NATURAL PRODUCTS

Antineoplastic Agents. 606. The Betulastatins

George R. Pettit,*[®] Noeleen Melody, and Jean-Charles Chapuis

Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States

Supporting Information

ABSTRACT: The medicinal potential of the plant pentacyclic triterpene betulin has generated long-term interest focused on various SAR research avenues. The present approach was based on producing further analogues (chimeras) arising from a studied modification of betulin bonded to the Dov-Val-Dil-Dap unit of the powerful anticancer drug dolastatin 10, which provided betulastatins 1 (7b), 2 (11b), 3 (16b), and 4 (18b). Betulastatin 1, 2, and 4 exhibited modest levels of cancer cell growth inhibition against six cancer cell lines. Betulastatin 3 proved to be the most potent cancer cell growth inhibitor (GI₅₀ 0.01 μ g/mL) and seems worthy of further development, as the presumed mixture of anticancer mechanisms of action may prove to be useful.

D etulin, a pentacyclic triterpene, and its C-28 carboxylic acid D derivative betulinic acid are well-known plant constituents especially in birch tree bark and in traditional medicine. Betulinic acid, owing to a variety of medicinal properties, and especially as a cancer cell growth inhibitor based on a mitochondrial mechanism of action, continues to be widely studied.^{1,2} Some of these advances have, for example, been extended to a clinical trial against dysplastic nevus, a clinical precursor of melanoma. More broadly, betulinic acid has shown various levels of inhibition of growth in vitro against a variety of cancer types.² Earlier in investigations of betulin chemistry with respect to the discovery of useful anticancer drugs, we explored structural modifications that included a betulin/betulinic acid series³ and, previously, α -apoallobetulin⁴ and selected pentacyclic triterpenes including oleanolic and ursolic acids.⁵ In the present extension of this work, we have examined a chimera approach by adding the Dov-Val-Dil-Dap^{6a} sequence of the exceptionally potent peptide dolastatin 10^{6b} to betulin structural modifications.

RESULTS AND DISCUSSION

To begin, the synthesis of 7b was carried out as shown in Scheme 1. Betulin was acetylated, and the resulting diacetate selectively deprotected at C-28 in the presence of K_2CO_3 and aqueous MeOH to 3-O-acetylbetulin and then oxidized to aldehyde 1 with pyridinium dichromate.^{7a-c} When the aldehyde 1 was reacted with hydroxylamine hydrochloride, the oxime 2^8 was prepared and subsequently reduced to the corresponding amine 3, using the reducing system sodium cyanoborohydride, 15% titanium chloride, and ammonium acetate.⁹ The N-protected amino acid Boc-Dap (4)¹⁰ was condensed with amine 3 using the organophosphorous coupling reagent diethylcyanophosphonate (DEPC) to give, following purification, amide 5. Removal of the Boc protecting

group using trifluoroacetic acid (TFA) followed by coupling with a Dov-Val-Dil.TFA (6) amino acid fragment¹¹ using DEPC gave peptide 7a upon separation employing silica gel chromatography. Deacetylation of 7a in the presence of tetrahydrofuran THF-MeOH (3:2) and 2 N NaOH gave the betulin peptide chimera 7b, designated betulastatin 1.

A similar synthetic approach was followed for the synthesis of peptide 11b, as shown in Scheme 2. The derivative 28-O-acetylbetulin¹² was employed to prepare oxime 8, which, upon reduction, gave the $3\alpha/\beta$ amine mixture 9a/9b. Separation of these amine isomers was achieved by silica gel chromatography, and 9b was found to be the major product of the reaction. The C-3 betulin peptide chimera 11a was then synthesized using 9b, by employing the coupling sequence described previously for 7b. Acetate deprotection of 11a was achieved in THF–CH₃OH (4:3) and 2 N NaOH to give chimera 11b (betulastatin 2).

Scheme 3 details the synthesis of C-30 betulin peptide chimera 16. The diacetate was brominated using *N*bromosuccinimide (NBS) as described in the literature¹³ to give allylic bromide 12 and was then reacted with NaN₃ in dry dimethylformamide (DMF) to give azide 13 in high yield. The azide was next reduced to the deprotected amine 14 using a 1 M solution of LiAH₄ in THF followed by condensing with Boc-Dap 4 in the presence of DEPC and triethylamine (TEA) to give the Boc-protected peptide derivative 15a. In order to proceed with removal of the Boc group from Dap with TFA and avoid acid-catalyzed rearrangement at C-20/C-29, 15a was reacetylated in the presence of acetic anhydride and dimethylaminopyridine (DMAP) to give diacetate 15b.

Received: June 22, 2017

Special Issue: Special Issue in Honor of Susan Horwitz

Journal of Natural Products

Coupling the tripeptide 6 with 15b gave, as expected, 16a, which was then deacetylated to peptide 16b (betulastatin 3).

Scheme 4 describes extending the pentapeptide from the betulin molecule by a distance of two carbons by reacting 3-Oacetylbetulinic acid8 and ethylenediamine in the presence of oxalyl chloride followed by the same coupling sequence with Boc-Dap 4 and peptide 6, as outlined in the previous schemes. Interestingly, the reaction acid during the deprotection of the Boc-Dap amide caused a rearrangement to the lactam shown in Scheme 4 and supported by examination of the NMR data. The resonances for the methylene carbon (C-29) and the attached tertiary carbon (C-20), usually seen at 110 and 150 ppm, respectively, were not observed in the ¹³C NMR spectrum for peptides 18a and 18b (betulastatin 4). The ¹H NMR spectrum provided further evidence. The resonances due to the geminal protons on the C-29 methylene group of betulin, usually observed as singlets near 4.7 and 4.6 ppm, were not detected. In the 2D HSQC spectrum of 18a, the proton on C-19 was observed downfield at 3.75 ppm and correlated with C-19 at 86.8 ppm. Removal of the acetate protecting group at C-3 on

Scheme 2

peptide 18a with 2 N NaOH, as described previously, gave peptide 18b (betulastatin 4).

As can be seen from Table 1, chimera 7b, amine 9b, and chimeras 11b and 18b in general resulted in a 10-fold increase in cancer cell growth, while chimera 16b provided a 100-fold increase, and this lead will be further developed.

EXPERIMENTAL SECTION

General Experimental Procedures. Both *N*-Boc-dolaproine^{10a} and Dov-Val-Dil-TFA¹¹ were synthesized as described earlier. Other reagents including diethyl cyanophosphonate and anhydrous solvents were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA) and were used as received. Small quantities of betulin (1) were purchased from Sigma-Aldrich, and larger quantities were isolated⁵ from white birch bark collected in the state of Maine by Professor Robert Dunlap, Department of Chemistry, University of Maine, and Mr. B. Deane as well as Hardwood Products Company LLC, Guilford, Maine.

Melting points are uncorrected and were determined with a Fisher Scientific melting point apparatus. Optical rotations were measured by use of a Rudolph Research Autopol IV automatic polarimeter. The $[\alpha]_D$ values are given in 10^{-1} deg cm² g⁻¹. The ¹H and ¹³C NMR spectra were recorded on Varian Unity INOVA 400 and 500 and Bruker 400 NMR instruments with deuterated solvents. High-resolution mass spectra were obtained employing a JEOL LCMate instrument and a Bruker MicrOTOF-Q in the ESI positive mode

Scheme 3

(direct infusion with internal calibration) at the Arizona State University CLAS High Resolution Mass Spectroscopy Laboratory. For thin-layer chromatography, Analtech silica gel GHLF Uniplates were used and visualized with short-wave UV irradiation and an iodine chamber. For column chromatography, silica gel (230–400 mesh ASTM) from E. Merck (Darmstadt, Germany) was employed.

3-O-Acetyl-28-betulinal (1). 3-*O*-Acetylbetulin was prepared from the diacetate as described previously^{7a} and purified using column chromatography on silica gel eluting with hexanes–EtOAc (8:2). Recrystallization from CH₂Cl₂–MeOH yielded colorless plates: $R_f = 0.7$ (CH₂Cl₂–MeOH, 98:2); mp 260–261 °C; $[\alpha]^{20}_{\rm D}$ +28.2 (*c* 0.7, CHCl₃), lit.^{7a} mp 256–258 °C; lit.^{7b} mp 258–260 °C; $[\alpha]^{20}_{\rm D}$ +26 (*c* 0.9, CHCl₃); ¹H and ¹³C NMR spectroscopic data in agreement with published values.^{7a,c} 3-O-Acetylbetulinal (1) was prepared as described previously^{7b} from 3-O-acetylbetulin to yield a colorless crystalline solid: mp 170–175 °C; $[\alpha]^{20}_{\rm D}$ +22 (*c* 0.6, CHCl₃), lit.^{7b} $[\alpha]^{20}_{\rm D}$ +32 (*c* 0.7, CHCl₃); ¹H and ¹³ C NMR data in agreement with reported values.^{7b}

3-O-Acetyl-28-oxime-betulin (2). 3-O-Acetylbetulinal (1) (0.25 g, 0.5 mmol) was dissolved in dry pyridine (5 mL), and NH₂OH·HCl (0.1 g, 1.5 mmol, 3 equiv) was added. The solution was heated at reflux for 2 h and monitored by TLC (hexanes–EtOAc, 8:2). The reaction mixture was cooled and added to iced water (100 mL), and

the resulting white precipitate filtered and dried under vacuum to yield oxime **2** (0.22 g, 86% yield). Crystallization of **2** from hot MeOH gave colorless crystals: mp 255–257 °C; lit.⁸ mp >260 °C; R_f = 0.5 (hexanes–EtOAc, 8:2); ¹H NMR (CDCl₃, 400 MHz) δ 8.12 (1H, s, NOH), 7.52 (1H, s, H-28), 4.69 (1H, bs, H-29), 4.58 (1H, s, H-29), 4.45 (1H, dd, J = 10, 6 Hz, H-3), 2.49 (1H, dt, J = 12, 6 Hz, H-19), 2.02 (3H, s, OCOCH₃), 1.68 (3H, s), 0.97 (3H, s), 0.95 (3H,), 0.82 (6H, s), 0.81 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) 171.1, 155.4, 149.7, 110.1, 80.9, 55.3, 50.3, 49.7, 49.3, 47.9, 42.8, 40.9, 38.6, 38.3, 37.7, 37.04, 37.02, 34.2, 32.3, 29.7, 27.9, 27.8, 25.1, 23.7, 21.3, 20.8, 19.1, 18.1, 16.5, 16.1, 16.0, 14.7; (+)-HRAPCIMS m/z 498.3953 [M + H]⁺ (calcd for C₃₂H₅₂NO₃, 498.3947).

3-O-Acetyl-28-aminobetulin (3). To a stirred solution of 3-Oacetyl-28-oxime-betulin (2) (0.35 g, 0.7 mmol) in MeOH (50 mL) and cooled to 0 °C (ice-bath) were added NH₄OAc (0.75 g, 9.7 mmol, 14 equiv) and NaBH₄CN (0.6 g, 0.97 mmol). TiCl₃ (10 wt % in 20-30 wt % HCl) (3 mL) was then added dropwise to the cooled mixture. The reaction flask was removed from the cold bath after 2 h, and the mixture stirred at rt for 1 h. Next, 2 N NaOH (20 mL) was added dropwise to the mixture until pH 10. MeOH was removed under vacuum, and the aqueous suspension was extracted with CH₂Cl₂ (200 mL). The organic fraction was separated and washed with water until it was at neutral pH (3 \times 30 mL), dried (Na₂SO₄), and concentrated to a solid (0.25 g, 71% yield): ¹H NMR (CDCl₃, 400 MHz) δ 4.66 (1H, bs, H-29), 4.56 (1H, bs, H-29), 4.45 (1H, dd, J = 10, 6 Hz, H-3), 2.85 (1H, d, J = 13 Hz, H-28a), 2.35 (2H, m), 2.15 (1H, m), 2.02 (3H, s, OCOCH₃), 1.66, 1.00, 0.95, 0.83, 0.82, 0.81 (3H, s, 6 × CH₃), 2.0-0.7 (CH, CH₂, NH₂); ¹³C NMR (CDCl₃, 100 MHz) 171.0, 150.6, 109.6, 80.9, 55.3, 50.3, 48.9, 47.4, 47.3, 42.6, 40.9, 39.2, 38.3, 37.8, 37.0, 36.9, 34.1, 34.0, 29.7, 29.3, 27.9, 27.0, 25.1, 23.7, 21.3, 20.9, 19.1, 18.2, 16.5, 16.1, 15.9, 14.7; (+)-HRAPCIMS m/z 484.4147 [M + H]⁺ (calcd for C32H54NO2, 484.4155). The product was used immediately without further purification in the next reaction.

Table 1. Human Cancer Cell Line $(Gl_{50} \mu g/mL \text{ in DMSO})$ Growth Inhibition Results from Comparison Experiments

	cell line ^a					
compound	BXPC-3	MCF-7	SF-268	NCI-H460	KM20L2	DU-145
betulin ^{b,5}	9.3	>10	>10	7.4	>10	>10
1	>10	>10	>10	>10	>10	>10
2	15.5	4.5	13.2	4.1	5.1	>10
3	1.9	1.8	1.8	1.9	1.9	1.8
5	>10	>10	>10	>10	>10	>10
7a	4.1	3.6	2.6	4.2	2.4	3.7
7b	0.60	0.40	0.30	>1	0.31	0.40
8	10.4	5.9	>10	>10	14.1	>10
9a	>10	2.1	1.2	6.0	3.0	1.3
9b	1.1	0.20	0.21	0.21	0.35	0.13
10	>10	>10	>10	>10	>10	>10
11a	10.0	4.1	3.8	>10	7.0	2.5
11b	2.0	0.70	0.40	2.1	0.85	0.40
12	>10	>10	>10	>10	>10	>10
13	>10	>10	>10	>10	>10	>10
14	3.0	3.1	4.2	4.0	2.9	2.1
15a	>10	9.0	>10	>10	>10	>10
15b	>10	>10	5.9	>10	7.0	>10
16a	8.0	6.3	4.0	>10	4.0	3.0
16b	0.40	0.08	0.04	0.50	0.090	0.040
18a	3.8	3.6	1.3	5.1	3.1	0.39
18b	0.31	0.21	0.09	0.60	0.22	0.06

^aCancer cell lines in order: pancreas (BXPC-3); breast (MCF-7); CNS (SF-268); lung (NCI-H460); colon (KM20L2); prostate (DU-145). ^bSource: Sigma-Aldrich.

3-O-Acetyl-28-amino-N-(Boc-Dap)-betulin (5). To a stirred solution of amine 3 (0.16 g, 0.33 mmol) in anhydrous CH₂Cl₂ (10 mL) at 0 °C was added Boc-Dap $(4)^{10}$ (0.08 g, 0.27 mmol). The solution was cooled in an ice bath, and TEA (0.16 mL, 3.5 equiv) followed by DEPC (0.1 mL, 0.62 mmol, 2 equiv) were added to the reaction mixture. Stirring with warming to room temperature (rt) was continued for 24 h. The mixture was then concentrated and purified using silica gel chromatography with gradient elution (100% hexane \rightarrow hexanes-EtOAc, 7:3) to give 5 (0.1 g, 46%) as a waxy solid. Crystallization from hexanes with cooling gave a colorless solid: mp 116–119 °C; $[\alpha]_{D}^{20}$ –11 (c 0.65, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) 6.39 (1H, bs), 5.57 (1H, bs), 4.68 (1H, s), 4.58 (1H, s), 4.46 (1H, dd, J = 9.6, 6.4 Hz), 3.86–3.76 (2H, m) 3.55 (1H, m), 3.44 (3H, s, OCH₃), 3.39 (1H, m), 3.26 (1H, m) 3.13-3.02 (1H, m), 2.47 (2H, m, H-19, H-28), 2.03 (3H, s, OCOCH₃), 1.68, 1.05, 0.95 (3H, s, CH_3), 0.84 (2 × CH_3) 0.83 (3H, s), 0.7–1.95 (CH, CH_2 hydrogens); $^{13}\mathrm{C}$ NMR (CDCl₃, 100 MHz) δ 174.6, 170.9 150.4, 109.4, 80.9, 60.8, 55.4, 50.3, 48.9, 47.3, 46.8, 44.5, 42.6, 40.9, 38.3, 37.8, 37.1, 37.0, 36.6, 34.9, 34.0, 30.3, 28.5, 27.9, 27.1, 25.9, 24.7, 23.7, 23.4, 21.3, 20.8, 19.2, 18.1, 16.5, 16.1, 16.09, 14.7; (+)-HRAPCIMS m/z 753.5776 [M + H]⁺ (calcd for C₄₆H₇₇N₂O₆, 753.5782).

3-O-Acetyl-28-amino-*N***-(Dap-Dil-Val-Dov)-betulin (7a).** 3-O-Acetyl-28-*N*-(Boc-Dap)-betulin (5) (0.07 g, 0.086 mmol) was dissolved in anhydrous CH_2Cl_2 (4 mL) and cooled in an ice bath. TFA (1.5 mL) was added, and the solution stirred for 1 h. The product mixture was then concentrated to remove the solvent, and TFA was removed under reduced pressure to yield 3-O-acetyl-28-amino-*N*-(Dap)-betulin TFA salt as a foamy solid. The salt was then stirred together with Dov-Val-Dil-TFA (6)¹¹ (0.045 g, 0.083 mmol) in anhydrous CH_2Cl_2 (5 mL) under N₂ at 0 °C. TEA (0.06 mL, 0.42 mmol) and DEPC (0.02 mL, 0.15 mL, 1.8 equiv) were added in succession, and the reaction mixture was stirred for 24 h with warming to rt, concentrated, and purified on silica gel eluting with CH_2Cl_2 -MeOH (95:5) to give 7a as an off-white solid (0.05 g, 45% yield). Attempts at crystallizing 7a from hexanes-acetone gave a fine powder:

mp 129–131 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.07 (1H, bs), 6.41 (1H, bs), 4.80–4.64 (2H, m), 4.53 (1H, s), 4.42 (1H, m), 4.12–4.02 (2H, m), 3.89 (1H, m), 3.42–2.99 (8H, m), 3.10–3.04 (1H, m), 2.98 (3H, s), 2.60–2.20 (11H, m), 2.08–1.92 (8H, m), 1.86–1.42 (16 H, m), 1.40–1.14 (13H, m), 1.04–0.73 (40 H, m); ¹³C NMR (CDCl₃, 100 MHz) δ 174.7, 173.5, 171.5, 171.2, 170.5, 150.5, 109.8, 82.2, 81.1, 78.3, 77.5, 61.5, 60.7, 59.7, 58.2, 55.5, 54.1, 50.5, 49.2, 48.8, 47.5, 47.2, 44.6, 42.8, 42.7, 41.1, 38.5, 37.9, 37.7, 37.4, 37.2, 35.2, 34.2, 33.4, 31.0, 30.5, 29.9, 28.1, 27.9, 27.3, 25.9, 25.3, 25.1, 25.08, 23.8, 21.5, 20.9, 20.2, 19.7, 19.5, 18.3, 18.1, 16.7, 16.3, 16.2, 16.0, 14.9, 14.87, 10.7; (+)-HRFABMS *m*/*z* 1064.8355 (calcd for C₆₃H₁₁₀N₅O₈, 1064.8354).

Betulin-28-amino-N-(Dap-Dil-Val-Dov) (7b). To a solution of acetate 7a (0.024 g, 0.022 mmol) in a mixture of THF-MeOH, 3:2 (0.7 mL), was added aqueous 2 N NaOH (0.15 mL). The reaction mixture was stirred at rt for 24 h. Water (1 mL) was added, the mixture was extracted into EtOAc (2×1 mL), and the combined organic layers were concentrated and separated by flash silica gel column chromatography (CH2Cl2-MeOH, 96:4) to yield a colorless solid, 12 mg (50% yield): mp 150 °C; ¹H NMR (CDCl₃, 400 MHz) δ 6.88 (1H, d, J = 8.8 Hz), 6.45 (1H, bs), 4.78 (1H, dd, J = 8.4, 6.8 Hz), 4.68 (1H, s), 4.57 (1H, s), 4.12 (2H, m), 3.91(1H, d, J = 8 Hz), 4.38 (2H, m), 3.40, 3.32 (OCH₃, s), 3.41–3.26 (10 H, m), 3.16 (2H, m), 3.10 (1 H, s), 3.01 (3H, s), 2.48–2.29 (5H, m), 2.24 (6H, s), 2.11– 1.95 (6H, m), 1.88-l.58 (12H, m), 1.46-1.32 (6H, m), 1.30-1.18 (8H, m), 1.13 (1H, d, J = 8.6 Hz), 1.09–0.88 (27H, m), 0.81 (6H, t, J = 7.5 Hz), 0.75 (3H, s), 0.67 (1H, m); (+)-HRAPCIMS m/z 1022.8246 [M + H]⁺ (calcd for $C_{61}H_{108}N_5O_7$, 1022.8250).

3-Oxime-28-O-acetylbetulin (8). A solution of 3-oxo-28-Oacetylbetulin 12 (0.1 g, 0.21 mmol) and $\rm NH_2OH \cdot HCl$ (0.06 g, 4 equiv) in anhydrous pyridine (5 mL) was heated at 80 °C for 2 h. The reaction was cooled to rt, diluted with CH₂Cl₂ (15 mL), washed with 20% HCl (3 \times 15 mL) and brine (3 \times 15 mL), dried over Na $_2SO_4$, and filtered, and the filtrate was concentrated under reduced pressure. The crude product was separated by chromatography on silica gel and by eluting with 5:1 hexanes-EtOAc gave a colorless foamy solid (90 mg, 87%), which was crystallized from CHCl3-MeOH: mp 205 °C; ¹² mp 203–204 °C; R_f 0.4 (9:1 hexanes–EtOAc); ¹H NMR lit (CDCl₃, 400 MHz) δ 9.17 (1H, s, OH), 4.66, 4.56 (1H each, s, H-29), 4.22, 3.83 (1H each, d, J = 11 Hz, H-28), 2.96 (1H, dt, J = 14, 4 Hz, H-2 equiv), 2.42 (1H, m, H-19), 2.20 (1H, m), 2.04 (3H, s, OCOCH₃), 1.66, 1.11, 1.03, 1.02, 0.93, 0.90 (3H each, s, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 171.6, 167.0, 150.1, 109.9, 62.8, 55.5, 49.9, 48.7, 47.7, 46.3, 42.7, 40.9, 40.3, 38.8, 37.5, 37.2, 34.5, 33.8, 29.7, 29.5, 27.2, 27.0, 25.2, 22.9, 21.0, 19.1, 19.0, 17.1, 16.0, 15.8, 14.6; (+)-HRAPCIMS m/z 498.3949 $[M + H]^+$ (calcd for $C_{32}H_{51}NO_3$, 498.3947).

3- α/β -Amino-28-O-acetylbetulin (9a/9b). Oxime 8 (0.38 g, 0.76 mmol) was suspended in MeOH (50 mL) at rt, and NH4OAc (0.88g, 11.4 mmol, 15 equiv) and NaBH₃CN (0.96 g, 15.2 mmol, 20 equiv) were added. Next TiCl₃ (15 wt % in 20–30 wt % HCl, 2.3 mL) was added in 0.1 mL aliquots over 45 min. The mixture was stirred at rt for 18 h; then 2 N NaOH was added dropwise until pH 10. The mixture was concentrated under reduced pressure to an aqueous residue, which was extracted with CH_2Cl_2 (2 × 100 mL). The combined organic extract was washed with H₂O until neutral pH, dried (Na₂SO₄), and concentrated under reduced pressure to a colorless solid (0.3 g, 80% yield). After separation by column chromatography eluting with CH_2Cl_2 -MeOH-NH₄OH, 95:4:l, 3α amine (9a) was obtained as a colorless glassy solid (0.065 g, 18% yield): R_f 0.2 (CH₂Cl₂-MeOH-NH₄OH, 95:4:1); mp 80-85 °C; $[\alpha]^{23}_{D}$ +0.31 (c 1.9, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 4.66 (1H, s), 4.56 (1H, s), 4.22 (1H, d, J = 12 Hz), 3.83 (1H, d, J = 12 Hz),2.56 (1 H, nm, H-3 β), 2.42 (1H, td, J = 11, 6 Hz), 2.05 (3H, s, OCOCH₃), 2.0–1.88 (2H, m), 1.82 (1H, ddd, J = 10, 2, 4 Hz), 1.74 (1H, dd, J = 12, 8 Hz), 1.20–0.80 (22 H, m, CH₂, CH ring protons), 1.66, 1.00, 0.97, 0.85, 0.83, 0.81 (18H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) & 171.9, 150.4, 110.0, 63.1, 56.7, 50.6, 49.0, 48.98, 47.9, 46.5, 43.0, 41.3, 37.7, 37.7, 34.8, 34.3, 33.6, 30.0, 29.8, 29.0, 27.2, 25.9, 25.4, 23.6, 21.3, 20.9, 19.3, 18.5, 16.3, 16.2, 15.1; (+)-HRAPCIMS m/z 484.4156 $[M + H]^+$ (calcd for C₃₂H₅₄NO₂, 484.4155). The 3 β amine (9b) was also obtained as a colorless crystalline solid (0.24 g, 65%): mp 185 °C; $[\alpha]^{23}_{D}$ +3.4 (*c* 2.8, CH₂Cl₂); *R*_f 0.13 (CH₂Cl₂–MeOH–NH₄OH, 95:4:1); ¹H NMR (CDCl₃, 400 MHz) δ 4.66 (1H, s), 4.56 (1H, s), 4.22 (1H, d, *J* = 12 Hz), 3.83 (1H, d, *J* = 12 Hz), 2.42 (1H, td, *J* = 11, 6 Hz), 2.26 (1H, m, H-3α), 2.04 (3H, s, OCOCH₃), 2.00–1.86 (2H, m), 1.81 (1H, ddd, *J* = 10, 4, 2 Hz) 1.74 (1H, dd, *J* = 12, 8 Hz), 1.70–0.60 (22H, m, CH₂, CH ring protons), 1.65, 1.00, 0.95, 0.89, 0.77, 0.67 (18H, s, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 171.8, 150.3, 110.0, 63.0, 59.8, 56.1, 50.6, 49.0, 47.9, 46.5, 42.9, 41.0, 39.6, 37.8, 37.5, 34.7, 34.4, 30.0, 29.8, 28.5, 27.2, 25.4, 21.3, 20.9, 19.3, 18.9, 16.2, 15.6, 15.0; (+)-HRAPCIMS *m*/*z* 484.4150 (calcd for C₃₂H₄₄NO₂, 484.4155).

3-β-Amino-*N***-(Boc-Dap)-28-***O***-acetylbetulin** (10). Boc-Dap¹⁰ (0.03 g, 0.10 mmol) was dissolved in dry CH₂Cl₂ (l mL) and added to a solution of 9b (0.05 g, 0.01 mmol) in dry CH₂Cl₂ (3 mL), the solution was cooled to 0 $^{\circ}C$ (ice bath), and TEA (80 $\mu L,$ 3.5 equiv) followed by DEPC (0.025 mL, 0.16 mmol, 1.6 equiv) were then added. The solution was stirred for 18 h with warming to rt over time and concentrated to an amber oil. The crude product was separated by column chromatography on silica gel eluting with hexanes-EtOAc (3:7) to yield a colorless oil, which crystallized from CHCl₃-hexanes (0.042 g, 56% yield): mp 105 °C; $[\alpha]^{22}_{D}$ -7.1 (c 1.3, CHCl₃); R_{f} 0.3 (hexanes-EtOAc, 2:8); ¹H NMR (CDCl₃, 400 MHz) δ 5.83 (0.5H, bs, NH), 5.51 (0.5H, bs, NH), 4.65(1H, s), 4.56 (1H, s), 4.22 (1H, d, J = 11 Hz), 3.98-3.74 (3H, m), 3.62-3.48 (2H, m), 3.41 (3H, s, OCH₃), 3.20 (1H, m), 2.41 (1H, m), 2.27 (1H, m), 2.04 (2H, s, OCOCH₃), 1.99-0.70 (34 H, m), 1.65, 0.99, 0.94, 0.83, 0.78, 0.72 (21 H, 6s, CH₃); ¹³C NMR (CDCl₃, 100 MHz) (two conformers observed)¹⁰^c δ 173.7, 173.2, 171.8, 154.7, 154.5, 150.2, 110.0, 84.1, 82.3, 79.9, 79.3, 62.9, 60.9, 60.5, 59.0, 56.5, 56.2, 56.1, 50.4, 48.9, 47.8, 47.1, 46.6, 46.4, 44.5, 43.9, 42.8, 40.9, 39.2, 37.9, 37.7, 37.1, 34.7, 34.2, 29.8, 29.7, 28.8, 27.2, 26.3, 25.7, 25.5, 25.3, 24.9, 24.7, 24.3, 21.2, 20.8, 19.2, 18.7, 16.6, 16.1, 14.8, 14.6, 14.3; (+)-HRAPCIMS m/z 753.5768 $[M + H]^+$ (calcd for C₄₆H₇₇N₂O₆, 753.5782).

3β-Amino-N-(Dap-Dil-Val-Dov)-28-O-acetylbetulin (11a). Amide 10 (0.05 g, 0.067 mmol) was dissolved in anhydrous CH₂Cl₂ (1 mL) and cooled in an ice bath. TFA (0.1 mL, 0.149 g. 1.3 mmol, 19 equiv) was added, and the solution stirred for 3 h. Excess TFA was removed under reduced pressure for 2 h to yield a foamy solid. The TFA salt (0.43 g, 0.07 mmol) was stirred together with Dov-Val-Dil-TFA¹¹ (0.038 g, 0.07 mmol) in anhydrous CH_2Cl_2 (2 mL) under N₂ at 0 °C. TEA (0.05 mL, 0.36 mmol, 15 equiv) and DEPC (0.011 mL, 0.7l mmol, 10 equiv) were then added. The reaction mixture was stirred for 18 h at rt, then concentrated and separated using column chromatography eluting with CH₂Cl₂-MeOH (97:3) to give 11a as a colorless frothy solid (0.052 g, 74% yield). Further purification on Sephadex LH-20 eluting with methanol gave a colorless crystalline solid: mp 135 °C; R_f 0.3 (CH₂Cl₂-MeOH, 95:5); ¹H NMR (CDCl₃, 500 MHz) (two conformers were present and some signals were doubled) δ 6.90 (1H, d, J = 9.0 Hz), 5.92 (1H, dd, J = 9.5, 4.5 Hz), 4.87 (1H, m), 4.79 (1H, dd, J = 9.2, 6.6 Hz), 4.68 (1H, m), 4.59 (1H, m), 4.27–4.09 (3H, m), 4.02 (1H, d, J = 6.8 Hz), 3.96 (1H, m), 3.88– 3.74 (2H, m), 3.71-3.50 (2H, m), 3.49-3.36 (7H, m), 3.41 (s, OCH₃), 3.33 (4H, m), 3.32 (s, OCH₃), 3.15 (1H, s), 3.02 (3H, s), 2.51-2.37 (4H, m), 2.25 (9H, s), 2.07 (3H, s, OCOCH₃), 2.15-0.72 (CH, CH₂, and CH₃ protons, betulin ring, and peptide protons); ¹³C NMR (CDCl₃, 100 MHz) δ 173.6, 173.56, 171.9, 171.8, 170.2, 150.32, 110.0, 88.11, 86.3, 82.3, 78.2, 76.6, 62.9, 61.8, 60.4, 59.3, 58.1, 56.6, 56.2, 53.9, 51.1, 50.4, 48.9, 47.9, 47.8, 46.9, 46.8, 46.4, 45.5, 45.0, 43.8, 43.0, 42.9, 42.8, 41.6, 41.2, 41.0, 40.9, 40.7, 39.3, 38.0, 37.9, 37.7, 37.3, 37.2, 36.8, 36.4, 33.8, 31.9, 31.1, 29.9, 29.7, 28.9, 28.6, 27.8, 27.2, 26.6, 26.5, 26.0, 25.9, 25.5, 25.3, 25.1, 24.7, 23.7, 21.2, 20.9, 20.3, 19.9, 19.8, 19.2, 18.7, 17.9, 16.7, 16.6, 16.2, 15.9, 14.9, 14.1, 13.7, 11.0; (+)-HRAPCIMS m/z 1064.8360 [M + H]⁺ (calcd for C₆₃H₁₁₀N₅O₈, 1064.8350).

3*β***-Amino-***N***-(Dap-Dil-Val-Dov)-betulin** (11b). A solution of **11a** (0.042 g, 0.04 mmol) in THF–MeOH (0.8 mL:0.6 mL) was treated with 2 N NaOH (0.3 mL) as described in the procedure for the synthesis of 7b. Following separation of the reaction mixture by chromatography on a silica gel column (gradient elution CH₂Cl₂–MeOH, 97:3 \rightarrow 94:4) and drying, **11b** was obtained as an amorphous

powder (0.008 g, 19% yield): R_f 0.23 (CH₂Cl₂–MeOH, 96%:4%); ¹H NMR (CDCl₃, 500 MHz) 6.88 (1H, d, J = 8.6 Hz), 5.91 (1H, d, J = 9.6 Hz), 4.86–4.72 (2H, m), 4.68 (1H, s), 4.58 (1H, s), 4.23–4.10 (2H, m), 4.02 (1H, m), 3.80 (1H, d, J = 10.8 Hz), 3.67–3.50 (2H, m), 3.50–3.30 (9H, m), 3.40, 3.32 (s, OCH₃), 3.14 (1H, s), 3.01(s, 2H), 2.51–2.31 (5H, m), 2.28–2.22 (6H, nm), 2.25 (s, N(CH₃)₂, 2.13–0.74 (CH, CH₂, and CH₃ betulin ring and peptide protons, m); (+)-HRAPCIMS m/z 1022.8243 [M + H]⁺ (calcd for C₆₁H₁₀₈N₅O₇, 1022 0.8250).

3,28-Di-O-acetyl-30-bromobetulin (12). The bromination of diacetoxy betulin was carried out according to the literature.¹³ Diacetoxybetulin (0.5 g, 0.8 mmol) was dissolved in dry CCl₄ (10 mL), NBS (0.3 g, 1.7 mmol) was added, and the reaction mixture was heated at reflux for 1.5 h. The precipitated solid was collected and crystallized from ethanol to give a colorless solid: 0.35 g (61%); mp 189–190 °C; R_f 0.43 (hexanes–EtOAc, 8:2); ¹H and ¹³C NMR spectroscopic data in accord with published data.

3,28-Di-O-acetyl-30-azidobetulin (13). To a solution of bromobetulin **12** (1.25 g, 2.0 mmol) in anhydrous DMF (28 mL) was added NaN₃ (0.60 g, 9.2 mmol, 4.5 equiv), the reaction mixture was heated to 90 °C for 30 min and cooled, and EtOAc (40 mL) was added followed by water (40 mL). The organic layer was extracted and washed with brine (2 × 40 mL), dried (MgSO₄), and concentrated to an off-white residue, and crystallization from EtOAc gave azide **13** as a colorless solid (0.82 g, 70%): mp 185 °C [lit.¹⁴ 192–193 °C]; R_f 0.5 (EtOAc–hexanes, 2:8); ¹H and ¹³C NMR spectroscopic data consistent with published data; ¹⁴ (+)-HRAPCIMS m/z 540.4052 [M + H – N₂]⁺ (calcd for C₃₄H₅₄NO₄, 540.4053).

30-Aminobetulin (14). To a cooled (ice bath) solution of azide 13 (0.1 g, 0.18 mmol) in dry THF (2.5 mL) was added $LiAlH_4$ (1 M in THF, 0.75 mL, 0.75 mmol, 4 equiv). The reaction mixture was stirred with warming to rt for 2 h and cooled, and water (0.03 mL), 15% NaOH (0.03 mL), and water (0.09 mL) were added successively. The resulting mixture was stirred for 20 min before extraction with ether (25 mL). Anhydrous sodium sulfate was added, and the mixture was allowed to stand overnight, filtered, and concentrated to yield 14 as an off-white solid (68 mg, 85% yield), which was recrystallized from CHCl₃-CH₃OH: mp 210-215 °C; $[\alpha]^{22}_{D}$ -2.1 (c 0.52, EtOH); R_{f} 0.1 (CH₂Cl₂-CH₃OH, 9:1); ¹H NMR (CDCl₃, 400 MHz, sparingly soluble) δ 4.83 (2H, s), 3.77 (1H, d, J = 11 Hz), 3.69 (1H, m), 3.30 (1H, d, J = 11 Hz), 3.25 (1H, d, J = 7.4 Hz), 3.21-3.14 (1H, m), 2.32-2.21 (1H, m), 2.13-2.00 (2H, m), 1.95-1.81 (4H, m), 1.73-1.01 (21 H, CH₂, CH ring protons), 1.00, 0.96, 0.95, 0.80, 0.74 (15H, 5s, CH₃), 0.66 (1H, d, J = 9 Hz); ¹³C NMR (CD₃OD, 100 MHz) δ 156.7, 106.6, 79.6, 62.8, 60.1, 56.7, 51.5, 50.6, 48.9, 43.8, 42.1, 39.9, 38.6, 38.3, 35.5, 35.0, 30.9, 30.4, 30.1, 28.6, 28.2, 28.0, 27.8, 22.1, 19.4, 16.7, 16.6, 16.2, 15.2; (+)-HRAPCIMS m/z 458.3998 [M + H]⁺ (calcd for C₃₀H₅₂NO₂, 458.3998).

30-N-(Boc-Dap)-betulin (15a). To a cooled (ice bath) solution of amine 14 (0.15 g, 0.33 mmol) in dry CH₂Cl₂ (10 mL) was added a solution of Boc-Dap 10 (0.09 g, 0.30 mmol) in $\mbox{CH}_2\mbox{Cl}_2$ (3 mL). TEA (0.24 mL, 1.71 mmol) and DEPC (0.033 mL, 2.13 mmol) were added, and the reaction mixture was stirred for 20 h before terminating with removal of the solvent under low pressure overnight. Separation by flash silica gel chromatograpy (eluent: CH2Cl2-CH3OH, 98:2) gave amide 15a as a frothy solid (85 mg, 50% yield): mp 129-131 °C; Rf 0.2 (CH₂Cl₂-CH₃OH, 96:4); ¹H NMR (CDCl₃, 400 MHz) δ 6.56 (0.5H, bs), 5.84 (0.5H, bs), 4.81 (1H, s), 4.72 (1H, s), 3.93-3.64 (5H, m), 3.59-3.31 (1H, m), 3.40 (3H, s, OCH₃), 3.29-3.08 (3H, m), 2.45-2.19 (2H, m), 2.12-1.97 (1H, m), 1.96-0.67 (CH, CH₂ ring protons and Boc-Dap protons), 0.97, 0.93, 0.78, 0.73 (15H, 4s, CH₃), 0.65 (1H, m); ¹³C NMR (CDCl₃, 100 MHz) δ (two conformers present) 174.2, 173.7, 154.9, 154.6, 151.7, 107.9, 84.2, 82.4, 80.9, 79.5, 79.0, 60.9, 60.3, 59.4, 58.8, 55.4, 50.5, 49.5, 47.9, 47.2, 46.7, 44.7, 44.2, 42.8, 41.1, 39.0, 38.9, 37.4, 37.3, 34.4, 34.0, 29.4, 28.7 (m), 28.2, 27.5, 27.2, 26.2, 25.6, 24.8, 24.4, 21.1, 18.4, 16.3, 16.1, 15.6, 14.9; (+)-HRAPCIMS m/z 727.5631 [M + H]⁺ (calcd for C₄₄H₇₅N₂O₆, 727.5625).

30-*N***-(Boc-Dap)-3,28-di-***O***-acetoxybetulin (15b).** Alcohol **15a** (0.08 g, 0.11 mmol) was taken up in dry pyridine (2 mL). Acetic

anhydride (0.05 mL, 0.5 mmol) and DMAP (1 mg, 0.008 mmol) were added, and the reaction mixture was stirred at rt under N2 for 24 h. Then, CH₂Cl₂ (10 mL) was added, and the organic fraction was washed with cold 3 N H₂SO₄ (4 mL), saturated NaHCO₃ (5 mL), and brine (7 mL), dried (MgSO₄), and concentrated. Column chromatography (CH₂Cl₂-MeOH, 98:2 \rightarrow 86:4) on silica gel provided 15b as an off-white frothy solid (78 mg, 87% yield): mp 98–100 °C; $R_{\rm f}$ 0.5 (CH₂Cl₂-CH₃OH, 96:4); ¹H NMR (CDCl₃, 400 MHz) δ 6.28 (0.5H, bs), 5.81 (0.5H, bs), 4.82 (1H, m), 4.73 (1H, m), 4.42 (1H, m), 4.20 (1H, d, J = 12 Hz), 3.92-3.70 (5H, m), 3.56-3.27 (4H, m), 3.39 (s, OCH₃), 3.19 (1H, m), 2.48-2.25 (2H, m), 2.01 (3H, s, OCOCH₃), 1.99 (3H, s, OCOCH₃), 2.00 (1H, m), 1.93-1.50 (12H, m), 1.50-1.30 (16H, m), 1.43, 1.49 (s, Boc-CH₃), 1.28-1.00 (8H, m), 1.00-0.75 (16H, m), 0.98, 0.91, 0.79 (× 2), 0.78 (s, CH₃), 0.73 (1H, m); ¹³C NMR (CDCl₃, 100 MHz) (doubling of signals observed for the peptide portion of the molecule) δ 174.1, 173.6, 171.65, 171.12, 155.0, 154.6, 151.3, 108.5, 84.4, 82.6, 81.0, 79.4, 62.6, 60.8, 59.3, 58.8, 55.5, 50.4, 49.6, 47.1, 46.7, 46.5, 45.1, 44.2, 42.8, 42.3, 41.1, 38.5, 37.9, 34.6, 34.3, 31.2, 29.9, 28.7, 28.1, 27.2, 26.6, 26.2, 25.6, 24.8, 24.4, 23.8, 21.4, 21.1, 21.0, 16.6, 16.3, 16.2, 14.5 × 2; (+)-HRESIMS m/z 811.5813 [M + H]⁺ (calcd for C₄₈H₇₈N₂O₈, 811.5831).

30-*N*-(Dap)-**3**,**28**-Di-O-acetoxybetulin Trifluoroacetate (15c). TFA (0.15 mL, 0.22 g, 1.96 mmol) was added to a cooled solution of **15b** (0.78 g, 0.096 mmol) in dry CH₂Cl₂ (1.5 mL), and stirring was continued with warming to rt under N₂ for 4 h. The product mixture was concentrated in the presence of toluene to aid in TFA removal followed by further drying overnight under low pressure to give crude **15c** as a frothy orange residue: R_f 0.2 (CH₂Cl₂-MeOH, 92:8). The salt was used in the next step without further purification.

30-N-(Dap-Dil-Val-Dov)-3,28-Di-O-acetoxybetulin (16a). Dov-Val Dil-TFA salt (0.055 g, 0.10 mmol) was added to a solution of amide $15c\ (0.096\ mmol)$ in dry $CH_2Cl_2\ (2\ mL)$ at rt. The reaction mixture was cooled in an ice bath, and TEA (0.2 mL) and DEPC (0.17 mL, 0.18 g, 1.1 mmol) were added. Stirring was continued for 24 h with warming to rt over time. The solvent was removed under vacuum to yield a brown residue. Separation by column chromatography on flash silica gel (eluent: CH₂Cl₂-MeOH, 96:4) gave 16a as an off-white solid (50 mg). Further purification on a Sephadex LH-20 column gave a frothy off-white solid (38 mg, 35% yield): Rf 0.5 (CH2Cl2-MeOH, 96:4); ¹H NMR (CDCl₃, 400 MHz) δ 6.90 (1H, d, J = 9 Hz), 6.37 (1H, m), 4.90–4.74 (3H, m), 4.47 (1H, dd, J = 11, 5.4 Hz), 4.25 (1H, d, J = 10.8 Hz), 4.20-4.09 (2H, m), 3.97 (1H, dd, J = 7.6, 2.3 Hz), 3.83 (2H, m), 3.80 (1H, d, J = 10.8), 3.54-3.40 (2H, m), 3.42 (3H, s, OCH₃), 3.32 (3H, s, OCH₃), 3.03 (3H, s, NCH₃), 2.53-2.29 (5H, m), 2.25 (6H, s), 2.13-1.96 (11 H, m), 1.88-1.74 (4H, m), 1.73-1.56 (7H, m), 1.54-1.32 (9H, m), 1.32-1.23 (5H, m), 1.20-1.05 (3H, m), 1.04-0.91 (24H, m), 0.88-0.74 (13H, m); ¹³C NMR (CDCl₃, 100 MHz) δ 174.0, 173.6, 171.9, 171.7, 171.2, 170.5, 151.4, 108.2, 86.2, 82.4, 81.0, 78.5, 77.4, 76.7, 62.7, 60.6, 59.4, 58.1, 55.5, 53.9, 50.4, 49.5, 47.9, 46.5, 44.9, 44.3, 43.1, 42.8, 41.1, 38.6, 38.0, 37.8, 37.7, 37.2, 34.6, 34.3, 33.3, 31.2, 31.1, 29.9, 28.1, 27.8, 27.2, 26.6, 25.9, 25.2, 25.1, 23.9, 23.7, 21.5, 21.2, 21.1, 20.9, 20.3, 20.0, 19.7, 18.3, 17.9, 16.7, 16.3, 16.2, 16.0, 15.0, 14.5, 10.9; (+)-HRESIMS m/z 1122.8411 [M + H]⁺ (calcd for C₆₅H₁₁₂N₅0₁₀, 1122.8404).

30-*N***-(Dap-Dil-Val-Dov)-Betulin (16b).** To a solution of 30-*N*-(Dap-Dil-Val-Dov)-3,28-di-*O*-acetoxybetulin (16a) (0.02 g, 0.018 mmol) in a mixture of THF–MeOH (1.4 mL, 0.8:0.6) was added 2 N NaOH (0.3 mL). The solution was stirred at rt for 24 h. The solvent was evaporated, and the residue separated on a silica gel column eluting with CH₂Cl₂–CH₃OH (95:5) to give the product as a colorless solid, 0.013 g (70% yield): mp 145 °C; R_f 0.3 (CH₂Cl₂–MeOH, 92:8); ¹H NMR (CDCl₃, 500 MHz) δ 6.98–6.85 (1H, m), 6.42 (1H, m), 4.93–4.72 (3H, m), 4.15 (2H, m), 3.96 (1H, m), 3.90–3.65 (3H, m), 3.51–3.29 (7H, m), 3.42 (3H, s, OCH₃), 3.33 (3H, s, OCH₃), 3.19 (1H, m), 3.10, 3.03 (3H, s, NCH₃), 2.59–2.39 (3H, m), 2.33 (1H, m), 2.39–2.20 (7H, m), 2.25 (3H, s, N(CH₃)₂), 2.15–0.74 (CH, CH₂, and CH₃ protons), 0.68 (1H, d, J = 10.1 Hz); (+)-HRESIMS m/z 1038.8202 [M + H]⁺ (calcd for C₆₁H₁₀₈N₅O₈, 1038.8192).

3-O-Acetyl-28-amidoallobetulin-28-N-1'-ethyldiamine-N-2'-Dap-Dil-Val-Dov (18a). Betulinic acid and 3-O-acetylbetulinic acid were prepared as previously described.⁸ 3-O-Acetylbetulinic acid (0.113 g, 0.2 mmol) and oxalyl chloride (2 M in CH₂Cl₂) (1 mL, 2 mmol) were stirred together for 10 min, then concentrated under vacuum to remove excess reagent. The residue was dissolved in CH₂Cl₂ (2 mL), and diethylamine (0.15 mL) was added. The mixture was stirred at rt under N2 for 5 h, the solution was concentrated, and water was added. The resulting white precipitate was collected, washed with water, dissolved in ethanol, and filtered. The ethanol solution was then concentrated to a light yellow colored residue, which was dried under reduced pressure. The residue (0.08 g, 0.15 mmol) was dissolved in anhydrous CH₂Cl₂ (2 mL), and a solution of Boc-Dap (0.043 g, 0.15 mmol, 1 equiv) in CH₂Cl₂ (2 mL) was added. The solution was cooled in an ice bath, and TEA (60 μ L, 3.5 equiv) followed by DEPC (0.036 mL, 1.5 equiv) were added. The reaction mixture was stirred for 24 h under N2 and allowed to warm to rt over time, before concentrating and separating on silica gel by eluting with hexanes-ethyl acetate (8:2) followed by hexane-acetone (7:3) and yielded the Boc-protected amide 17 as a colorless solid: 78 mg; mp 135 °C; R_f 0.14 (hexane-CH₃COCH₃, 4:1); (+)-HRAPCIMS m/z810.5978 $[M + H]^+$ (calcd for $C_{48}H_{80}N_3O_7$, 810.5996). The Bocprotected amide 17 was used directly in the next step. This compound 17 (0.077 g, 0.096 mmol) was dissolved in anhydrous CH₂Cl₂ (4 mL), and the solution was cooled (ice bath). TFA (1.5 mL) was added, and the reaction was stirred for 1 h, then concentrated under reduced pressure overnight. The TFA salt was dissolved in CH₂Cl₂ (4 mL), and Dov-Val-Dil-TFA (0.05 g) was added. The reaction mixture was cooled (ice bath), and TEA (0.06 mL) and DEPC (0.02 mL) were added, then stirred under nitrogen for 24 h with warming to rt. Concentration to a yellow oil followed by separation on silica gel (gradient elution: hexanes-CH₃COCH₃, 7:3 \rightarrow 6.5 \rightarrow 4:5) gave 18a as a colorless solid (32 mg, 18% yield from Boc-Dap): mp 114-115 $^{\circ}$ C; $R_f 0.4$ (hexanes–CH₃COCH₃, 4:6); ¹H NMR (CDCl₃, 400 MHz) $\delta 6.85$ (1H, d, J = 9.0 Hz), 6.51 (1H, m), 4.88, 4.69 (0.5 H, 1H, m), 4.42 (1H, m), 4.19-4.06 (2H, m), 3.91 (1H, m), 3.82-3.72 (2H, m), 3.52-3.22 (13H, m), 3.37, 3.29 (3H, s, OCH₃), 2.99, 3.10 (3H, s, NCH₃), 2.48-2.34 (3H, m), 2.22 (6H, s, N(CH₃)₂, 1.83-0.73 (CH, CH₂, and CH₃ protons); 13 C NMR (CDCl₃, 100 MHz) δ 173.9, 171.9, 171.8, 171.2, 170.3, 170.2, 82.5, 81.0, 76.8, 76.7, 61.9, 61.8, 60.4, 59.2, 59.0, 58.3 58.2, 55.8, 54.0, 53.9, 51.3, 47.8, 47.1, 47.05, 46.8, 45.9, 45.7, 45.3, 45.2, 43.8, 43.1, 43.0, 40.7, 40.4, 40.3, 38.8, 38.0, 37.9, 37.4, 35.9, 35.8, 34.5, 34.3, 34.2, 33.9, 33.4, 32.7, 31.2, 31.1, 29.5, 29.1, 28.1, 27.9, 27.4, 26.5, 26.3, 25.9, 25.3, 25.0, 24.3, 24.2, 23.8, 21.5, 21.1, 20.3, 18.3, 18.0, 17.9, 16.7, 16.6, 15.7, 15.69, 15.6, 14.1, 13.9, 11.0; (+)-HRAPCIMS m/z 1121.8560 [M + H]⁺ (calcd for C₆₅H₁₁₃N₆O₉, 1121.857

28-Amidoallobetulin-28-*N***-1**'**-ethyldiamine-***N***-2**'**-Dap-Dil-Val-Dov (18b).** To a solution of peptide 18a (0.012 g, 0.011 mmol) in a mixture of THF–MeOH (1.4 mL, 0.8:0.6) was added 2 N NaOH (0.3 mL). The solution was stirred at rt for 24 h. The solvent was evaporated, and the residue separated on a silica gel column eluting with CH₂Cl₂–CH₃OH (95:5) to give the C-3-deprotected product as a colorless solid: 2 mg (17% yield); *R*_f 0.13 (CH₂Cl₂–MeOH, 92:8); ¹H NMR (CDCl₃, 500 MHz) (conformational isomers observed) δ 6.94, 6.89 (1H, d, *J* = 9.0 Hz), 6.51, 6.14 (1H, m), 4.95–4.70 (2H, m), 4.25–4.10 (2H, m), 3.96 (1H, m), 3.82 (1H, m), 3.57–3.28 (13H, m), 3.42, 3.41, 3.34, 3.33 (12H, s, OCH₃), 3.21 (1H, dd, *J* = 12, 4 Hz), 3.14, 3.03 (3H, s, NCH₃), 2.63–2.38 (4H, m), 2.36–2.22 (7H, m), 2.27, 2.26 [s, N(CH₃)₂], 2.19–1.96 (5H, m), 1.87–0.80 (CH, CH₂, and CH₃ protons), 0.78 (3H, s, CH₃), 0.70 (1H, m); (+)-HRESIMS *m*/*z* 1079.8472 (calcd for C₆₃H₁₁₁N₆O₈, 1079.8458).

Cancer Cell Line Testing Procedures. Inhibition of human cancer cell growth was assessed using the standard sulforhodamine B assay of the U.S. National Cancer Institute, as previously described.¹⁵ To begin, cells in a 5% fetal bovine serum/RPMI1640 medium were inoculated in 96-well plates and incubated for 24 h. Next, serial dilutions of the compounds were added. After 48 h, the plates were fixed with trichloroacetic acid, stained with sulforhodamine B, and read with an automated microplate reader. Each plate contains its own

Journal of Natural Products

positive and negative controls as well as a series of plates set up with the only purpose of establishing a baseline at the time of the addition of the compounds under evaluation. Within an experiment, a compound is evaluated in five serial dilutions and optical density data are measured in duplicates for each end point. A growth inhibition of 50% (GI_{50} , or the drug concentration causing a 50% reduction in the net protein increase) was calculated from optical density data with Immunosoft software.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnat-prod.7b00536.

¹H and ¹³C NMR spectral data for compounds 3, 5, 7a, 9a, 9b, 10, 11a, 14, 15a, 15b, 16a, and 18a; ¹H NMR and HRMS data for betulastatins 1 (7b), 2 (11b), 3 (16b), and 4 (18b) (PDF)

AUTHOR INFORMATION

Corresponding Author

*Tel: (480) 965-3351. Fax: (480) 965-2747. E-mail: bpettit@asu.edu.

ORCID 💿

George R. Pettit: 0000-0001-8706-8929

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge with special thanks the financial support from the Arizona Biomedical Research Commission, grant no. R01 CA90441 from the Division of Cancer Treatment and Diagnosis, NCI, NIH, the J.W. Kiecknefer Foundation, and the Margaret T. Morris Foundation. We are grateful to Dr. J. C. Knight and N. Zolotova, Arizona State University, for the HRMS data.

DEDICATION

Dedicated to Dr. Susan Band Horwitz, of Albert Einstein College of Medicine, Bronx, NY, for her pioneering work on bioactive natural products.

REFERENCES

(1) For Antineoplastic Agents 605 see: Pettit, G. R.; Melody, N.; Chapuis, J.-C. J. Nat. Prod. 2017, 8110.1021/acs.jnatprod.7b00352.

(2) (a) Periasamy, G.; Teketelew, G.; Gebrelibanos, M.; Sintayehu, B.; Gebrehiwor, M.; Karim, A.; Geremedhin, G. Arch. Appl. Sci. Res. 2014, 6, 47–58. (b) Zhang, D.-M.; Xu, H.-G.; Wang, L.; Li, Y.-J.; Sun, P.-H.; Wu, X.-M.; Wang, G.-J.; Chen, W.-M.; Ye, W.-C. Med. Res. Rev. 2015, 35, 1127–1155. (c) Król, S. K.; Kiełbus, M.; Rivero-Müller, A.; Stepulak, A. BioMed Res. Int. 2015, 1–1110.1155/2015/584189. (d) Rastogi, S.; Pandey, M. M.; Rawat, S. K. A. J. Ethnopharmacol. 2015, 159, 62–83. (e) Ali-Seyed, M.; Jantan, I.; Vijayaraghavan, K.; Bukhari, S. N.A. Chem. Biol. Drug Des. 2016, 87, 517–536.

(3) Pettit, G. R.; Melody, N.; Hempenstal, F.; Chapuis, J.-C.; Groy, T. L.; Williams, L. J. Nat. Prod. 2014, 77, 863–872.

(4) Pettit, G. R.; Green, B.; Bowyer, W. J. J. Org. Chem. 1961, 26, 2879–2883.

(5) Pettit, G. R.; Klinger, H.; Jorgensen, N.-O. N. *Phytochemistry* **1966**, 5, 301–309. (b) Salvador, J. A. R.; Leal, A. S.; Alho, D. P. S.; Goncalves, B. M. F.; Valdeira, A. S.; Mendes, V. I. S.; Jing, Y. *Stud. Nat. Prod. Chem.* **2014**, 41, 33–63. (c) Cháirez-Ramírez, M. H.; Moreno-Jiménez, M. R.; González-Laredo, R. F.; Gallegos-Infante, J. A.; RochaGuzmán, N. E. EXCLI J. 2016, 15, 758–771. (d) Silva, F. S. G.; Oliveira, P. J.; Duarte, M. F. J. Agric. Food Chem. 2016, 64, 2999–3008. (6) (a) Pettit, G. R.; Srirangam, J. K.; Barkoczy, J.; Williams, M. D.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Hogan, F.; Bai, R.; Chapuis, J.-C.; McAllister, S.; Schmidt, J. M. Anti-Cancer Drug Des. 1998, 13, 243– 277. (b) Pettit, G. R.; Kamano, Y.; Hearld, C. L.; Tuinman, A. A.; Boettner, F. E.; Kizu, H.; Schmidt, J. M.; Baczynsyi, L.; Tomer, K. B.; Botems, R. J. J. Am. Chem. Soc. 1987, 109, 6883–6885.

(7) (a) Xu, Y.-C.; Bizuneh, A.; Walker, C. J. Org. Chem. 1996, 61, 9086–9089. (b) Thibeault, D.; Gauthier, C.; Legault, J.; Bouchard, J.; Dufour, P.; Pichette, A. Bioorg. Med. Chem. 2007, 15, 6144–6157. (c) Santos, R. C.; Salvador, J. A. R.; Marin, S.; Cascante, M.; Moreira, J. N.; Dinis, T. C. P. Bioorg. Med. Chem. 2010, 18, 4385–4396.

(8) Flekhter, O. B.; Ashavina, O. Y.; Boreko, E. I.; Karachurina, L. T.; Pavlova, N. I.; Kabal'nova, N. N.; Savinova, O. V.; Galin, F. Z.; Nikolaeva, S. N.; Zarudii, F. S.; Baltina, L. A.; Tolstikov, G. A. *Pharm. Chem. J.* **2002**, *36*, 303–306.

(9) (a) Leeds, J. P.; Kirst, H. A. Synth. Commun. 1988, 18, 777–782.
(b) Kim, D. S. H. L.; Pezzuto, J. M.; Pisha, E. Bioorg. Med. Chem. Lett. 1998, 8, 1707–1712.

(10) (a) Pettit, G. R.; Singh, S. B.; Herald, D. L.; Lloyd-Williams, P.; Kantoci, D.; Burkett, D. D.; Barkóczy, J.; Hogan, F.; Wardlaw, T. R. J. Org. Chem. 1994, 59, 6287–6295. (b) Pettit, G. R.; Grealish, M. P. J. Org. Chem. 2001, 66, 8640–8642.

(11) Pettit, G. R.; Srirangam, J. K.; Singh, S. B.; Williams, M. D.; Herald, D. L.; Barkóczy, J.; Kantoci, D.; Hogan, F. J. Chem. Soc., Perkin Trans. 1 1996, 859–863.

(12) Klinotová, E.; Křeček, V.; Klinot, J.; Endová, M.; Eisenreichová, J.; Buděšinský, M.; Štícha, M. *Collect. Czech. Chem. Commun.* **1997**, *62*, 1776–1798.

(13) Sun, I.-C.; Wang, H.-K.; Kashiwada, Y.; Shen, J.-K.; Cosentino, L. M.; Chen, C.-H.; Yang, L.-M.; Lee, K.-H. J. Med. Chem. 1998, 41, 4648–4657.

(14) Antimonova, A. N.; Petrenko, N. I.; Shakirov, M. M.; Rybalova, T. V.; Frolova, T. S.; Shultz, E. E.; Kukina, T. P.; Sinitsyna, O. I.; Tostikov, G. A. *Chem. Nat. Compd.* **2013**, *49*, 657–664.

(15) Monks, A.; Scudiero, D.; Škehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Viagro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. **1991**, 83, 757–766.