH reaction. b. Synthesis of MBH analogs via a 
copper catalyzed one-pot 1,4-addition/aldolisation/elimination. 

In order to develop this new approach we first focused on the 
domino borylation/aldolisation step using 4-t-Bu-benzaldehyde as 
a model substrate (Table 1). As a starting point, we applied the 
conditions we previously described[14b] for catakytic alkyne 
borocupration using 2 mol% of the copper catalyst 
CuF(PPh3)3·2MeOH (5), 2 mol% of (rac)-BINAP (L1), 1.2 
equivalent of diboron 3 in THF or toluene at room temperature 
(entries 1 and 2). 

 
Table 1. Selected experiments from the optimization of copper-catalyzed 1,4-

borylation/aldolisation between 1a and 2. 
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Toluene proved to be a more suitable solvent than THF, 

affording 6a in 78% yield by NMR. We then studied the influence 
of the metal and ligand. The metal is essential for this reaction. 
When no copper was used (entry 3) no product was observed. 
Similarly, in the absence of a ligand (entry 4) we observed a 
significant drop in the yield. Several other phosphine ligands were 
screened: dppbz (L2) or DPEphos (L3) gave lower yield than (L1) 
(entry 5-6) while dppf (L4) gave a very good result with 87% yield 
(entry 6). To further improve this transformation we modified the 
stoichiometry of B2pin2 3. Notably, using 1.5 equivalents of 3 
affords slightly better yield (entry 9). 

Following the successful optimization of the 
borylation/aldolisation step, we moved to the elimination step 
using several nucleophiles known to interact with borylated 
compounds (See supporting information). After extensive tests 
we found that using 3.5 equivalents of sodium methoxide in 
methanol afforded the MBH adduct in 81% yield. This yield was 
further improved by using 1.5 equivalent of aldehyde 1a to obtain 
4a in 87% isolated yield. 

With the optimized conditions in hand we started to investigate 
the scope of the reaction by testing different aldehydes (Scheme 
2). 
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Scheme 2. Scope for aldehydes. Reaction conditions: 1 (0.75 mmol, 1.5 equiv), 

2 (0.5 mmol, 1 equiv), B2pin2 (0.75 mmol, 1.5 equiv), CuF(PPh3)3·2MeOH 5 

(0.01 mmol, 2 mol%), 1,1’-bis(diphenylphosphino)ferrocene L4 (0.01 mmol, 2 

mol%) in 2,5 mL toluene, room temperature, 18 h. NaOMe (1.75 mmol, 3.5 

equiv) in 2.5 mL MeOH, room temperature, 24h. Yields of isolated products are 

given. 

Benzaldehyde and simple alkyl substituted aromatic 
aldehydes were readily converted into the corresponding MBH 
adduct   4a-c and 4j-k (83 to 90% yield). For non-bulky groups 
such as methyl, the substitution in ortho, meta or para position 
seems to have no significant influence on the yield of the reaction 
(4c,j,k). Additionally, the presence of halogens is well tolerated 
with only a minor decline in efficiency observed with larger 
halogens (4g-i). Even deactivated aldehydes (1d-e) gave good 
yields of the desired products. This result is noteworthy, especially 
for 4-dimethylaminobenzaldehyde 1e which typically does not 
react at all in the MBH reaction. Heteroatoms are well tolerated 
with 2-thiophene carboxaldehyde 1l giving 92% yield of 4l and N-
trityl prolinal yielding 4n in 64% and only one diastereosiomer. α-
β-unsaturated aldehyde 1m and alkyl aldehyde 1o-p also readily 
react under the reaction conditions to give 4o-p in 82% and 99% 
yield, respectively. 

Based on the high reactivity observed for the unactivated 
aldehydes, we postulated that these conditions might allow 
extending the scope of the reaction to substrates where the MBH 
reaction is usually poorly applicable, notably ketones. To test this, 
we applied the optimized conditions to acetophenone 7a as a 
model substrate (Table 3).  

Table 3. Selected experiments from the optimization reactions using ketones. 

Entry Ligand B2pin2 (equiv) Solvent Yield [%][a] 

1 L1 1.2  THF 70 

2 L1 1.2  Toluene 78 

3 L1[b] 1.2  Toluene 0 

4 - 1.2 Toluene 48 

5 L2 1.2  Toluene 36 

6 L3 1.2 Toluene 68 

7 L4 1.2 Toluene 87 

8 L4 1.0 Toluene 58 

9 L4 1.5 Toluene 89 

[a] Yield determined by 1H NMR with 3,4,5-trimethoxybenzaldehyde as 
internal standard. [b] With no copper source. 
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We were delighted to observe the formation of 8a. However, 

the lower reactivity of ketones compared to aldehydes  also lead 
to byproduct 9. The use of 1 or 1.5 equivalents of 7a yielded 
similar results (entries 1-2). To see if different ligands could 
prevent the formation of 9 and improve the reaction, various 
phosphine ligands and NHCs were tested. The phosphines and 
IMes gave lower yields for 8a, while the use of IPrCuDBM gave a 
better yield (57%) of the product but did not change the amount 
of 9 formed. However, upon using a higher catalyst loading (entry 
6-7) the yield of 8a increased and the formation of 9 could be 
significantly supressed. The best result (83%) was obtained when 
1.2 equivalent of 2 was used. 

Using these new optimized conditions we started to 
investigate the scope of the reaction towards other ketones 
(Scheme 3). 

R1

O COOMeF

7a-u 2

1. IPrCuDBM (7 mol%)
B2pin2 (1.5 equiv)

toluene, r.t.

2. MeONa (3.5 equiv)
MeOH

+
R1 COOMe

8a-u

COOMe

R3

R3= H 8a 84%

R2

OMe 8b 91%

86% [a]

F 8d 87%

Br 8e 98%

CF3 8f 89%

NO2 8g 30%

NMe2 8c 50%

COOMe
OH

COOMe
OH

Fe

HO
COOMe

COOMe
HO

COOMeTsN
OH

COOMe

COOMe
OH

COOMeBocN
OH

8l 63% [a] 8m 63%

H3C

HH3C

H

H3C

H

CH3

CH3

HO
MeOOC

COOMe
OH

COOMe
OH

COOMe
OH

OH

OHR2

8h 89% 8i 53%

8j 50% 8k 73%

8n 38%

OH

8q 42% (83%) [b]

8p 38%8o 72%

8r 74% 8s 57%

8u
50% (56%) [b]

1 dia

OH O

O
8t 38%

(E)/(Z)= 70:30
from 50:50

COOMe
OH

t-Bu

 
Scheme 3. Scope for ketones. Reaction conditions: 7 (0. 5 mmol, 1 equiv), 2 

(0.6 mmol, 1.2 equiv), B2pin2 (0.75 mmol, 1.5 equiv), IPrCuDBM (0.035 mmol, 

7 mol%) in 2,5 mL toluene, room temperature, 18 h. NaOMe (1.75 mmol, 3.5 

equiv) in 2.5 mL MeOH, room temperature, 24h. Yields of isolated products are 

given. [a] On a 5 mmol scale. [b] 1H NMR yield with 3,4,5-

trimethoxybenzaldehyde as internal standard. 

Impressively, aromatic ketones bearing electron-withdrawing 
or electron-donating groups (8a-h) were well-tolerated and gave 
good to excellent yields with the exception of p-nitro-substituted 
acetophenone (8g, 30%). Even modification of R2 from a methyl 
to an ethyl or allyl (8i-j) gave acceptable yields. Alkyl ketones (8m-
q,u) gave in most cases moderate to good yields except for 
azetidinone 7p (38%) and tetralone 7n (38%). Interestingly, the 
use of 7r-s showed a better reactivity of (E)-enone (74%) 
compared to the (Z) counterpart (57%). This difference in 
reactivity is also seen with use of a 50:50 mixture of 7t to give a 
70:30 ratio in the final product 8t.  

On the basis of in situ NMR analysis and precedent in the 
literature, we can postulate a general mechanism for this 
transformation. We previously described a mechanism for the 
borylation/aldolisation leading to A.[11b] Upon treatment with 
NaOMe in MeOH, A undergoes a nucleophilic attack from two 
methoxide ions on both borons to give the bis-boronate B. 
Following a cleavage of a B-O bond to give an alcohol, the other 

Entry [Cu] 
(mol %) 

L 
(mol%) 

7a 
(equiv) 

2 
(equiv) 

 

Yield [%][a] 

8a 9 

1 5 (2) L4 (2) 1.5 1 49 28 

2 5 (2) L4 (2) 1 1 48 33 

3 5 (2) L1 (2) 1 1 29 45 

4 IMesCuDBM (2) 1 1 23 32 

5 IPrCuDBM (2) 1 1 57 27 

6 IPrCuDBM (5) 1 1 70 4 

7 IPrCuDBM (7) 1 1 79 4 

8 IPrCuDBM (7) 1 1.2 83 11 

[a] Yield determined by 1H NMR with 3,4,5-trimethoxybenzaldehyde as 
internal standard. 
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boronate undergoes a concomitant elimination of the fluoride and 
the boron moiety to give 4 (Scheme 4a). The formation of side 
product 9 was also studied by NMR (see supporting information). 
9 is obtained by the conjugate addition of Cu-Bpin on 2 to give the 
enolate C which will trap a proton from the reaction media to give 
D. Upon treatment with NaOMe in MeOH methyl acrylate E is 
obtained and reacts with a Cu-Bpin species to give 9. 
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Scheme 4. Mechanism for the formation of 4 and 9 

Having synthesized products 8 we started to study their 
potential as starting material for further transformation in useful 
compounds. We therefore devised a reaction to obtain diene 10b 
via an acetate elimination and applied a previously reported 
silylation/elimination procedure to obtain the tetrasubstituted 
allylsilane 11b with high yield and selectivity.[21] 

OMe
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Scheme 5. Transformation of 8b into 10b and 11b 

In conclusion, we have developed a highly efficient and 
broadly applicable alternative route to the classical MBH reaction. 
We describe this new approach as a one-pot domino 
borylation/aldolisation elimination process. This new approach 
tolerates a wide range of substituents on the substrates and 
importantly permits the use of normally unreactive substrates 

including ketones and deactivated aldehydes. Work is now in 
progress to devise an enantioselective version and to further 
study the potential of transformations of our adducts into 
synthetically useful intermediates. 
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