

Tetrahedron Letters 39 (1998) 9667-9670

Synthesis of a Novel Analogue of the BCD Carbohydrate Domain of Calicheamicin γ_1^{I}

Stéphane Moutel and Jacques Prandi*¶

Institut de Chimie Organique et Analytique, associé au CNRS, Université d'Orléans, BP 6759, F-45067 Orléans cedex 2, France

Received 17 September 1998; accepted 16 October 1998

Abstract: The efficient preparation of a novel analogue of the BCD oligosaccharide domain of Calicheamicin γ_1^{1} is described in which the thioester linkage found in the natural product is replaced by an ester group. © 1998 Elsevier Science Ltd. All rights reserved.

To further probe which structural features of the carbohydrate domain¹ of calicheamicin γ_1^{1} are responsible for selective DNA recognition,^{1b, 2} we decided to examine the role of the sulfur atom of the thioester group. In this paper, we report the synthesis of the hemiacetal **3**, a key intermediate required for the synthesis of the novel calicheamicin γ_1^{1} oligosaccharide analogue **2** (Figure 1).

Figure 1: Structures of calicheamicin γ_1^1 oligosaccharide 1, analogue 2 and hemiacetal 3

¶ IPBS-CNRS, 205 rte de Narbonne, 31077 TOULOUSE Cedex Fax: 33 (0) 5 61 17 59 94 e-mail: prandi@ipbs.fr

0040-4039/98/\$ - see front matter 0 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)02257-6

Retrosynthetic analysis led us to conclude that analogue 2 could be derived from coupling of the hemiacetal 3 and an appropriate AE fragment. The participation of the acetate group at the 3-position³ of B-ring hemiacetal 3 should allow the β -glycoside to be formed as the major product. Further disconnections led us to propose that hemiacetal 3 could be made by coupling of an arylsaccharide CD with carbohydrate ring B.

Our synthetic work began with the construction of the requisite arylsaccharide CD. Glycosylation of thioglycoside 4^4 with phenol 5^{3c} in the presence of *N*-iodosuccinimide⁵ and a catalytic amount of TMSOTf gave aryl α -L-rhamnoside 6^6 in 68% yield as the sole product (Scheme 1). Deprotection and subsequent oxidation of the resultant primary hydroxyl group using ruthenium tetroxide^{3c} gave acid **8** in 45% yield over the 2 steps. Removal of the acetate groups⁷ and subsequent reprotection of the hydroxyl groups as silyl ethers was uneventful. Finally, the carboxylic acid **10** was activated for coupling by conversion into acid chloride **11**.⁴

Scheme 1: (a), NIS, TMSOTf, CH_2Cl_2 , 4 Å mol. sieves, 0°C, 68%; (b), *n*-Bu₄NF, THF, rt, 75%; (c), RuCl₃, NaIO₄, CCl₄/CH₃CN/H₂O, 0°C \rightarrow rt, 60%; (d), H₂O₂, LiOH, THF/H₂O 3/1, rt, 79%; (e), TESOTf, pyridine, DMAP, CH₂Cl₂, rt, 80%; (f), (COCl)₂, CH₂Cl₂, rt.

The preparation of the B-ring component is summarised in Scheme 2. Diol 12,⁸ available in 6 steps from the commercially available methyl α -D-glucopyranoside, was treated with trimethyl orthoacetate in the presence of camphorsulphonic acid to give orthoester 13. Subsequent regioselective hydrolysis of this material under acidic conditions⁹ provided alcohol 14 in 67% overall yield.

Scheme 2: (a), MeC(OMe)₃, camphorsulphonic acid, toluene; (b), AcOH 80%, rt, 67% (2 steps).

Several methods were attempted to couple the two components together (Table 1). Treatment of carboxylic acid 8 with 14 in the presence of DCCI¹⁰ and a catalytic amount of DMAP gave none of the desired product (Entry 1). When the reaction was carried out using 3 or 4 equivalents of DMAP, we observed migration of the acetate group from O-3 to O-4 within carbohydrate 14. Coupling of the carboxylic acid 11⁴ with alcohol 14 in the presence of Et_3N and catalytic amount of DMAP yielded the expected ester 17 but in a very low yield. Again migration of the acetate group within carbohydrate 14 was observed and carboxylic acid 10 was recovered due to the hydrolysis of acid chloride 11 (Entry 2). To increase the nucleophilicity of the hydroxyl group, we prepared the alkoxide of carbohydrate ring-B. To this end, compound 15, synthesised by a literature procedure, ^{3b} was treated with *n*-BuLi in THF to produce the corresponding lithium alkoxide. Upon addition of acid chloride 11, ester 18 was produced in 17% yield (Entry 3). Much better results were achieved using the corresponding sodium alkoxide, in this way, ester 18¹¹ could be obtained in 67% yield (Entry 4).

Table 1.

Entry	R	X	\mathbb{R}^1	conditions and reagents	Yield	Product
1	Ac	СООН	Ac	DCCI, DMAP, CH_2Cl_2 , 0°C \rightarrow rt	0%	16
2	TES	COCI	Ac	Et ₃ N, DMAP, CH ₂ Cl ₂ , rt	10%	17
3	TES	COCI	THP	n -BuLi, ^a THF, 0°C \rightarrow rt	17%	18
4	TES	COCI	THP	NaH, ^b THF, 0°C \rightarrow rt	67%	18

^a Acid chloride 11 in THF was added after 1h to a stirred solution of 15 in presence of *n*-BuLi at 0°C. ^b Acid chloride 11 in THF was added after 1h to a stirred solution of 15 in presence of NaH at 0°C.

Having successfully prepared 18 in acceptable yield, the removal of TES and THP groups of 18 was performed in one step using 1% HCl in dry MeOH^{3b} to provide solely the α -methyl glycoside 19 in 75% yield (Scheme 3). Acetylation of 19 followed by hydrolysis of the acetal yielded hemiacetal 3¹² as a 1:3-4 mixture of α - and β -anomers.

Scheme 3. (a), 1% HCl in dry MeOH, 0°C, 75%; (b), Ac₂O, pyridine, rt, 83%; (c), H₂O/AcOH 2/1, reflux, 73%, β/α 3-4/1.

In conclusion, we have described an efficient synthesis of hemiacetal 3 in good yield. The coupling reaction of unit CD with unit B was achieved in an acceptable yield by using the sodium salt of carbohydrate 15. Further work is currently in progress to complete the synthesis of calicheamicin γ_1^1 oligosaccharide analogue 2.

Acknowledgements: We thank Dr Mike Shipman, University of Exeter (U.K.), for his help in the preparation of this paper. This work was financially supported by the Ministère de l'Enseignement Supérieur et de la Recherche.

References and notes

- a) Long, B.H., Golik, J., Forenza, S., Ward, B., Rehfuss, R., Dabrowiak, J.C., Catino, J.J., Musial, S.T., Brookshire, K.W., Doyle, T.W., Proc. Natl. Acad. Sci. USA. 1989, 86, 2-6; b) Zein, N., Ponein, M., Nilakantan, R., Ellestad, G.A., Science, 1989, 244, 697-699; c) Kishikawa, H., Jiang, Y., Goodisman, J., Dabrowiak, J.C., J. Am. Chem. Soc., 1991, 113, 5434-5440; d) Walker, S., Murnick, J., Kahne, D., J. Am. Chem. Soc., 1993, 115, 7954-7961; e) Walker, S.L., Andreotti, A.H., Kahne, D., Tetrahedron, 1994, 50, 1351-1360; f) Li, T., Zeng, Z., Estevez, V.A., Baldenius, K.U., Nicolaou, K.C., Joyce, G.F., J. Am. Chem. Soc., 1994, 116, 3709-3715; g) Chatterjee, M., Mah, S.C., Tullius, T.D., Townsend, C.A., J. Am. Chem. Soc., 1995, 117, 8074-8082; h) Bailly, C., Waring, M.J., J. Am. Chem. Soc., 1995, 117, 7311-7316.
- 2. Zein, N., Sinha, A.M., McGahren, W.J., Ellestad, G.A., Science, 1988, 240, 1198-1201.
- a) Tsai, T.Y.R., Jin, H., Wiesner, K., Can. J. Chem., 1984, 62, 1403-1405; b) Wiesner, K., Tsai, T.Y.R., Jin, H., Helv. Chim. Acta, 1985, 68, 300-304; c) Kim, S.H., Augeri, D., Yang, D., Kahne, D., J. Am. Chem. Soc., 1994, 116, 1766-1775.
- 4. Groneberg, R.D., Miyazaki, T., Stylianides, N.A., Schulze, T.J., Stahl, W., Schreiner, E.P., Suzuki, T., Iwabuchi, Y., Smith, A.L., Nicolaou, K.C., J. Am. Chem. Soc., 1993, 115, 7593-7611.
- 5. Veeneman, G.H., Van Leeuwen, S.H., Van Boom, J.H., Tetrahedron Lett., 1990, 31, 1331-1334.
- 6. Selected NMR data for the α-anomer: δ_{H} (CDCl₃) 4.03 (dd, 1H, $J_{2,3}$ 3.5 Hz, $J_{3,4}$ 10.0 Hz, H-3), 5.56 (d, 1H, $J_{1,2}$ 2.0 Hz, H-1), 5.79 (dd, 1H, $J_{1,2}$ 2.0 Hz, $J_{2,3}$ 3.5 Hz, H-2).
- 7. Evans, D.A., Britton, T.C., Ellman, J.A., Tetrahedron Lett., 1987, 28, 6141-6144.
- 8. Baer, H.H., Hanna, H.R., Carbohydr. Res., 1982, 110, 19-41.
- 9. Deslongchamps, P., Chênevert, R., Taillefer, R.J., Moreau, C., Saunders, J., Can. J. Chem., 1975, 53, 1601-1615.
- 10. Neises, B., Steglich, W., Angew. Chem. Int. Ed. Engl., 1978, 17, 522-524.
- 11. All new compounds gave satisfactory ¹H-NMR data.
- NMR data for the β-anomer: δ₁₁ (CDCl₃) 1.20 (d, 3H, J_{5,6} 6.5 Hz, H-6), 1.37 (d, 3H, J_{5,6} 6.0 Hz, H-6), 1.86 (ddd, 1H, J_{2ax,1} 9.0 Hz, J_{2ax,3} 2.5 Hz, J_{2eq,2ax} 14.5 Hz, H-2Bax), 2.08 (s, 3H, OAc), 2.14 (s, 3H, OAc), 2.17 (s, 3H, OAc), 2.27 (ddd, 1H, J_{2eq,1} 2.0 Hz, J_{2eq,3} 4.0 Hz, J_{2eq,2ax} 14.5 Hz, H-2Baq), 2.35 (s, 3H, OAc), 2.14 (s, 3H, OAc), 2.17 (s, 3H, OAc), 2.27 (ddd, 1H, J_{2eq,1} 2.0 Hz, J_{2eq,3} 4.0 Hz, J_{2eq,2ax} 14.5 Hz, H-2Bcq), 2.35 (s, 3H, CH₃), 2.88 (d, 1H, J_{1,011} 6.5 Hz, OH), 3.44 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.04 (dd, 1H, J_{4,3} 10.0 Hz, J_{3,2} 3.0 Hz, H-3D), 4.13 (m, 1H, H-5), 4.33 (m, 1H, H-5), 4.90 (dd, 1H, J_{4,3} 3.0 Hz, J_{4,5} 9.5 Hz, H-4B), 5.10 (t, 1H, J_{3,4} = J_{4,5} 10.0 Hz, H-4D), 5.16 (m, 1H, H-1B), 5.58 (m, 1H, H-3B), 5.63 (d, 1H, J_{1,2} 2.0 Hz, H-1D), 5.74 (dd, 1H, J_{1,2} 2.0 Hz, J_{3,2} 3.0 Hz, H-2D).