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Abstract 

N-Formyl peptide receptors (FPRs: FPR1, FPR2, and FPR3) are G protein-coupled receptors that 

play key roles in modulating immune cells.  FPRs represent potentially important therapeutic targets 

for the development of drugs that could enhance endogenous anti-inflammation systems associated 

with various pathologies, thereby reducing the progression of inflammatory conditions. Previously, 

we identified 2-arylacetamide pyridazin-3(2H)-ones as FPR1- or FPR2-selective agonists, as well as 

a large number of FPR1/FPR2-dual agonists and several mixed-agonists for the three FPR isoforms. 

Here, we report a new series of 2-arylacetamido-4-aniline pyridazin-3(2H)-ones substituted in 

position 5 as a further development of these FPR agonists.  Chemical manipulation presented in this 

work resulted in mixed FPR agonists 8a, 13a and 27b, which had EC50 values in nanomolar range.  

In particular, compound 8a showed a preference for FPR1 (EC50 = 45 nM), while 13a and 27b 

showed a moderate preference for FPR2 (EC50 = 35 and 61 nM, respectively).  Thus, these 

compounds may represent valuable tools for studying FPR activation and signaling. 
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1. Introduction  

Human formyl peptide receptors (FPR1, FPR2, and FPR3) are a family of versatile G-

protein-coupled receptors (GPCRs) that represent attractive therapeutic targets because of their 

involvement in a wide range of normal physiological processes, as well as pathological events 

associated with inflammatory conditions [1-4]. Originally identified in phagocytic leucocytes, FPRs 

mediates chemotaxis and activation of the majority of immune system cells in response to bacterial 

products and various inflammatory stimuli [3].  However, recent studies indicate that FPRs are also 

expressed in a variety of nonhematopoietic cells, such as lung epithelial cells, platelets, osteoblasts, 

and hepatocytes, suggesting a wider role for FPRs beyond inflammation and host defense [5]. 

FPR activation can induce pro- or anti-inflammatory responses, depending on the nature of 

the ligand and cell types involved.  For example, FPRs have been reported to contribute to 

inflammation associated with amyloidosis and Alzheimer's disease, prion disease, human 

immunodeficiency virus, stomach ulcer, some cancers,
 
nociception associated with inflammatory 

processes, chronic obstructive pulmonary disease (COPD), stroke and ischemia-reperfusion injury 

[6-13].  Conversely, stimulation of FPRs with certain agonists can also induce pro-resolving 

responses or endogenous anti-inflammatory systems [3].  Indeed, screening of commercial libraries 

and new synthetic compounds has resulted in the discovery of a number of small-molecule non-

peptide FPR agonists and antagonists with a wide range of chemical diversity and activities [14-16].  

In previous studies, we identified several pyridazin-3(2H)-one-based derivatives that 

showed an interesting profile as FPR agonists, combining an appreciable potency and differential 

selectivity toward the three human FPR isoforms [17-21]. Key requirements for agonist activity of 

this class of compounds were the presence of a 4-bromophenylacetamide side chain at the N-2 

position of the scaffold [17, 19] and the presence of a methyl group at C-6 [20]. Position 4 could be 

substituted with a benzyl or phenylamino group, resulting in compounds with micromolar activity 

(Figure 1, general structure A).  
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Figure 1 
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In the present study, we further investigated pyridazinone derivatives belonging to the series 

of 4-phenylamino derivatives (structure A, X = NH) which until now was only poorly studied [20]. 

In particular, we inserted at position 5 of the pyridazinone scaffold a variety of substituents, such as 

alkyl or acyl groups, ester, unsaturated chains, and pyrazole rings, in order to evaluate how such 

modifications affected target specificity and compound potency. 

 

2. Chemistry  

  All compounds were synthesized as reported in Schemes 1-5, and the structures were 

confirmed using analytical and spectral data.  

The synthetic pathway leading to the final compounds 6a-f bearing an acyl group at position 

5 is outlined in Scheme 1. Previously described isoxazolo-pyridazinones of type 1 [22-25] were 

transformed into the corresponding 4-amino-5-acetyl derivatives 2a-f (2a-d [25]) by reductive 

cleavage with 10% Pd/C and HCOONH4 in ethanol. The products were then converted to the 4-

bromophenylacetamide derivatives 5a-f as follows.  Intermediates 2a and 2d,e were alkylated with 

ethylbromoacetate under standard conditions to generate 3a [20] and 3d,e, which were transformed 

into the corresponding carboxylic acids 4a [22] and 4d,e through alkaline hydrolysis. These were 

transformed into the final amides of type 5 by treatment with 4-bromoaniline, ethyl chloroformate 
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and triethylamine in THF.  Compounds 5b,c and 5f were obtained starting from their respective 

intermediates by a direct alkylation with N-(4-bromophenyl)-2-chloroacetamide [26] under standard 

conditions.  Finally, a coupling reaction between 5a-f and 3-methoxybenzenboronic acid was 

carried out in the presence of copper(II)acetate and Et3N to generate the final 5-alkyl pyridazinones 

6a-f.  
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Synthetic routes used to obtain the 5-alkyl (11a-d) and 5-vinyl (13) derivatives are shown in 

Scheme 2. Intermediates 2a-d [25] were converted to the desired final compounds 11a-d through 
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the following steps: reduction of the acetyl at C-5 with NaBH4 (compounds 7a-d), dehydratation 

with polyphosphoric acid (PPA) (8a-d), reduction of the vinyl group with a Parr instrument (9a-d), 

insertion of the fragment at N-2 (10a-d), and coupling with 3-methoxybenzeneboronic acid (11a-d).  

To obtain the final compound 13, direct alkylation with N-(4-bromophenyl)-2-chloroacetamide [26] 

on intermediate 8a was performed (compound 12), followed by a coupling reaction with 3-

methoxybenzenboronic acid. 
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Scheme 3 shows the synthetic pathway for compounds 17a-b and 18: intermediate 14 [27] 

was converted into the pyridazinone 15 through isoxazole ring cleavage using the appropriate 

alcohol and a catalytic amount of Et3N.  Compounds of type 15 were then transformed into the final 

17a,b following the same procedure reported in Schemes 1 and 2.  Moreover, basic hydrolysis of 

the ester led to the final carboxylic derivative 18. 

Scheme 3 
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The pyrazolyl derivatives 25a,b  were obtained following the procedures outlined in 

Scheme 4. Compound 19 [22] was transformed into the intermediated 20, as previously reported, 

and then was condensed with N,N-dimethylformamide dimethyl acetal to obtain derivative 21. 
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Treatment with Mo(CO)6 [28] led to 22. Condensation with hydrazine hydrate gave the C-5 

pyrazolyl pyridazinone 23 which, in turn, was alkylated with iodomethane (compound 24) and 

coupled with 3-methoxybenzenboronic acid (25a,b).  
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Finally Scheme 5 describes the synthetic pathway leading to the final 5-unsubstituted 

pyridinone and pyridazinone derivatives 28a-b, which were obtained starting from appropriate 

intermediates 26a [29] and 26b [30] following the usual synthetic procedures described in previous 

schemes.  
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3. Results and discussion 

3.1. Biological results 

All new compounds were evaluated for their ability to induce intracellular Ca
2+

 flux in 

human HL-60 cells transfected with FPR1, FPR2, or FPR3, and the results are reported as EC50 

values in Tables 1-2. 

Analysis of compounds substituted with various groups at position 5 (Table 1) demonstrated 

that several were potent mixed FPR agonists. Among them, the acetyl derivative 8a was active in 

the nanomolar range and preferred FPR1 (EC50 = 45 nM). On the other hand, elongation of the 
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aliphatic chain of keto(alkyl) derivatives (compounds 8b-d) was detrimental for FPR agonist 

activity. Although the butyl analogue 8d was selective for FPR1, it had only moderate activity 

(EC50 = 15.6 µM).  Further modification at position 5, such as the introduction of cyclopentyl and 

cyclohexyl rings (8e-f), also led to decreased activity.  

Replacement of the ketone at C-5 (Table 1) with a pyrazole resulted in two mixed FPR 

agonists with reasonable agonist activity (27a-b).  These two agonists differ only in the position of 

the methoxy group of the aniline at C-4 (meta for 27a versus para for 27b).  Compound 27b was a 

potent FPR2 agonist (EC50 = 35 nM), although it did have some activity at the other two FPR 

subtypes (FPR2>FPR3>>FPR1).  Elimination of the methoxyphenylamino group at C-4 of the 

pyridazinone (compound 26) led to decreased activity that was comparable to that of the other two 

4-amino derivatives 24 and 25.  Likewise, introduction of methyl or ethyl esters at C-5 of 

pyridazinone (19a-b) also led to compounds with micromolar activity. On the other hand, 

introduction of a carboxylic function in the same position (20) led to a slight increase of selectivity 

toward FPR1 (EC50 = 0.6 M). Finally, the vinyl derivative 15 exhibited mixed agonist activity for 

the three FPR isoforms but had a higher preference for FPR1 and FPR2 (EC50 = 0.23 and 0.11 M, 

respectively).  

Activities of the 5-alkyl derivatives 13a-d are presented in Table 2. Compound 13a, in 

which R = C2H5, was the most potent of this series.  It was active in the nanomolar range toward the 

three FPR subtypes but had a preference for FPR2 (EC50 = 61 nM). Elongation of the aliphatic 

chain was detrimental for activity, resulting in compounds with micromolar EC50 values for FPR1 

and FPR2 and no activity at FPR3.  Surprisingly, the 5-propyl derivative 13b was completely 

devoid of activity. This is likely due to the loss of H-bonding between this compound and the 

receptor (see molecular modeling details below).  Furthermore, elimination of the C-5 substituent 

led to a compound 29a with high nanomolar agonist activity for FPR1 (EC50 = 0.24 M). Finally, 

compound 29b exhibited moderate mixed agonist activity for FPR1 and FPR2, but was one order of 



  

 11 

magnitude lower in activity than 29a at FPR1, suggesting that the pyridonic scaffold was less 

appropriate compared with the pyridazinone scaffold.  

 

Table 1. Activity of C-4 and C-5 substituted pyridazinones 8a-f, 15, 19a-b, 20, 24-26, 27a-b. 

 

 

 

                           

NN

NH R

O

NH

O

Br

O

NN

H2N R

O

NH

O

Br

8a-f, 15, 19a,b, 20, 27a,b 24-26  

[a]Values, expressed as EC50 (µM) and Efficacy (% in brackets) were evaluated in a Ca2+ flux assay. EC50 values 

represent the average mean of three independent experiments and were determined by nonlinear regression analysis of 

the concentration-response curves (5-6 points) generated using GraphPad Prism 5 with 95% confidential interval (p < 
0.05). Efficacy (in brackets) is expressed as % of the response induced by 5 nM fMLF in human polymorphonuclear 

neutrophils (hPMN) and FPR1-HL60 cells or by 5 nM WKYMVm in FPR2-HL60 and FPR3-HL60 cells. [b]N.A., no 

activity (no response was observed during first 2 min after addition of compounds under investigation) considering the 

limits of efficacy < 20% and EC50 < 50 μM. 

 

Compd OCH3 R hPMN[a] FPR1-HL60[a] 

 

FPR2-HL60[a] 

 

FPR3-HL60[a] 

 

8a m COCH3 
0.036 ± 0.007 

(150) 

0.045 ± 0.016 

(185) 

0.17 ± 0.038 

 (60) 

0.21 ± 0.044  

(150) 

8b m COCH2CH3 5.5 ± 1.6 (110) 2.7 ± 0.8 (130) 0.78 ± 0.1 (190) N.A. a 

8c m CO(CH2)2CH3 24.0 ± 4.2 (60) 11.8 ± 3.5 (70) 8.1 ± 2.1 (90) N.A. a 

8d m CO(CH2)3CH3 8.0 ± 2.6 (90) 15.6 ± 2.6 (45) N.A. a N.A. a 

8e m COcC5H9 1.7 ± 0.4 (110) 1.6 ± 0.4 (110) 10.5 ± 2.1 (60) N.A. a 

8f m COcC6H11 28.9 ± 6.6 (120) 10.0 ± 3.2 (110) 8.7 ± 0.47 (115) N.A. a 

15 m CH=CH2 0.84 ± 0.18 (130) 0.23 ± 0.07 (120) 0.11 ±0.014 (105) 6.0 ± 2.1 (75) 

19a m COOCH3 22.1 ± 5.3 (25) 4.4 ± 0.6 (25) 2.3 ± 0.49 (60) N.A. a 

19b m COOCH2CH3 6.1 ± 1.7 (95) 2.5 ± 0.7 (90) 1.9 ± 0.03 (110) N.A. a 

20 m COOH 1.5 ± 0.5 (155) 0.6 ± 0.1 (130) 3.1 ± 0.78 (115) 17.1 ± 4.3 (75) 

24 - COCHCHN(CH3)2 9.3 ± 2.3 (105) 5.1 ± 1.7 (120) 5.7 ± 2.3 (50) N.A. a 

25 - pyrazole 11.8 ± 2.4 (140) 8.4 ± 1.5 (135) 13.5 ± 1.8 (60) N.A. a 

26 - 1-methylpyrazole 3.5 ± 0.32 (60) 2.9 ± 0.14 (75) 1.9 ± 0.71 (40) N.A. 

27a m 1-methylpyrazole 0.59 ± 0.21 (135) 3.6 ± 0.28  (130) 0.59 ± 0.18 (90) N.A. a 

27b p 1-methylpyrazole 0.30 ± 0.044 (130) 4.0 ± 0.89 (115) 0.035 ± 0.1 (120) 0.67 ± 0.22 (110) 
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Table 2. Activity of C-4 and C-5 substituted pyridazinones 13a-d and  29a-b. 

 

                          

NN

NH R

O

NH

O

Br

13a-d, 29a

H3CO
N

NH

O

NH

O

Br

H3CO

29b  
         

[a]Values, expressed as EC50 (µM) and Efficacy (% in brackets) were evaluated in Ca2+ flux assay. EC50 

values represent the average mean of three independent experiments and were determined by nonlinear 

regression analysis of the concentration-response curves (5-6 points) generated using GraphPad Prism 5 with 

95% confidential interval (p < 0.05). Efficacy (in brackets) is expressed as % of the response induced by 5 

nM fMLF in human polymorphonuclear neutrophils (hPMN) and FPR1-HL60 cells or by 5 nM WKYMVm 

in FPR2-HL60 and FPR3-HL60 cells. [b]N.A., no activity (no response was observed during first 2 min after 

addition of compounds under investigation) considering the limits of efficacy < 20% and EC50 < 50 μM. 

 
The most active derivatives (8a, 15 and 27a-b) were also evaluated for chemoattractant 

activity in human neutrophils.  As expected for FPR agonists, all four compounds had 

chemoattractant activity and induced this response in the micromolar range (Table 3).  

Table 3. Chemoattractant activity of selected pyridazinones in human neutrophils 
 

 

Compd EC50 (µM)[a] in 

migration assay 

8a 2.2 ± 0.51 

15 1.2 ± 0.24 

27a 1.1 ± 0.22 

27b 0.45 ± 0.17 
[a]The data are presented as the mean ± SD of three independent experiments with cells from different donors, in which 

median effective concentration values (EC50) were determined by nonlinear regression analysis of the concentration-

response curves (5-6 points) generated using GraphPad Prism 5 with 95% confidential interval (p < 0.05). 
 

 

Some of the synthesized compounds were also evaluated for their ability to induce 

intracellular Ca
2+

 flux in mouse neutrophils and RBL cells transfected with Fpr1 or Fpr2 (Table 4).  

Compd R hPMN[a] FPR1-HL60[a] FPR2-HL60[a] FPR3-HL60[a] 

13a CH2CH3 0.34 ± 0.11 (115) 0.18 ± 0.004 (185) 0.061 ± 0.022 (35) 0.46 ± 0.014 (35) 

13b CH2CH2CH3 N.A. N.A. N.A. N.A. 

13c (CH2)3CH3 1.40 ± 0.8  (45) 3.6 ± 1.1 (65) 4.5 ± 1.3 (30) N.A. 

13d (CH2)4CH3 5.70 ± 1.2  (55) 1.4 ± 0.34 (95) 0.19 ± 0.018 (115) N.A. 

29a H 0.56 ± 0.12  (85) 0.24 ± 0.09 (120) 9.6 ± 2.0 (65) N.A. 

29b - 4.31 ± 0.4  (60) 2.50 ± 0.7  (110) 8.10 ± 1.7 (75) N.A. 
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Although all compounds tested were active in human neutrophils, only eight of these compounds 

activated Ca
2+

 flux in mouse neutrophils.  Of these, three compounds were also agonists for mouse 

Fpr1, mouse Fpr2, or both. The reason for this species-specific difference in activity is currently not 

understood; however, we and other group have observed quite different response patterns to some 

agonists and/or antagonists in human and mouse neutrophils [14].   

 

Table 4. Activity of pyridazinones in mouse neutrophils and mouse Fpr-transfected RBL cells. 

 

Compd mPMN[a] mFpr1-RBL[a] mFpr2-RBL[a] 

8a N.A.[b] N.A.[b] N.A.[b] 

8b 8.4 ± 2.6 (75) N.A.
[b]

 N.A.
[b]

 

8c N.A.[b] N.A.[b] N.A.[b] 

8d 24.1 ± 6.1 (105) N.A.[b] N.A.[b] 

8e 15.9 ± 4.9 (120) N.A.[b] N.A.[b] 

8f N.A.[b] N.A.[b] N.A.[b] 

15 22.8 ± 6.4 (30) N.A.[b] N.A.[b] 

19a N.A.[b] N.A.[b] N.A.[b] 

19b N.A.[b] N.A.[b] N.A.[b] 

20 1.0 ± 0.34 (100) 4.7 ± 1.3 (50) N.A.[b] 

24 13.5 ± 3.7 (50) 6.7 ± 2.1 (55) 9.4 ± 2.7 (65) 

25 N.A.[b] N.A.[b] N.A.[b] 

26 5.6 ± 2.4 (45) N.A.[b] N.A.[b] 

27a N.A.[b] N.A.[b] N.A.[b] 

27b 6.0 ± 1.9 (80) 18.5 ± 4.1 (25) 18.3 ± 3.8 (35) 

 
[a]The EC50 (µM) and Efficacy (% in brackets) were evaluated in Ca2+ flux assay. Values are expressed EC50 presented 

as the average mean of three independent experiments, in which EC50 values were determined by nonlinear regression 

analysis of the concentration-response curves (5-6 points) generated using GraphPad Prism 5 with 95% confidential 

interval (p < 0.05). Efficacy (in brackets) is expressed as % of the response induced by 5 nM WKYMVm in mouse 

polymorphonuclear neutrophils (mPMN) or RBL cells transfected with mouse Fpr1 (mFpr1-RBL) or Fpr2 (mFpr2-

RBL). [b]N.A., no activity (no response was observed during first 2 min after addition of compounds under 
investigation) considering the limits of efficacy < 20% and EC50 < 50 µM. 

 

3.2. Molecular docking studies 

Our data suggest that larger substituents at position 5 may cause steric hindrance and that the 

optimal length of this group was two carbon atoms.  To evaluate the role of steric hindrance from 

bulky acyl groups, we performed molecular docking of compounds 8a and 8e into the binding site 

of an FPR1 homology model and compounds 13a-c into the binding site of an FPR2 homology 

model.  With each of these pairs, the compounds differ in size of acyl or alkyl groups at position 5 

of the pyridazine heterocycle.  
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As shown in Figure 2A, the best docking pose of 8a occupies areas of FPR1 characteristic of 

other FPR1 agonists [31].  For example, the p-bromo substituted aromatic ring of 8a is positioned 

near channel A, and the acetyl group enters cavity B (receptor regions designated as previously 

reported [31]). Additionally, strong H-bonds form between the carbonyl oxygen and anilide 

nitrogen atoms of 8a and Thr265 of FPR1, whereas a weaker H-bond is formed between the 

methoxy substituent and Arg205 (Figure 2B).  These interactions may contribute to the agonist 

activity of compound 8a. Close contact of the acetyl group in 8a and FPR1 Leu198 was observed 

for the calculated ligand-receptor complex (Figure 2B), and the shortest interatomic distance 

between the acetyl oxygen and hydrogen atom of Leu198 located at the wall of cavity C was ~2.7 

Å, indicating close proximity of the agonist 8a and the receptor.   Thus, a larger acyl group at 

position 5 of the heterocycle would be expected to hinder ligand orientation similar to 8a.  Indeed, 

the lowest-energy pose of compound 8e had a very different arrangement within the FPR1 binding 

site.  The bulky cyclopentyl substituent prevented positioning the molecule near cavity B, such that 

8e leans toward hole C of FPR1 (Figure 2A).  This difference in binding explains the decreased 

agonist activity for 8e and its analogs with large acyl groups. 
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Figure 2 

 

 

A homology model of FPR2 was similarly used to perform molecular docking with 13a-c. 

These molecules have quite subtle differences in structure and are oriented in the binding site with 

brominated benzene rings directed deep into the binding site (Figure 3A).  This orientation of the p-

bromophenyl moiety is analogous to that observed previously for parent compounds [20].  Agonist 

13a with an ethyl substituent at position 5 of the pyridazine ring is H-bonded with Thr177, while 

the m-methoxyphenyl substituent occupies a hydrophobic subpocket surrounded by Ala181, 

Gly264, Leu268, Tyr277, and Ile279 (Figure 3B).  Changing the alkyl substituent from ethyl to n-

butyl in compound 13c led to flipping of the molecule so that the butyl chain of this ligand was now 

located in the hydrophobic subpocket, while the m-methoxyphenyl group formed an H-bond with 

Asn171 (Figure 3C).  For 13b, a flipped pose similar to 13c was obtained. However, the substituted 
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pyridazine 13b did not form H-bonds with the receptor, which likely led to decreased affinity of the 

propyl derivative and complete lack of biological activity (see Table 2). 

Figure 3 
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Thus, larger substituents in position 5 of the pyridazine heterocycle cause steric effects on 

the binding modes of the ligands in the FPR1 and FPR2 binding sites, which is consistent with their 

reduced or lost agonist activity.  

 

4. Conclusions 

We describe the synthesis of new series of C-5 substituted 2-arylacetamide pyridazin-3(2H)-

ones that exhibit improved potency and selectivity toward FPR isoforms. Biological analysis of 

these compounds confirmed the suitability of pyridazinone-based compounds as a relevant system 

to develop novel human FPR agonists.  Indeed, the majority of compounds described herein were 

mixed FPR agonists, with compounds 8a and 27b being the most potent (EC50 values in the 

nanomolar range).  Overall, we show that modification of position C-5 of the pyridazinone ring in 

2-arylacetamide pyridazin-3(2H)-ones represents an effective approach for the development of 

active FPR agonists. These compounds represent valuable tools for studying FPR activation and 

signaling in inflammatory conditions. 

 

5. Experimental section 

      5.1. Chemistry  

Reagents and starting materials were obtained from commercial sources. Extracts were dried 

over Na2SO4, and the solvents were removed under reduced pressure. All reactions were monitored 

by thin layer chromatography (TLC) using commercial plates precoated with Merck silica gel 60 F-

254. Visualization was performed by UV fluorescence (λmax = 254 nm) or by staining with iodine or 

potassium permanganate. Chromatographic separations were performed on a silica gel column using 

gravity chromatography (Kieselgel 40, 0.063-0.200 mm; Merck), flash chromatography (Kieselgel 

40, 0.040-0.063 mm; Merck), or silica gel preparative TLC (Kieselgel 60 F254, 20 x 20 cm, 2 mm). 

Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. 
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Compounds were named following IUPAC rules, as applied by Beilstein-Institut AutoNom 2000 

(4.01.305) or CA Index Name. All melting points were determined on a microscope hot stage Büchi 

apparatus and are uncorrected. The identity and purity of intermediates and final compounds were 

determined through NMR analysis and TLC chromatography. 
1
H NMR, 

13
C NMR and NOESY 

spectra were recorded with Avance 400 instruments (Bruker Biospin Version 002 with SGU). 

Chemical shifts (δ) are reported in ppm to the nearest 0.01 ppm (for 
1
H NMR) or 0.1 ppm (for 

13
C 

NMR), using the solvent as an internal standard. Coupling constants (J values) of 
1
H NMR are 

given in Hz and were calculated using ‘TopSpin 1.3’ software rounded to the nearest 0.1 Hz. 

Microanalyses were performed with a Perkin-Elmer 260 elemental analyzer for C, H, and N, and the 

results were within ± 0.4 % of the theoretical values, unless otherwise stated.  

 

5.1.1. General procedures for 2e and 2f 

Ammonium formate (3.11 mmol) and 10% Pd/C (0.05 mmol) were added to a solution of the 

appropriate intermediate 1e and 1f [22-24] (1.04 mmol) in 5 mL of anhydrous EtOH, and the 

reaction was refluxed for 1 h. After cooling, 20 mL of CH2Cl2 were added to the mixture, and the 

precipitate was removed by filtration under vacuum. The organic layer was then evaporated, and the 

desired products 2e,f were obtained pure after recrystallization from EtOH. 

5.1.1.1. 4-Amino-5-cyclopentanecarbonyl-6-methylpyridazin-3(2H)-one, 2e. Yield = 98%; mp = 

225-227 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.62-1.72 (m, 2H, cC5H9); 1.73-1.81 (m, 2H, cC5H9); 1.83-

1.89 (m, 4H, cC5H9); 2.45 (s, 3H, CH3); 3.44 (quin, 1H, cC5H9, J = 7.6 Hz); 6.76 (exch br s, 2H, 

NH2); 7.98 (exch br s, 1H, NH). Anal. Calcd for  C11H15N3O2 (221.26): C, 59.71; H, 6.83; N, 18.99; 

Found: C, 59.52; H, 6.84; N, 18.95. 

5.1.1.2. 4-Amino-5-cyclohexanecarbonyl-6-methylpyridazin-3(2H)-one, 2f. Yield = 96%; mp = 

232-234 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.20-1.40 (m, 2H, cC6H11); 1.40-1.60 (m, 2H, cC6H11); 

1.60-1.80 (m, 2H, cC6H11); 1.80-1.90 (m, 4H, cC6H11); 2.53 (s, 3H, CH3); 2.90-2.93 (m, 1H, 
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cC6H11); ); 7.21 (exch br s, 2H, NH2); 8.56 (exch br s, 1H, NH). Anal. Calcd for  C12H17N3O2 

(235.28): C, 61.26; H, 7.28; N, 17.86; Found: C, 61.11; H, 7.27; N, 17.89. 

5.1.2. General procedures for 3d and 3e  

To a solution of the appropriate substrate 2d [25] and 2e (1.60 mmol) in anhydrous CH3CN 

(5 mL), K2CO3 (3.20 mmol) and ethyl bromoacetate (2.40 mol) were added. The solution was 

stirred for 2-3 h at reflux, and the solvent was evaporated. The residue was mixed with ice-cold 

water (10 mL) and the precipitate was recovered by suction and recrystallized from ethanol 

(compound 3d); alternatively, for compound 3e, the suspension was extracted with CH2Cl2 (3 x 15 

mL) and the organic layer was dried over Na2SO4 and evaporated in vacuo. Finally, 3e was purified 

by column flash chromatography using cyclohexane/ethyl acetate 1:1 as eluent.  

5.1.2.1. (5-Amino-3-methyl-6-oxo-4-pentanoylpyridazin-1(6H)-yl)acetic acid ethyl ester, 3d. 

Yield = 97%; mp = 92-94 °C (EtOH). 
1
H-NMR (CDCl3) δ 0.94 (t, 3H, CH2CH2CH3, J = 7.2 Hz); 

1.29 (t, 3H, OCH2CH3, J = 7.2 Hz); 1.36 (sext, 2H, CH2CH2CH3, J = 7.2 Hz); 1.68 (quin, 2H, 

COCH2CH2, J = 7.2 Hz); 2.48 (s, 3H, N=CCH3); 2.82 (t, 2H, COCH2CH2, J = 7.2 Hz); 4.24 (q, 2H, 

OCH2CH3, J = 7.2 Hz); 4.81 (s, 2H, NCH2); 8.89 (exch br s, 2H, NH2). Anal. Calcd for  C14H21N3O4 

(295.33): C, 56.94; H, 7.17; N, 14.23; Found: C, 57.08; H, 7.16; N, 14.27. 

5.1.2.2.  (5-Amino-4-cyclopentanecarbonyl-3-methyl-6-oxopyridazin-1(6H)-yl)acetic acid ethyl 

ester, 3e. Yield = 64%; mp = 83-85 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.29 (t, 3H, CH2CH3, J = 7.2 

Hz); 1.61-1.65 (m, 2H, cC5H9); 1.74-1.79 (m, 2H, cC5H9); 1.80-1.89 (m, 4H, cC5H9); 2.43 (s, 3H, 

N=CCH3); 3.45 (m, 1H, cC5H9); 4.24 (q, 2H, CH2CH3, J = 7.2 Hz); 4.81 (s, 2H, NCH2); 6.87 (exch 

br s, 2H, NH2). Anal. Calcd for  C15H21N3O4 (307.34): C, 58.62; H, 6.89; N, 13.67; Found: C, 58.47; 

H, 6.88; N, 13.71. 

5.1.3. General procedures for 4d and 4e  

To a solution of the suitable ester 3d and 3e (0.49-0.58 mmol) in 96% EtOH (5 mL), 6N 

NaOH (3 mL) was added. The reaction was carried out at 60°C for 1-2 h. After evaporation of the 

solvent, the mixture was diluted with ice-cold water, acidified with 6N HCl, and extracted with 
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CH2Cl2 (3 x 15 mL). The organic layer was dried over Na2SO4 and evaporated in vacuo to give 

desired final compounds, which were purified by crystallization from ethanol. 

5.1.3.1.  (5-Amino-3-methyl-6-oxo-4-pentanoylpyridazin-1(6H)-yl)acetic acid, 4d. Yield = 98%; 

mp = 97-99 °C (EtOH). 
1
H-NMR (CDCl3) δ 0.93 (t, 3H, CH2CH3, J = 7.2 Hz); 1.36 (sext, 2H, 

CH2CH3, J = 7.2 Hz); 1.66 (quin, 2H, COCH2CH2, J = 7.2 Hz); 2.48 (s, 3H, N=CCH3); 2.81 (t, 2H, 

COCH2CH2, J = 7.2 Hz); 4.87 (s, 2H, NCH2); 5.32 (exch br s, 1H, OH); 7.45 (exch s br, 2H, NH2). 

Anal. Calcd for  C12H17N3O4 (267.28): C, 53.92; H, 6.41; N, 15.72; Found: C, 54.08; H, 6.40; N, 

15.68. 

 5.1.3.2.  (5-Amino-4-cyclopentanecarbonyl-3-methyl-6-oxopyridazin-1(6H)-yl)acetic acid, 4e. 

Yield = 73%; mp = 168-169 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.60-1.70 (m, 2H, cC5H9); 1.71-1.80 

(m, 2H,  cC5H9); 1.81-1.91 (m, 4H, cC5H9); 2.45 (s, 3H, CH3); 3.45 (m, 1H, cC5H9); 4.88 (s, 2H, 

NCH2); 5.03 (exch br s, 1H, OH); 6.89 (exch br s, 2H, NH2). Anal. Calcd for  C13H17N3O4 (279.29): 

C, 55.91; H, 6.14; N, 15.05; Found: C, 55.76; H, 6.13; N, 15.09. 

5.1.4. General procedures for 5a, and 5d-e 

To a cooled (-5 °C) and stirred solution of the appropriate substrate 4a, 4d-e (4a [22]) (0.98 

mmol) in anhydrous tetrahydrofuran (5 mL), Et3N (3.43 mmol) was added. After 0.5 h, the mixture 

was allowed to warm up to 0 °C, and ethyl chloroformate (1.02 mmol) was added. After 1 h, 4-

bromoaniline (1.96 mmol) was added. The reaction was carried out at room temperature for 16 h. 

The mixture was then concentrated in vacuo, diluted with cold water (20-30 mL), and extracted with 

CH2Cl2 (3 x 15 mL). The organic layer was dried over Na2SO4 and evaporated to obtain crude final 

compounds, which were purified by crystallization from ethanol for compound 5a and by column 

flash chromatography using cyclohexane/ethyl acetate 1:1 as eluent, followed by recrystallization 

from EtOH, for compounds 5d and 5e. 

5.1.4.1. 2-(4-Acetyl-5-amino-3-methyl-6-oxopyridazin-1(6H)-yl)-N-(4-bromophenyl) 

acetamide, 5a. Yield = 90%; mp = 240-242 °C (EtOH). 
1
H-NMR (CDCl3) δ 2.57 (s, 3H, COCH3); 

2.60 (s, 3H, N=CCH3); 4.90 (s, 2H, NCH2); 7.54 (s, 4H, Ar); 8.50 (exch br s, 1H, NH); 6.32 (exch 
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br s, 2H, NH2). Anal. Calcd for  C15H15BrN4O3 (379.21): C, 47.51; H, 3.99; N, 14.77; Found: C, 

47.64; H, 3.98; N, 14.80. 

5.1.4.2. 2-(5-Amino-3-methyl-6-oxo-4-pentanoylpyridazin-1(6H)-yl)-N-(4-bromophenyl) 

acetamide, 5d. Yield = 42%; mp = 164-165 °C (EtOH). 
1
H-NMR (CDCl3) δ 0.93 (t, 3H, CH2CH3, J 

= 7.2 Hz); 1.35 (sext, 2H, CH2CH3, J =7.2 Hz); 1.67 (quin, 2H, COCH2CH2, J = 7.2 Hz); 2.51 (s, 

3H, N=CCH3); 2.82 (t, 2H, COCH2CH2, J = 7.2 Hz); 4.88 (s, 2H, NCH2); 7.38 (s, 4H, Ar); 8.63 

(exch br s, 1H, NH); 8.56 (exch br s, 2H, NH2). Anal. Calcd for  C18H21BrN4O3 (421.29): C, 51.32; 

H, 5.02; N, 13.30; Found: C, 51.46; H, 5.02; N, 13.27. 

5.1.4.3. 2-(5-Amino-4-cyclopentanecarbonyl-3-methyl-6-oxopyridazin-1(6H)-yl)-N-(4-

bromophenyl)acetamide, 5e. Yield = 19%; mp = 179-181 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.61-

1.71 (m, 2H, cC5H9); 1.72-1.82 (m, 2H, cC5H9); 1.83-1.92 (m, 4H, cC5H9); 2.48 (s, 3H, CH3); 3.45 

(m, 1H, cC5H9); 4.89 (s, 2H, NCH2); 6.89 (exch br s, 2H, NH2); 7.40 (s, 4H, Ar); 8.66 (exch br s, 

1H, NH). Anal. Calcd for  C19H21BrN4O3 (433.30): C, 52.67; H, 4.89; N, 12.93; Found: C, 52.49; H, 

4.88; N, 12.91. 

5.1.5. General procedures for 5b,c, 5f 

A mixture of the appropriate intermediate 2b-c or 2f (0.96 mmol), K2CO3 (1.93 mmol) and 

N-(4-bromophenyl)-2-chloroacetamide [26] (0.96-1.20 mmol) in CH3CN (10-15 mL) was refluxed 

under stirring for 2-6 h. The mixture was then concentrated in vacuo, and ice cold water was added. 

After 1 h stirring in an ice-bath, the precipitate was recovered by suction to obtain pure compound 

5b-c. For compound 5f further purification was performed by column chromatography using 

cyclohexane/ethyl acetate 1:2 as eluent. 

5.1.5.1. 2-(5-Amino-3-methyl-6-oxo-4-propionylpyridazin-1(6H)-yl)-N-(4-bromophenyl) 

acetamide, 5b. Yield = 98%; mp = 174-175 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.22 (t, 3H, CH2CH3, J 

= 7.2 Hz); 2.56 (s, 3H, N=CCH3); 2.88 (q, 2H, CH2CH3, J = 7.2 Hz); 4.90 (s, 2H, NCH2); 7.43 (s, 

4H, Ar); 8.55 (exch br s, 1H, NH); 8.76 (exch br s, 2H, NH2). Anal. Calcd for  C16H17BrN4O3 

(393.24): C, 48.87; H, 4.36; N, 14.25; Found: C, 48.99; H, 4.35; N, 14.21. 
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5.1.5.2. 2-(5-Amino-4-butyryl-3-methyl-6-oxopyridazin-1(6H)-yl)-N-(4-bromophenyl) 

acetamide, 5c. Yield = 96%; mp = 161-163 °C (EtOH). 
1
H-NMR (CDCl3) δ 0.99 (t, 3H, CH2CH3, J 

= 7.2 Hz); 1.75 (sext, 2H, CH2CH3, J = 7.2 Hz); 2.54 (s, 3H, N=CCH3); 2.83 (t, 2H, COCH2, J = 7.2 

Hz); 4.90 (s, 2H, NCH2); 7.43 (s, 4H, Ar); 8.57 (exch br s, 1H, NH); 9.04 (exch br s, 2H, NH2). 

Anal. Calcd for  C17H19BrN4O3 (407.26): C, 50.14; H, 4.70; N, 13.76; Found: C, 50.05; H, 4.69; N, 

13.73. 

5.1.5.3. 2-(5-Amino-4-cyclohexanecarbonyl-3-methyl-6-oxopyridazin-1(6H)-yl)-N-(4-

bromophenyl) acetamide, 5f. Yield = 53%; mp = 97-99 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.20-1.40 

(m, 2H, cC6H11); 1.40-1.60 (m, 2H, cC6H11); 1.60-1.80 (m, 2H, cC6H11); 1.80-1.90 (m, 4H, cC6H11); 

2.44 (s, 3H, CH3); 2.91-2.98 (m, 1H, cC6H11); 4.89 (s, 2H, NCH2); 6.73 (exch br s, 2H, NH2); 7.38 

(s, 4H, Ar); 8.70 (exch br s, 1H, NH). Anal. Calcd for  C20H23BrN4O3 (447.33): C, 53.70; H, 5.18; 

N, 12.52; Found: C, 53.85; H, 5.17; N, 12.56. 

5.1.6. General procedures for 6a-f 

To a suspension of the appropriate intermediate 5a-f (0.91 mmol), copper(II) acetate (1.36 

mmol), 3-methoxyphenylboronic acid (0.91-1.82  mmol) in CH2Cl2 (10 mL), and Et3N (1.82 mmol) 

were added, and the mixture was stirred at room temperature for 16 h. The suspension was extracted 

with 15% aqueous ammonia (3 x 10 mL), and the organic layer was washed with water (10 mL) and 

dried over Na2SO4. After removal of the solvent in vacuo, the final desired compounds were 

purified by column flash chromatography using as eluent CH2Cl2/MeOH 98:2, for compounds 6b-f 

and cycloexane/ethyl acetate 1:3 for compound 6a. Compounds 6d and 6e were further purified by 

recrystallization from cyclohexane. 

5.1.6.1. 2-[4-Acetyl-5-(3-methoxyphenylamino)-3-methyl-6-oxopyridazin-1(6H)-yl]-N-(4-

bromophenyl)acetamide, 6a. Yield = 41%; mp = 115-116 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.92 (s, 

3H, COCH3); 2.24 (s, 3H, N=C-CH3); 3.80 (s, 3H, OCH3); 4.97 (s, 2H, NCH2); 6.61 (s, 1H, Ar); 

6.68 (d, 1H, Ar, J = 8.4 Hz); 6.74 (d, 1H, Ar, J = 8.0 Hz); 7.24 (m, 1H, Ar); 7.42-7.48 (m, 4H, Ar); 

8.5 (exch br s, 1H, NH); 9.21 (exch br s, 1H, NH). 
13

C-NMR (CDCl3) δ 19.6 (CH3); 31.2 (CH3); 
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55.3 (CH3); 57.0 (CH2); 108.1 (CH); 112.0 (CH); 115.9 (CH); 116.6 (C); 117.0 (C); 121.4 (2CH); 

130.5 (CH); 131.8 (2CH); 136.7 (C); 137.7 (C); 139.6 (C); 144.3 (C); 146.6 (C); 157.6 (C); 160.4 

(C); 164.9 (C). Anal. Calcd for  C22H21BrN4O4 (485.33): C, 54.44; H, 4.36; N, 11.54; Found: C, 

54.57; H, 4.35; N, 11.57. 

5.1.6.2. N-(4-Bromophenyl)-2-[5-(3-methoxyphenylamino)-3-methyl-6-oxo-4-propionyl 

pyridazin-1(6H)-yl]acetamide, 6b. Yield = 10%; mp = 87-89 °C (EtOH). 
1
H-NMR (CDCl3) δ 0.57 

(t, 3H, CH2CH3, J = 7.2 Hz); 2.19 (s, 3H, N=CCH3); 2.28 (q, 2H, CH2CH3, J = 7.2 Hz); 3.81 (s, 3H, 

OCH3); 4.97 (s, 2H, NCH2); 6.60 (s, 1H, Ar); 6.67 (d, 1H, Ar, J = 8.4 Hz); 6.73 (d, 1H, Ar, J = 8.4 

Hz); 7.24 (t, 1H, Ar, J = 8.4 Hz); 7.45 (s, 4H, Ar); 7.69 (exch br s, 1H, NH); 8.61 (exch br s, 1H, 

NH).
 13

C-NMR (CDCl3) δ 14.1 (CH3); 20.3 (CH3); 37.6 (CH2); 55.4 (CH3); 57.5 (CH2); 108.5 (CH); 

112.3 (CH); 115.3 (CH); 116.5 (C); 117.0 (C); 121.5 (2 x CH); 130.5 (CH); 132.0 (2 x CH); 136.6 

(C); 137.4 (C); 139.7 (C); 144.6 (C); 146.5 (C); 157.6 (C); 160.6 (C); 165.1 (C). Anal. Calcd for  

C23H23BrN4O4 (499.36): C, 55.32; H, 4.64; N, 11.22; Found: C, 55.47; H, 4.63; N, 11.18. 

5.1.6.3.     N-(4-Bromophenyl)-2-[4-butyryl-5-(3-methoxyphenylamino)-3-methyl-6-oxo 

pyridazin-1(6H)-yl]acetamide, 6c. Yield = 11%; mp = 113-115 °C (EtOH). 
1
H-NMR (CDCl3) δ 

0.67 (t, 3H, CH2CH3, J = 7.2 Hz); 1.09 (sext, 2H, CH2CH3, J = 7.2 Hz); 2.19 (s, 3H, N=CCH3); 2.22 

(t, 2H, COCH2, J = 7.2 Hz); 3.80 (s, 3H, OCH3); 4.97 (s, 2H, NCH2); 6.60 (s, 1H, Ar); 6.67 (d, 1H, 

Ar, J = 8.0 Hz); 6.73 (d, 1H, Ar, J = 8.0 Hz); 7.23 (t, 1H, Ar, J = 8.0 Hz); 7.42-7.47 (m, 4H, Ar); 

7.69 (exch br s, 1H, NH); 8.57 (exch br s, 1H, NH).
 13

C-NMR (CDCl3) δ 13.5 (CH3); 16.3 (CH2); 

20.3 (CH3); 46.2 (CH2); 55.4 (CH3); 57.5 (CH2); 108.3 (CH); 112.3 (CH); 115.1 (CH); 116.6 (C); 

117.0 (C); 121.5 (2 x CH); 130.5 (CH); 132.0 (2 x CH); 136.6 (C); 137.3 (C); 139.7 (2 x C); 144.6 

(C); 157.6 (C); 160.5 (C); 165.0 (C). Anal. Calcd for  C24H25BrN4O4 (513.38): C, 56.15; H, 4.91; N, 

10.91; Found: C, 56.63; H, 4.90; N, 10.88. 

5.1.6.4. N-(4-Bromophenyl)-2-[5-(3-methoxyphenylamino)-3-methyl-6-oxo-4-pentanoyl 

pyridazin-1(6H)-yl]acetamide, 6d. Yield = 13%; mp = 96-98 °C (cyclohexane). 
1
H-NMR (CDCl3) 

δ 0.73 (t, 3H, CH2CH3, J = 7.2 Hz); 0.93-1.06 (m, 4H, (CH2)2CH3); 2.17 (s, 3H, N=CCH3); 2.22 (t, 
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2H, COCH2CH2, J = 7.2 Hz); 3.78 (s, 3H, OCH3); 4.95 (s, 2H, NCH2); 6.58 (s,1H, Ar); 6.64 (dd, 

1H, Ar, J = 8.4 Hz, J = 2.4 Hz); 6.71 (dd, 1H, Ar, J = 8.4 Hz, J = 2.4 Hz); 7.12 (t, 1H, Ar, J = 8.4 

Hz); 7.44 (s, 4H, Ar); 7.66 (exch br s, 1H, NH); 8.56 (exch br s, 1H, NH).
 13

C-NMR (CDCl3) δ 13.0 

(CH3); 17.5 (CH2); 20.1 (CH3); 24.7 (CH2); 44.1 (CH2); 55.4 (CH3); 57.5 (CH2); 108.3 (CH); 112.3 

(CH); 115.1 (CH); 116.6 (C); 117.1 (C); 121.4 (2 x CH); 129.8 (CH); 132.0 (2 x CH); 136.5 (C); 

137.3 (C); 139.6 (C); 144.6 (C); 146.5 (C); 154.6 (C); 160.6 (C); 164.1 (C). Anal. Calcd for  

C25H27BrN4O4 (527.41): C, 56.93; H, 5.16; N, 10.62; Found: C, 57.03; H, 5.15; N, 10.57. 

5.1.6.5.   N-(4-Bromophenyl)-2-[4-cyclopentanecarbonyl-5-(3-methoxyphenylamino)-3-methyl-

6-oxopyridazin-1(6H)-yl]acetamide, 6e. Yield = 11%; mp = 140-142 °C (cyclohexane). 
1
H-NMR 

(CDCl3) δ 1.13-1.22 (m, 2H, cC5H9); 1.29-1.36 (m, 2H, cC5H9); 1.37-1.43 (m, 2H, cC5H9); 1.53 (m, 

2H, cC5H9); 2.19 (s, 3H, N=CCH3); 3.04 (quin, 1H, cC5H9, J = 7.6 Hz); 3.87 (s, 3H, OCH3); 4.97 (s, 

2H, NCH2); 6.56 (s, 1H, Ar); 6.67 (dd, 1H, Ar, J = 8.4 Hz, J = 2.4 Hz); 6.71 (dd, 1H, Ar, J = 8.4 Hz, 

J = 2.4 Hz); 7.22 (t, 1H, Ar, J = 8.4 Hz); 7.44-7.47 (m, 4H, Ar); 8.54 (exch br s, 1H, NH); 9.98 

(exch br s, 1H, NH).
 13

C-NMR (CDCl3) δ 20.9 (CH3); 22.7 (CH2); 25.8 (CH2); 28.3 (CH2); 31.9 

(CH2); 52.2 (CH); 55.4 (CH3); 57.6 (CH2); 107.5 (CH); 112.0 (CH); 114.6 (CH); 116.6 (C); 119.0 

(C); 121.5 (2 x CH); 130.5 (CH); 132.0 (2 x CH); 136.6 (C); 137.5 (C); 138.5 (C); 145.2 (C); 147.3 

(C); 157.8 (C); 160.4 (C); 165.3 (C). Anal. Calcd for  C26H27BrN4O4 (539.42): C, 57.89; H, 5.05; N, 

10.39; Found: C, 57.70; H, 5.05; N, 10.42. 

5.1.6.6.   N-(4-Bromophenyl)-2-[4-cyclohexanecarbonyl-5-(3-methoxyphenylamino)-3-methyl-

6-oxopyridazin-1(6)-yl]acetamide, 6f. Yield = 34%; mp = 181-183 °C (EtOH). 
1
H-NMR (CDCl3) 

δ 0.80-1.00 (m, 8H, cC6H11); 1.40-1.60 (m, 2H, cC6H11); 2.00 (s, 3H, N=CCH3); 2.46-2.50 (m, 1H, 

cC6H11); 3.68 (s, 3H, OCH3); 4.87 (s, 2H, NCH2); 6.60-6.62 (m, 3H, Ar); 7.12-7.17 (m, 1H, Ar); 

7.56-7.47 (m, 4H, Ar); 8.82 (exch br s, 1H, NH); 10.44 (exch br s, 1H, NH).
 13

C-NMR (CDCl3) δ 

20.6 (CH3); 25.8 (2 x CH2); 27.6 (2 x CH2); 29.5 (CH2); 51.3 (CH); 55.5 (CH3); 55.6 (CH2); 108.2 

(CH); 111.1 (CH); 115.2 (CH); 115.6 (C); 115.8 (C); 121.6 (2 x CH); 130.3 (CH); 132.1 (2 x CH); 
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138.1 (C); 138.5 (C); 141.6 (2 x C); 142.6 (C); 157.1 (C); 160.3 (C); 165.7 (C). Anal. Calcd for  

C27H29BrN4O4 (553.45): C, 58.59; H, 5.28; N, 10.12; Found: C, 58.40; H, 5.27; N, 10.09. 

5.1.7. General procedures for 7a-d 

To a cooled (0 °C) suspension of compounds 2a-d (1.20 mmol) in 5 mL of MeOH, NaBH4 

(3.59-7.18 mmol) was slowly added, and the mixture was stirred for 1 h at room temperature. After 

cooling, cold water was added (10 mL) and compound 7a was recovered by filtration under vacuum. 

For compounds 7b-d the suspension was extracted with ethyl acetate (3 x 10 mL) and the organic 

layer was dried over Na2SO4 and evaporated to obtain crude final compounds, which were purified 

by crystallization from ethanol. 

5.1.7.1. 4-Amino-5-(1-hydroxyethyl)-6-methylpyridazin-3(2H)-one, 7a. Yield = 49%; mp = >300 

°C (MeOH). 
1
H-NMR (DMSO-d6) δ 1.28 (d, 3H, CHCH3, J = 6.4 Hz); 2.09 (s, 3H, N=CCH3); 4.78 

(q, 1H, CH, J = 6.4 Hz); 5.98 (exch br s, 1H, NH); 8.56 (exch br s, 2H, NH2). Anal. Calcd for  

C7H11N3O2 (169.18): C, 49.70; H, 6.55; N, 24.84; Found: C, 49.85; H, 6.56; N, 24.79. 

5.1.7.2. 4-Amino-5-(1-hydroxypropyl)-6-methylpyridazin-3(2H)-one, 7b. Yield = 74%; mp = 

184-189 °C (EtOH). 
1
H-NMR (DMSO-d6) δ 0.86 (t, 3H, CH2CH3, J = 7.2 Hz); 1.56-1.61 (m, 1H, 

CH2CH3); 1.65-1.70 (m, 1H, CH2CH3); 2.09 (s, 3H, N=CCH3); 4.49-4.54 (m, 1H, CHOH);  8.56 

(exch br s, 2H, NH2); 12.26 (exch br s, 1H, NH). Anal. Calcd for  C8H13N3O2 (183.21): C, 52.45; H, 

7.15; N, 22.94; Found: C, 52.57; H, 7.17; N, 22.89. 

5.1.7.3. 4-Amino-5-(1-hydroxybutyl)-6-methylpyridazin-3(2H)-one, 7c. Yield = 72%; mp = 212-

215 °C (EtOH). 
1
H-NMR (DMSO-d6) δ 0.86 (t, 3H, CH2CH3, J = 7.2 Hz); 1.24-1.30 (m, 2H, 

CH2CH2CH3); 1.40-1.49 (m, 2H, CH2CH2CH3); 2.07 (s, 3H, N=CCH3); 4.60 (m, 1H, CHOH);  8.92 

(exch br s, 2H, NH2); 12.26 (exch br s, 1H, NH). Anal. Calcd for  C9H15N3O2 (197.23): C, 54.81; H, 

7.67; N, 21.30; Found: C, 54.66; H, 7.69; N, 21.36. 

5.1.7.4. 4-Amino-5-(1-hydroxypentyl)-6-methylpyridazin-3(2H)-one, 7d. Yield = 74%; mp = 

206-208 °C (EtOH). 
1
H-NMR (DMSO-d6) δ 0.85 (t, 3H, CH2CH3, J = 7.2 Hz); 1.18-1.30 (m, 4H, 

CH2CH2CH2CH3); 1.40-1.71 (m, 2H, CH2CH2CH2CH3); 2.08 (s, 3H, N=CCH3); 4.58 (m, 1H, 
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CHOH);  5.52 (exch br d, 1H, OH); 5.91 (exch br s, 2H, NH2); 12.59 (exch br s, 1H, NH). Anal. 

Calcd for  C10H17N3O2 (211.26): C, 56.85; H, 8.11; N, 19.89; Found: C, 57.01; H, 8.12; N, 19.83. 

5.1.8. General procedures for 8a-d 

A stirred suspension of appropriate intermediates 7a-d (1.20 mmol) in PPA (29.5-55.1 

mmol) was heated at 90-110 °C for 2-5 h. After cooling, ice-cold water was added, and the mixture 

was neutralized by slow addition of 6N NaOH. The resulting suspension was extracted with ethyl 

acetate, and the organic phase was dried over Na2SO4. Evaporation of the solvent under vacuum 

resulted in final compounds 8a-b. Instead, for compounds 8c-d, after neutralization, was observed 

the formation of a precipitate, which was recovered by suction. 

 5.1.8.1. 4-Amino-6-methyl-5-vinylpyridazin-3(2H)-one, 8a. Yield = 90%; mp = 270-272 °C 

(EtOH). 
1
H-NMR (CDCl3) δ 2.22 (s, 3H, CH3); 5.19 (exch br s, 2H, NH2); 5.61 (d, 1H, CH-H, J = 

18 Hz); 5.74 (d, 1H, CH-H, J = 12 Hz); 6.46 (dd, 1H, CH, J = 18 Hz, J = 12 Hz); 8.03 (exch br s, 

1H, NH). Anal. Calcd for  C7H9N3O (151.17): C, 55.62; H, 6.00; N, 27.80; Found: C, 55.75; H, 

5.99; N, 27.74. 

5.1.8.2. 4-Amino-6-methyl-5-propenylpyridazin-3(2H)-one, 8b. Yield = 62%; mp = 264-266 °C 

(EtOH). 
1
H-NMR (CDCl3) δ 1.84 (d, 3H, CH3CH, J = 6.8 Hz); 2.10 (s, 3H, CH3); 5.92-5.97 (m, 1H, 

CH=CH-CH3); 6.01-6.13 (m, 1H, CH=CH-CH3); 6.89 (exch br s, 2H, NH2); 12.30 (exch br s, 1H, 

NH). Anal. Calcd for  C8H11N3O (165.19): C, 58.17; H, 6.71; N, 25.44; Found: C, 58.03; H, 6.70; N, 

25.51. 

5.1.8.3. 4-Amino-5-but-1-enyl-6-methylpyridazin-3(2H)-one, 8c. Yield = 42%; mp = 257-259 °C 

(EtOH). 
1
H-NMR (CDCl3) δ 1.11-1.16 (m, 3H, CH2CH3, J = 7.2 Hz); 1.82-1.91 (m, 2H, 

CHCH2CH3); 2.38 (s, 3H, N=CCH3); 4.57-4.63 (m, 1H, CH=CH-CH2); 5.03 (m, 1H, CH=CH-CH3); 

5.55 (exch br s, 1H, NH); 6.59 (exch br s, 2H, NH2). Anal. Calcd for  C9H13N3O (179.22): C, 60.32; 

H, 7.31; N, 23.45; Found: C, 60.48; H, 6.58; N, 23.39. 

5.1.8.4.  4-Amino-6-methyl-5-pent-1-enylpyridazin-3(2H)-one, 8d. Yield = 90%; mp = 216-218 

°C dec. (EtOH). 
1
H-NMR (CDCl3) δ 0.96 (t, 3H, CH2CH3, J = 7.4 Hz); 1.48-1.53 (m, 2H, 
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CH2CH2CH3); 2.19 (s, 3H, N=CCH3); 2.21-2.26 (m, 2H, CH2CH2CH3); 5.06 (exch br s, 2H, NH2); 

6.02-6.09 (m, 2H, CH=CH-CH2); 8.03 (exch br s, 1H, NH). Anal. Calcd for  C10H15N3O (193.25): 

C, 62.15; H, 7.82; N, 21.74; Found: C, 62.31; H, 7.83; N, 21.78. 

5.1.9. General procedures for 9a-d 

Compound 8a-d (0.46 mmol) was subjected to catalytic reduction with 10% Pd/C (0.23 

mmol) in EtOH (20 mL) for 3 h in a Parr instrument at 30 PSI. The catalyst was filtered off, and the 

solvent was evaporated under vacuum, affording in the final compounds.  

5.1.9.1. 4-Amino-5-ethyl-6-methylpyridazin-3(2H)-one, 9a. Yield = 56%; mp = 260-262 °C 

(EtOH). 
1
H-NMR (CDCl3) δ 1.13 (t, 3H, CH2CH3, J = 7.6 Hz); 2.25 (s, 3H, N=CCH3); 2.39 (q, 2H, 

CH2CH3, J = 7.6 Hz); 6.81 (exch br s, 2H, NH2); 8.03 (exch br s, 1H, NH). Anal. Calcd for  

C7H11N3O (153.18): C, 54.89; H, 7.24; N, 27.43; Found: C, 54.76; H, 7.23; N, 27.51. 

5.1.9.2. 4-Amino-6-methyl-5-propylpyridazin-3(2H)-one, 9b. Yield = 85%; mp = 242-244 °C 

dec. (EtOH). 
1
H-NMR (CDCl3) δ 0.91 (t, 3H, CH2CH3, J = 7.2 Hz); 1.34-1.40 (m, 2H, 

CH2CH2CH3); 2.09 (s, 3H, N=CCH3); 2.28-2.33 (m, 2H, CH2CH2CH3); 5.89 (exch br s, 2H, NH2); 

12.18 (exch br s, 1H, NH). Anal. Calcd for  C8H13N3O (167.21): C, 57.46; H, 7.84; N, 25.13; Found: 

C, 57.59; H, 7.83; N, 25.06. 

5.1.9.3. 4-Amino-5-butyl-6-methylpyridazin-3(2H)-one, 9c. Yield = 82%; mp = 205-206 °C 

(EtOH). 
1
H-NMR (CDCl3) δ 0.96 (t, 3H, CH2CH3, J = 7.2 Hz); 1.43-1.50 (m, 4H, 

CH2CH2CH2CH3); 2.34 (s, 3H, N=CCH3); 2.38 (t, 2H, CH2CH2CH2CH3, J = 7.2 Hz); 6.03 (exch br 

s, 2H, NH2); 11.89 (exch br s, 1H, NH). Anal. Calcd for  C9H15N3O (181.23): C, 59.64; H, 8.34; N, 

23.19; Found: C, 59.77; H, 8.33; N, 23.12. 

5.1.9.4. 4-Amino-6-methyl-5-pentylpyridazin-3(2H)-one, 9d. Yield = 70%; mp = 230-232 °C 

(EtOH). 
1
H-NMR (CDCl3) δ 0.90 (t, 3H, CH2CH3, J = 7.2 Hz); 1.35-1.40 (m, 4H, 

CH2CH2CH2CH3); 1.45-1.53 (m, 2H, CH2CH2CH2CH3); 2.26 (s, 3H, N=CCH3); 2.34-2.40 (m, 2H, 

CH2C4H9); 4.86 (exch br s, 1H, NH); 6.88 (exch br s, 2H, NH2). Anal. Calcd for  C10H17N3O 

(195.26): C, 61.51; H, 8.78; N, 21.52; Found: C, 61.70; H, 8.77; N, 21.56. 
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5.1.10. General procedures for 10a-d 

Compounds 10a-d were obtained starting from 9a-d following the same procedure described 

for 5b- c and 5f. For compounds 10b-d the suspension was extracted with ethyl acetate (3x 15 mL); 

the organic layer was dried over Na2SO4 and evaporated to give desired final compounds which 

were purified by column chromatography using cyclohexane/ethyl acetate 1:2 (for 10b and 10d) or 

cyclohexane/ethyl acetate 1:3 (for 10c) as eluents. 

5.1.10.1. 2-(5-Amino-4-ethyl-3-methyl-6-oxopyridazin-1(6H)-yl)-N-(4-bromophenyl) 

acetamide, 10a. Yield = 74%; mp = 206-208 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.14 (t, 3H, CH2CH3, 

J = 7.6 Hz); 2.28 (s, 3H, N=CCH3); 2.41 (q, 2H, CH2CH3, J = 7.6 Hz); 4.89 (s, 2H, NCH2); 6.88 

(exch br s, 2H, NH2); 7.36-7.40 (m, 4H, Ar); 9.00 (exch br s, 1H, NH). Anal. Calcd for  

C15H17BrN4O2 (365.23): C, 49.33; H, 4.69; N, 15.34; Found: C, 49.21; H, 4.68; N, 15.38. 

5.1.10.2. 2-(5-Amino-3-methyl-6-oxo-4-propylpyridazin-1(6H)-yl)-N-(4-bromophenyl) 

acetamide, 10b. Yield = 19%; mp = 197-199 °C dec. (EtOH). 
1
H-NMR (CDCl3) δ 1.02 (t, 3H, 

CH2CH3, J = 7.2 Hz); 1.51-1.59 (m, 2H, CH2CH2CH3); 2.27 (s, 3H, N=CCH3); 2.37 (t, 2H, 

CH2CH2CH3, J = 7.2 Hz); 4.89 (s, 2H, NCH2); 6.84 (exch br s, 2H, NH2); 7.35-7.41 (m, 4H, Ar); 

9.04 (exch br s, 1H, NH). Anal. Calcd for  C16H19BrN4O2 (379.25): C, 50.67; H, 5.05; N, 14.77; 

Found: C, 50.53; H, 5.06; N, 14.74. 

5.1.10.3. 2-(5-Amino-4-butyl-3-methyl-6-oxopyridazin-1(6H)-yl)-N-(4-bromophenyl) 

acetamide, 10c. Yield = 26%; oil. 
1
H-NMR (CDCl3) δ 0.96 (t, 3H, (CH2)3CH3, J = 7.2 Hz); 1.43-

1.50 (m, 4H, CH2CH2CH2CH3); 2.34 (s, 3H, N=CCH3); 2.38 (t, 2H, CH2(CH2)2CH3, J = 6.4 Hz); 

4.90 (s, 2H, NCH2); 6.59 (exch br s, 2H, NH2); 7.34-7.40 (m, 4H, Ar); 8.87 (exch br s, 1H, NH). 

Anal. Calcd for  C17H21BrN4O2 (393.28): C, 51.92; H, 5.38; N, 14.25; Found: C, 51.76; H, 5.07; N, 

14.22. 

5.1.10.4. 2-(5-Amino-3-methyl-6-oxo-4-pentylpyridazin-1(6H)-yl)-N-(4-bromophenyl) 

acetamide, 10d. Yield = 75%; mp = 167-171 °C (EtOH).  
1
H-NMR (CDCl3) δ 0.90 (t, 3H, 

(CH2)4CH3, J = 7.2 Hz); 1.34-1.39 (m, 4H, (CH2)2CH2CH2CH3); 1.47-1.52 (m, 2H, 
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CH2CH2(CH2)2CH3); 2.26 (s, 3H, N=CCH3); 2.33-2.38 (m, 2H, CH2(CH2)3CH3); 4.88 (s, 2H, 

NCH2); 6.59 (exch br s, 2H, NH2); 7.36-7.41 (m, 4H, Ar); 9.04 (exch br s, 1H, NH). Anal. Calcd for  

C18H23BrN4O2 (407.30): C, 53.08; H, 5.69; N, 13.76; Found: C, 53.26; H, 5.68; N, 13.79. 

5.1.11. General procedures for 11a-d 

Compounds 11a-d were obtained starting from 10a-d following the same procedure 

described for 6a-f. The final desired compounds were purified by column chromatography using as 

eluent CH2Cl2/MeOH 98:2 for compounds 11a, CH2Cl2/MeOH 99:1 for 11c and cyclohexane/ethyl 

acetate 1:2 for compounds 11b and 11d.  

5.1.11.1.   N-(4-Bromophenyl)-2-[4-ethyl-5-(3-methoxyphenylamino)-3-methyl-6-oxopyridazin-

1(6H)-yl]acetamide, 11a. Yield = 18%; mp = 81-84 °C (EtOH). 
1
H-NMR (CDCl3) δ 0.88 (t, 3H, 

CH2CH3, J = 7.2 Hz); 2.28 (s, 3H, N=CCH3); 2.30-2.36 (m, 2H, CH2CH3); 3.78 (s, 3H, CH3O); 4.93 

(s, 2H, NCH2);  6.51-6.66 (m, 3H, Ar); 7.01 (exch br s, 1H, NH); 7.19 (t, 1H, Ar, J = 8.2 Hz); 7.32-

7.39 (m, 4H, Ar); 9.11 (exch br s, 1H, NH). Anal. Calcd for  C22H23BrN4O3 (471.35): C, 56.06; H, 

4.92; N, 11.89; Found: C, 56.21; H, 4.91; N, 11.92. 

5.1.11.2. N-(4-Bromophenyl)-2-[5-(3-methoxyphenylamino)-3-methyl-6-oxo-4-propyl 

pyridazin-1(6H)-yl]acetamide, 11b. Yield = 18%; oil. 
1
H-NMR (CDCl3) δ 0.66 (t, 3H, (CH2)2CH3, 

J = 7.2 Hz); 1.26-1.32 (m, 2H, CH2CH2CH3); 2.23-2.31(m, 2H, CH2CH2CH3); 2.35 (s, 3H, 

N=CCH3); 3.78 (s, 3H, OCH3); 4.92 (s, 2H, NCH2); 6.52-6.68 (m, 4H, Ar); 6.84 (exch br s, 1H, 

NH); 7.35-7.42 (m, 4H, Ar); 9.04 (exch br s, 1H, NH). Anal. Calcd for  C23H25BrN4O3 (485.37): C, 

56.91; H, 5.19; N, 11.54; Found: C, 56.73; H, 5.20; N, 11.51. 

5.1.11.3.   N-(4-Bromophenyl)-2-[4-butyl-5-(3-methoxyphenylamino)-3-methyl-6-oxopyridazin-

1(6H)-yl]acetamide, 11c. Yield = 15%; oil. 
1
H-NMR (CDCl3) δ 0.68 (t, 3H, (CH2)3CH3, J = 7.2 

Hz); 1.00-1.08 (m, 4H, CH2CH2CH2CH3); 2.24-2.30 (m, 2H, CH2CH2CH2CH3); 2.33 (s, 3H, 

N=CCH3); 3.78 ( s, 3H, OCH3); 4.93 (s, 2H, NCH2); 6.60-6.69 (m, 4H, Ar); 6.84 (exch br s, 1H, 

NH); 7.35-7.42 (m, 4H, Ar); 9.01 (exch br s, 1H, NH). Anal. Calcd for  C24H27BrN4O3 (499.40): C, 

57.72; H, 5.45; N, 11.22; Found: C, 57.85; H, 5.46; N, 11.25. 
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5.1.11.4. N-(4-Bromophenyl)-2-[5-(3-methoxyphenylamino)-3-methyl-6-oxo-4-pentyldazin-

1(6H)-yl]acetamide, 11d. Yield = 16%; oil. 
1
H-NMR (CDCl3) δ 0.68 (t, 3H, (CH2)4CH3, J = 7.2 

Hz); 0.98-1.01 (m, 2H, (CH2)3CH2CH3); 1.08-1.14 (m, 2H, (CH2)2CH2CH2CH3); 1.24-1.29 (m, 4H, 

CH2CH2CH2CH3); 2.31 (s, 3H, N=CCH3); 3.77 ( s, 3H, OCH3); 4.92 (s, 2H, NCH2); 6.50-6.69 (m, 

4H, Ar); 6.91 (exch br s, 1H, NH); 7.33-7.39 (m, 4H, Ar); 9.06 (exch br s, 1H, NH). Anal. Calcd for  

C25H29BrN4O3 (513.43): C, 58.48; H, 5.69; N, 10.91; Found: C, 58.31; H, 5.70; N, 10.97. 

5.1.12.    2-(5-Amino-3-methyl-6-oxo-4-vinylpyridazin-1(6H)-yl)-N-(4-bromophenyl)acetamide, 

12. Compound 12 was obtained following the same procedure described for 5b-c, 5f starting from 

8a, followed by purification with column flash chromatography using cyclohexane/ethyl acetate 1:4 

as eluent. Yield = 52%; mp = 194-196 °C (EtOH). 
1
H-NMR (CDCl3) δ 2.26 (s, 3H, N=CCH3); 4.96 

(s, 2H, NCH2); 5.26 (exch br s, 2H, NH2); 5.64 (d, 1H, CHCH-H, J = 18 Hz); 5.78 (d, 1H, CHCH-

H, J = 12 Hz); 6.47 (dd, 1H, CHCH2, J =18 Hz, J =12 Hz); 7.38 (m, 4H, Ar); 9.00 (exch br s, 1H, 

NH). Anal. Calcd for  C15H15BrN4O2 (363.21): C, 49.60; H, 4.16; N, 15.43; Found: C, 49.76; H, 

4.17; N, 15.39. 

5.1.13.    N-(4-Bromophenyl)-2-[5-(3-methoxyphenylamino)-3-methyl-6-oxo-4-vinylpyridazin-

1(6H)-yl]acetamide, 13. Compound 13 was obtained starting from 12 following the general 

procedure described for 6a-f. The residue was purified by crystallization from ethanol, followed by 

column flash chromatography using CH2Cl2/MeOH 98:2 as eluent. Yield = 39%; mp = 182-184 °C 

(EtOH). 
1
H-NMR (CDCl3) δ 2.32 (s, 3H, N=CCH3); 3.79 (s, 3H, OCH3); 5.00 (s, 2H, NCH2); 5.07 

(d, 1H, CHCH-H, J = 18 Hz); 5.29 (d, 1H, CHCH-H, J = 12 Hz); 6.24 (dd, 1H, CHCH2, J = 18 Hz, 

J = 12 Hz); 6.41 (s, 1H, Ar); 6.48 (d, 1H, Ar, J = 8.0 Hz); 6.63 (d, 1H, Ar, J = 8.0 Hz); 7.18 (t, 1H, 

Ar, J = 8.0 Hz); 7.38 (m, 4H, Ar); 7.51 (exch br s, 1H, NH); 9.09 (exch br s, 1H, NH). 
13

C-NMR 

(CDCl3) δ 21.0 (CH3); 55.3 (CH3); 57.5 (CH2); 108.4 (CH); 109.4 (CH); 114.8 (CH); 116.8 (C); 

117.0 (C); 121.4 (2 x CH); 121.9 (CH2); 129.2 (2 x CH); 131.8 (2 x CH); 135.9 (C); 136.8 (C); 

139.9 (C); 147.3 (C); 158.2 (C); 159.9 (C); 165.3 (C). Anal. Calcd for  C22H21BrN4O3 (469.33): C, 

56.30; H, 4.51; N, 11.94; Found: C, 56.48; H, 4.50; N, 11.91. 
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5.1.14. General procedures for 15a and 15b  

A catalytic amount of Et3N (0.20 mL) was added to a solution of 14 [27] (1.32 mmol) in 3 

mL of appropriate solvent (MeOH for 15a or EtOH for 15b), and the reaction was carried out at 

60°C for 4 h. After cooling, the precipitate was recovered by suction to obtain pure 15a-b.  

5.1.14.1.   Methyl 5-amino-1,6-dihydro-3-methyl-6-oxopyridazine-4-carboxylate, 15a. Yield = 

99%; mp = 253-254 °C (MeOH). 
1
H-NMR (CDCl3) δ 2.49 (s, 3H, N=CCH3); 3.94 (s, 3H, 

COOCH3); 5.43 (exch br s, 1H, NH); 8.23 (exch br s, 2H, NH2). Anal. Calcd for  C7H9N3O3 

(183.16): C, 45.90; H, 4.95; N, 22.94; Found: C, 45.76; H, 4.94; N, 22.99. 

5.1.14.2. Ethyl 5-amino-1,6-dihydro-3-methyl-6-oxopyridazine-4-carboxylate, 15b. Yield = 

73%; mp = 226-228 °C (EtOH). 
1
H-NMR (CDCl3) δ 1.43 (t, 3H, CH2CH3, J = 7.2 Hz); 2.50 (s, 3H, 

N=CCH3); 4.40 (q, 2H, CH2CH3, J  = 7.2 Hz); 5.86 (exch br s, 1H, NH); 8.87 (exch br s, 2H, NH2). 

Anal. Calcd for  C8H11N3O3 (197.19): C, 48.73; H, 5.62; N, 21.31; Found: C, 48.86; H, 5.61; N, 

21.36. 

5.1.15. General procedures for 16a and 16b 

Compounds 16a-b were obtained starting from 15a-b following the same procedure described for 

5b-c, and 5f. 

5.1.15.1. Methyl 1-[(4-bromophenylcarbamoyl)methyl]-5-amino-1,6-dihydro-3-methyl-6-

oxopyridazine-4-carboxylate, 16a. Yield = 98%; mp = 197-199 °C (EtOH). 
1
H-NMR (CDCl3) δ 

2.51 (s, 3H, N=CCH3); 3.94 (s, 3H, OCH3); 4.90 (s, 2H, NCH2); 7.43 (s, 4H, Ar); 8.50 (exch br s, 

1H, NH); 8.90 (exch br s, 1H, NH2). Anal. Calcd for  C15H15BrN4O4 (395.21): C, 45.59; H, 3.83; N, 

14.18; Found: C, 45.68; H, 3.82; N, 14.21. 

5.1.15.2. Ethyl 1-[(4-bromophenylcarbamoyl)methyl]-5-amino-1,6-dihydro-3-methyl-6-

oxopyridazine-4-carboxylate, 16b.
 
 Yield = 94%; mp = 217-219 °C (EtOH). 

1
H-NMR (CDCl3) δ 

1.43 (t, 3H, CH2CH3, J = 7.2 Hz); 2.52 (s, 3H, N=CCH3); 4.40 (q, 2H, CH2CH3, J = 7.2 Hz); 4.91 (s, 

2H, NCH2); 7.43 (s, 4H, Ar); 8.52 (exch br s, 1H, NH); 9.21 (exch br s, 2H, NH2). Anal. Calcd for  

C16H17BrN4O4 (409.23): C, 46.96; H, 4.19; N, 13.69; Found: C, 47.09; H, 4.18; N, 13.65. 
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5.1.16. General procedures for 17a and 17b 

Compounds 17a-b were obtained starting from 16a-b following the same procedure 

described for 6a-f. The final desired compounds were purified by crystallization from ethanol, 

followed by column flash chromatography using CH2Cl2/MeOH 98:2 as eluent. 

5.1.16.1. Methyl 1-[(4-bromophenylcarbamoyl)methyl]-5-(3-methoxyphenylamino)-1,6-

dihydro-3-methyl-6-oxopyridazine-4-carboxylate, 17a. Yield = 12%; mp = 194-195 °C (EtOH). 

1
H-NMR (CDCl3) δ 2.33 (s, 3H, CCH3); 3.20 (s, 3H, COOCH3); 3.82 (s, 3H, OCH3); 4.97 (s, 2H, 

NCH2); 6.64 (s, 1H, Ar); 6.70 (d, 1H, Ar, J = 8.4 Hz); 6.77 (d, 1H, Ar, J = 8.4 Hz); 7.26 (t, 1H, Ar, J  

= 8.4 Hz); 7.42 (s, 4H, Ar); 7.90 (exch br s, 1H, NH); 8.59 (exch br s, 1H, NH). 
13

C-NMR (CDCl3) 

δ 20.6 (CH3); 51.6 (CH3); 55.4 (CH3); 57.3 (CH2); 108.0 (CH); 110.0 (C); 112.3 (CH); 114.0 (C); 

115.0 (CH); 117.0 (C); 121.5 (2 x CH); 130.2 (CH); 131.9 (2 x CH); 136.5 (C); 138.8 (C); 139.4 

(C); 145.5 (C); 157.0 (C); 161.3 (C); 165.4 (C). Anal. Calcd for  C22H21BrN4O5 (501.33): C, 52.71; 

H, 4.22; N, 11.18; Found: C, 52.87; H, 4.23; N, 11.16. 

5.1.16.2.  Ethyl 1-[(4-bromophenylcarbamoyl)methyl]-5-(3-methoxyphenylamino)-1,6-

dihydro-3-methyl-6-oxopyridazine-4-carboxylate, 17b. Yield = 17%; mp = 185-187 °C (EtOH). 

1
H-NMR (CDCl3) δ 1.02 (t, 3H, CH2CH3, J = 7.2 Hz); 2.33 (s, 3H, N=CCH3); 3.58 (q, 2H, CH2CH3, 

J = 7.2 Hz); 3.80 (s, 3H, OCH3); 4.98 (s, 2H, NCH2); 6.65 (s, 1H, Ar); 6.70 (d, 1H, Ar, J = 8.4 Hz); 

6.75 (d, 1H, Ar, J = 8.4 Hz); 7.25 (t, 1H, Ar, J = 8.4 Hz); 7.41 (s, 4H, Ar); 7.92 (exch br s, 1H, NH); 

8.80 (exch br s, 1H, NH).
 13

C-NMR (CDCl3) δ 13.7 (CH3); 20.7 (CH3); 55.4 (CH3); 57.2 (CH2); 61.5 

(CH2); 107.9 (CH); 108.1 (C); 112.1 (CH); 114.9 (CH); 117.0 (C); 121.5 (2 x CH); 130.1 (CH); 

131.9 (2 x CH); 136.7 (C); 138.5 (C); 139.6 (C); 145.4 (C); 157.1 (C); 160.3 (C); 164.8 (C); 165.2 

(C). Anal. Calcd for  C23H23BrN4O5 (515.36): C, 53.60; H, 4.50; N, 10.87; Found: C, 53.47; H, 4.49; 

N, 10.90. 

5.1.17. 1-[(4-Bromophenylcarbamoyl)-methyl]-5-(3-methoxyphenylamino)-1,6-dihydro-3-

methyl-6-oxopyridazine-4-carboxylate, 18. 
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To prepare 18, 0.12 mmol of 17a were suspended in 2N NaOH (2 mL), and the reaction was 

stirred for 1 h at room temperature. The mixture was then diluted with ice-cold water and acidified 

with 6N HCl. The resulting precipitate was recovered by suction and purified by column flash 

chromatography using CH2Cl2/MeOH 9:1 as eluent.  Yield = 39%; mp = 211-213 °C (EtOH). 
1
H-

NMR (CD3OD-d4) δ 2.39 (s, 3H, N=CCH3); 3.76 (s, 3H, OCH3); 4.93 (s, 2H, NCH2); 6.57-6.69 (m, 

3H, Ar); 7.14 (t, 1H, Ar, J = 8.4 Hz); 7.53-7.54 (m, 4H, Ar).
 13

C-NMR (MeOD-d4) δ 19.7 (CH3); 

54.3 (CH3); 55.0 (CH2); 107.2 (CH); 109.9 (CH); 114.1 (CH); 116.2 (C); 117.0 (C); 119.5 (C); 

121.5 (2 x CH); 128.8 (CH); 131.4 (2 x CH); 136.9 (C); 137.5 (C); 141.1 (C); 145.0 (C); 157.5 (C); 

159.9(C); 166.0 (C). Anal. Calcd for  C21H19BrN4O5 (487.30): C, 51.76; H, 3.93; N, 11.50; Found: 

C, 51.90; H, 3.92; N, 11.47. 

5.1.18. N-(4-Bromophenyl)-2-(3,4-dimethyl-7-oxoisoxazolo[3,4-d]pyridazin-6(7H)-yl) 

acetamide, 20. 

Compound 20 was obtained starting from 19 [22] following the same procedure described 

for 5a, d, e. Finally, compound 20 was purified by crystallization from EtOH. Yield = 46%; mp = 

227-228 °C (EtOH). 
1
H-NMR (CDCl3) δ 2.52 (s, 3H, N=CCH3); 2.90 (s, 3H, C=CCH3); 4.93 (s, 2H, 

NCH2); 7.40-7.45 (m, 4H, Ar); 8.25 (exch br s, 1H, NH). Anal. Calcd for  C15H13BrN4O3 (377.19): 

C, 47.76; H, 3.47; N, 14.85; Found: C, 47.82; H, 3.46; N, 14.88. 

 

5.1.19. N-(4-Bromophenyl)-2-[3-(2-dimethylaminovinyl)-4-methyl-7-oxoisoxazolo[3,4-d] 

pyridazin-6(7H)-yl]acetamide, 21.  

A suspension of intermediate 20 (0.79 mmol) in DMF/DMA (4.5 mL) was heated at 90 °C 

for 3 h in the dark. After cooling, ice-cold water was added to the mixture, and the precipitate 

formed was recovered through filtration under vacuum. Yield = 88%; mp = 228-229 °C (EtOH). 
1
H- 

NMR (CDCl3) δ 2.47 (s, 3H, N=CCH3); 2.60 (s, 3H, NCH3);  2.89 (s, 3H, NCH3); 4.91 (s, 2H, 

NCH2); 5.22 (d, 1H, CH=CH, J = 12.4 Hz); 7.38-7.46 (m, 4H, Ar); 7.62 (d, 1H, CH=CH, J = 12.4 
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Hz); 8.65 (exch br s, 1H, NH). Anal. Calcd for  C18H18BrN5O3 (432.27): C, 50.01; H, 4.20; N, 

16.20; Found: C, 50.15; H, 4.19; N, 16.17. 

5.1.20.   2-[5-Amino-4-(3-dimethylaminoacryloyl)-3-methyl-6-oxo-5,6-dihydro-4H-pyridazin-1-

yl]-N-(4-bromo-phenyl)acetamide, 22.  

To a stirred solution of 21 (0.19 mmol) in anhydrous CH3CN (5 mL), Mo(CO)6 (0.21 mmol) 

and a catalytic amount of H2O (0.1 mL) were added at 50 °C. The reaction was then carried out at 

reflux for 1.5 h [28]. The solvent was removed under vacuum, and ice-cold water was added to the 

mixture. After 1 h stirring in an ice-bath, the precipitate was recovered by suction and suspended in 

CH2Cl2. The resulting precipitate was filtered, and the pure 22 was obtained through evaporation of 

the organic layer under vacuum and purification by crystallization from EtOH. Yield = 46%; mp = 

208-209 °C (EtOH). 
1
H-NMR (DMSO) δ 2.08 (s, 3H, N=CCH3); 2.57 (s, 3H, NCH3); 2.60 (s, 3H, 

NCH3); 4.91 (s, 2H, NCH2); 6.41 (d, 1H, CH=CH, J = 7.2 Hz); 7.48-7.54 (m, 4H, Ar); 7.82 (d, 1H, 

CH=CH, J = 5.6 Hz); 8.78 (exch br s, 2H, NH2); 10.44 (exch br s, 1H, NH). Anal. Calcd for  

C18H20BrN5O3 (434.29): C, 49.78; H, 4.64; N, 16.13; Found: C, 49.81; H, 4.63; N, 16.11. 

5.1.21.    2-[5-Amino-3-methyl-6-oxo-4-(1H-pyrazol-3-yl)-6H-pyridazin-1-yl]-N-(4-bromo- 

-phenyl)acetamide, 23.  

Hydrazine hydrate (1.38 mmol) was slowly added drop wise to a solution of intermediate 22 

(0.69 mmol) in 4 mL of 96% EtOH, and the reaction was refluxed for 3 h. After cooling, the solvent 

was removed under vacuum. Ice-cold water was added, and the precipitate was recovered by 

filtration under vacuum. A second batch of compound 23 was obtained through extraction of the 

aqueous phase with CH2Cl2 (3 x 15 mL), drying over Na2SO4, and evaporation under vacuum. Yield 

= 67%; mp = 229-230 °C (EtOH). 1H-NMR (CDCl3) δ 2.44 (s, 3H, N=CCH3); 4.98 (s, 2H, NCH2); 

6.60 (d, 1H, Ar, J = 1.6 Hz); 6.80 (exch br s, 1H, NH); 7.40-7.45 (m, 4H, Ar); 7.75 (d, 1H, Ar, J = 

2.0 Hz); 8.98 (exch br s, 1H, NH); 9.03 (exch br s, 2H, NH2). Anal. Calcd for  C16H15BrN6O2 

(403.23): C, 47.66; H, 3.75; N, 20.84; Found: C, 47.52; H, 3.76; N, 20.88. 
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5.1.22. 2-[5-Amino-3-methyl-4-(1-methyl-1H-pyrazol-3-yl)-6-oxopyridazin-1(6H)-yl]-N-(4-

bromophenyl)acetamide, 24. 

K2CO3 (0.87 mmol) was added to a solution of intermediate 23 (0.43 mmol) in 4 mL of 

anhydrous DMF. After 2 h stirring, 1.19 mmol of CH3I were added, and the reaction was carried out 

for additional 3 h at 90°C. After cooling, ice-cold water was added, and the mixture was extracted 

with CH2Cl2. The organic phase was dried over Na2SO4 and evaporated. Yield = 46%; mp = 232-

233 °C (EtOH). 
1
H-NMR (CDCl3) δ 2.44 (s, 3H, N=CCH3); 4.01 (s, 3H, NCH3); 4.97 (s, 2H, 

NCH2); 6.50 (d, 1H, Ar, J = 2.0 Hz); 7.38-7.42 (m, 4H, Ar); 7.44 (exch br s, 2H, NH2, ); 7.45-7.50 

(m, 1H, Ar); 9.02 (exch br s, 1H, NH). Anal. Calcd for  C17H17BrN6O2 (417.26): C, 48.93; H, 4.11; 

N, 20.14; Found: C, 48.76; H, 4.10; N, 20.18. 

5.1.23. General procedures for 25a and 25b  

Compounds 25a-b were obtained starting from 24 following the same general procedure 

described for 6a-f. After removal of the solvent in vacuo, compound 25a was obtained by 

crystallization from ethanol and preparative TLC using ethyl acetate as eluent. 

5.1.24.   N-(4-Bromophenyl)-2-[5-(3-methoxyphenylamino)-3-methyl-4-(1-methyl-1H-pyrazol-

3-yl)-6-oxo-6H-pyridazin-1-yl]acetamide, 25a. Yield = 15%; mp = 112-113 °C (EtOH). 
1
H-NMR 

(CDCl3) δ 2.29 (s, 3H, N= CCH3); 3.67 (s, 3H, NCH3); 3.72 (s, 3H, OCH3); 5.01 (s, 2H, NCH2); 

5.99 (d, 1H, Ar, J = 2.4 Hz); 6.30 (s, 1H, Ar); 6.42 (d, 1H, Ar, J = 8.0 Hz); 6.5 (d, 1H, Ar, J = 8.4 

Hz); 6.97 (t, 1H, Ar, J = 8.0 Hz); 7.07 (exch br s, 1H, NH); 7.42-7.48 (m, 4H, Ar); 7.81 (d, 1H, Ar, J 

= 2.4 Hz); 8.89 (exch br s, 1H, NH). 
13

C-NMR (CDCl3) δ 21.4 (CH3); 38.7 (CH3); 55.1 (CH3); 57.7 

(CH2); 107.6 (CH); 108.0 (CH); 110.2 (CH); 115.0 (CH); 116.9 (C); 121.6 (2CH); 125.0 (CH); 

126.5 (CH); 131.9 (2CH); 135.2 (C); 136.8 (C); 137.5 (C); 139.8 (C); 145.0 (C); 146.3 (C); 157.0 

(C); 160.2 (C); 165.4 (C). Anal. Calcd for  C24H23BrN6O3 (523.38): C, 55.08; H, 4.43; N, 16.06; 

Found: C, 55.23; H, 4.42; N, 16.11. 

5.1.25.   N-(4-Bromophenyl)-2-[5-(4-methoxyphenylamino)-3-methyl-4-(1-methyl-1H-pyrazol-

3-yl)-6-oxo-6H-pyridazin-1-yl]acetamide, 25b. Yield = 64%; mp = 103-104 °C (EtOH). 
1
H-NMR 
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(CDCl3) δ 2.21 (s, 3H, N=CCH3); 3.67 (s, 3H, NCH3); 3.75 (s, 3H, OCH3); 5.00 (s, 2H, CH2CO); 

5.93 (s, 1H, Ar); 6.58-6.59 (m, 2H, Ar); 6.73-6.75 (m, 2H, Ar); 7.40-7.46 (m, 4H, Ar); 7.71 (s, 1H, 

Ar); 8.91 (exch br s, 1H, NH). 
13

C-NMR (CDCl3) δ 21.2 (CH3); 38.6 (CH3); 55.5 (CH3); 57.5 (CH2); 

107.8 (CH); 112.9 (CH); 113.6 (2CH); 116.9 (C); 121.5 (2CH); 125.0 (CH); 126.0 (CH); 130.1 (C); 

131.0 (CH); 131.5 (C); 132.0 (CH); 136.8 (C); 138.2 (C); 144.2 (C); 148.5 (C); 156.7 (C); 157.0 

(C); 165.4 (C). Anal. Calcd for  C24H23BrN6O3 (523.38): C, 55.08; H, 4.43; N, 16.06; Found: C, 

55.17; H, 4.43; N, 16.10. 

5.1.26. General procedures for 27a and 27b  

Compounds 27a-b were obtaining starting from appropriate substrate 26a [29] and 26b [30] 

following the same procedure described for 5b-c, 5f. The desired final compounds were purified by 

column flash chromatography using, as eluent, cyclohexane/ethyl acetate 1:2 for compound 27a and 

CH2Cl2/MeOH 9.5:0.5 for compound 27b. 

5.1.26.1. 2-(3-Amino-5-methyl-2-oxopyridin-1(2H)-yl)-N-(4-bromophenyl)acetamide, 27a. 

Yield = 34%; mp = 151-153 °C dec. (EtOH). 
1
H-NMR (CDCl3) δ 2.06 (s, 3H, N=CCH3);  4.64 (s, 

2H, NCH2); 6.51 (exch br s, 1H, NH); 6.66 (s, 1H, Ar); 7.36-7.47 (m, 4H, Ar); 9.64 (exch br s, 2H, 

NH2). Anal. Calcd for  C14H14BrN3O2 (336.18): C, 50.02; H, 4.20; N, 12.50; Found: C, 50.16; H, 

4.21; N, 12.47. 

5.1.26.2. 2-(5-Amino-3-methyl-6-oxopyridazin-1(6H)-yl)-N-(4-bromophenyl)acetamide, 27b. 

Yield = 29%; mp = 241-244 °C dec. (EtOH). 
1
H-NMR (CDCl3) δ 2.22 (s, 3H, N=CCH3);  4.90 (s, 

2H, NCH2); 5.88 (exch br s, 2H, NH2); 6.19 (s, 1H, Ar); 7.33-7.39 (m, 4H, Ar); 8.91 (exch br s, 2H, 

NH2). Anal. Calcd for  C13H13BrN4O2 (337.17): C, 46.31; H, 3.89; N, 16.62; Found: C, 46.44; H, 

3.90; N, 16.67. 

5.1.27. General procedures for 28a and 28b  

Compounds 28a-b were obtaining starting from appropriate substrate 27a-b following the 

same procedure described for 6a-f. The desired final compounds were purified by column flash 
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chromatography using, as eluent, cyclohexane/ethyl acetate 1:2 for compound 28a and 

CH2Cl2/MeOH 9.5:0.5 for compound 28b.  

5.1.27.1. N-(4-Bromophenyl)-2-[3-(3-methoxyphenylamino)-5-methyl-2-oxopyridin-1(2H)-

yl]acetamide, 28a. Yield = 11%; mp = 210-213 °C (EtOH). 
1
H-NMR (CDCl3) δ 2.08 (s, 3H, 

N=CCH3);  3.80 (s, 3H, OCH3); 4.71 (s, 2H, NCH2); 6.51 (exch br s, 1H, NH); 6.59 (d, 1H, Ar, J = 

7.3 Hz); 6.73 (m, 2H, Ar); 6.77 (d, 1H, Ar, J = 7.2 Hz); 7.05 (s, 1H, Ar); 7.25 (s, 1H, Ar); 7.36-7.41 

(m, 4H, Ar); 9.51 (exch br s, 1H, NH). Anal. Calcd for  C21H20BrN3O2 (442.31): C, 57.02; H, 4.56; 

N, 9.50; Found: C, 57.19; H, 4.57; N, 9.48. 

5.1.27.2.   N-(4-Bromophenyl)-2-[5-(3-methoxyphenylamino)-3-methyl-6-oxopyridazin-1(6H)-

yl]-acetamide, 28b. Yield = 16%; oil. 
1
H-NMR (CDCl3) δ 2.27 (s, 3H, N=CCH3);  3.82 (s, 3H, 

OCH3); 4.94 (s, 2H, NCH2); 6.43 (exch br s, 1H, NH); 6.64 (s, 1H, Ar); 6.71-6.76 (m, 2H, Ar); 6.81 

(m, 1H, Ar); 7.35 (m, 1H, Ar); 7.38-7.43 (m, 4H, Ar); 8.68 (exch br s, 1H, NH). Anal. Calcd for  

C20H19BrN3O2 (443.29): C, 54.19; H, 4.32; N, 12.64; Found: C, 54.31; H, 4.31; N, 12.61. 

 

5.2. Biology 

5.2.1. Cell culture 

Human promyelocytic leukemia HL-60 cells stably transfected with FPR1 (FPR1-HL60), 

FPR2 (FPR2-HL60), or FPR3 (FPR3-HL60) (kind gift from Dr. Marie-Josephe Rabiet, INSERM, 

Grenoble, France) were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated 

fetal calf serum, 10 mM HEPES, 100 μg/ml streptomycin, 100 U/ml penicillin, and G418 (1 

mg/mL), as previously described [32]. Wild-type HL-60 cells were cultured under the same 

conditions, but without G418. Rat basophilic leukemia (RBL-2H3) cells transfected with mouse 

Fpr1 (Fpr1-RBL) or mouse Fpr2 (Fpr2-RBL) were cultured in DMEM supplemented with 20% 

(v/v) FBS, 10 mM HEPES, 100 μg/ml streptomycin, 100 U/ml penicillin, and G418 (250 μg/ml).  

Wild-type HL-60 and RBL-2H3 cells were cultured under the same conditions, but without G418.  
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5.2.2. Isolation of human neutrophils 

 Blood was collected from healthy donors in accordance with a protocol approved by the 

Institutional Review Board at Montana State University. Neutrophils were purified from the blood 

using dextran sedimentation, followed by Histopaque 1077 gradient separation and hypotonic lysis 

of red blood cells, as previously described [33].
 
Isolated neutrophils were washed twice and 

resuspended in Hank's balanced salt solution (HBSS) without Ca
2+

 and Mg
2+

 (HBSS
-
). Neutrophil 

preparations were routinely > 95% pure, as determined by light microscopy, and > 98% viable, as 

determined by trypan blue exclusion. 

5.2.3. Isolation of mouse neutrophils 

Mouse bone marrow neutrophils were isolated from bone marrow leukocyte preparations, as 

described previously
 
[34]. In brief, bone marrow leukocytes were flushed from tibias and femurs of 

BALB/c mice with HBSS
-
, filtered through a 70 μm nylon cell strainer (BD Biosciences, Franklin 

Lakes, NJ) to remove cell clumps and bone particles, and resuspended in HBSS
-
 at 10

6
 cells/ml.  

Bone marrow leukocytes were resuspended in 3 ml of 45% Percoll solution and layered on top of a 

Percoll gradient consisting of 2 ml each of 50, 55, 62, and 81% Percoll solutions in a conical 15-ml 

polypropylene tube. The gradient was centrifuged at 1600g for 30 min at 10°C, and the cell band 

located between the 61 and 81% Percoll layers was collected. The cells were washed, layered on top 

of 3 ml of Histopaque 1119, and centrifuged at 1600g for 30 min at 10°C to remove contaminating 

red blood cells. The purified neutrophils were collected, washed, and resuspended in HBSS
-
. All 

animal use was conducted in accordance with a protocol approved by the Institutional Animal Care 

and Use Committee at Montana State University. 

5.2.4. Ca
2+

 mobilization assay 

Changes in intracellular Ca
2+

 were measured with a FlexStation II scanning fluorometer 

using a FLIPR 3 calcium assay kit (Molecular Devices, Sunnyvale, CA) for human neutrophils and 

HL-60 cells, as described previously
 
[35]. All active compounds were evaluated in wild-type HL-60 

and RBL cells to verify that the agonists are inactive in non-transfected cells.  Human neutrophils, 
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HL-60 or RBL cells, suspended in HBSS
-
 containing 10 mM HEPES, were loaded with Fluo-4 AM 

dye (Invitrogen; 1.25 μg/mL final concentration) and incubated for 30 min in the dark at 37 °C. 

After dye loading, the cells were washed with HBSS
-
 containing 10 mM HEPES, resuspended in 

HBSS
 
containing 10 mM HEPES, and aliquotted into the wells of a flat-bottomed, half-area-well 

black microtiter plates (2 x 10
5
 cells/well). The compound of interest was added from a source plate 

containing dilutions of test compounds in HBSS with 10% dimethyl sulfoxide (DMSO), and 

changes in fluorescence were monitored (λex = 485 nm, λem = 538 nm) every 5 s for 240 s at room 

temperature after automated addition of compounds. Maximum change in fluorescence, expressed in 

arbitrary units over baseline, was used to determine agonist response.  Responses were normalized 

to the response induced by 5 nM fMLF (Sigma Chemical Co., St. Louis, MO) for FPR1-HL60 cells 

and human neutrophils, or 5 nM WKYMVm (Calbiochem, San Diego, CA) for murine neutrophils, 

FPR2-HL60, FPR3-HL60, Fpr1-RBL, and Fpr2-RBL cells, which were assigned a value of 100%. 

Curve fitting (5-6 points) and calculation of median effective concentration values (EC50) were 

performed by nonlinear regression analysis of the concentration-response curves generated using 

Prism 5 (GraphPad Software, Inc., San Diego, CA).  

5.2.5. Cell migration assay 

Human neutrophils were suspended in HBSS containing 2% (v/v) fetal bovine serum (FBS) 

(2×10
6
 cells/mL), and cell migration was analyzed in 96-well ChemoTx chemotaxis chambers 

(Neuroprobe, Gaithersburg, MD), as previously described [32].  Briefly, lower wells were loaded 

with 30 µL of HBSS containing 2% (v/v) FBS and the indicated concentrations of test compound, 

DMSO (negative control), or 1 nM fMLF as a positive control. Neutrophils were added to the upper 

wells and allowed to migrate through the 5.0 µm pore polycarbonate membrane filter for 60 min at 

37 °C and 5% CO2. The number of migrated cells was determined by measuring ATP in lysates of 

transmigrated cells using a luminescence-based assay (CellTiter-Glo; Promega, Madison, WI), and 

luminescence measurements were converted to absolute cell numbers by comparison of the values 

with standard curves obtained with known numbers of neutrophils. The results are expressed as 
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percentage of negative control and were calculated as follows: (number of cells migrating in 

response to test compounds/spontaneous migration in response to control medium)×100. EC50 

values were determined by nonlinear regression analysis of the concentration-response curves 

generated using Prism 5 software. 

5.3. Molecular modeling 

We used the FPR1 and FPR2 homology models created previously [20, 36]. Both models 

are based on the crystal structure of the bovine rhodopsin receptor. Before docking, structures of 

compounds 8a, 8e, and 13a-c were built and optimized using HyperChem 7.0 software with the 

MM+ force field and saved in Tripos MOL2 format. The ligand structures were then imported into 

MVD with the options “Create explicit hydrogens”, “Assign charges (calculated by MVD)”, and 

“Detect flexible torsions in ligands” enabled. The molecules were docked into FPR1 and FPR2 

using the search spaces as applied in our previous publications [20, 31] and with a rigid receptor 

structure. MolDock score functions were applied with 0.3 Å grid resolution. Ligand flexibility was 

accounted for with respect to torsion angles auto-detected in MVD. The “Internal HBond” option 

was activated in the “Ligand evaluation” menu of Docking Wizard. Thirty docking runs were 

performed for each molecule. The option “Return multiple poses for each run” was enabled, and the 

post-processing options “Energy minimization” and “Optimize H-bonds” were applied after 

docking. Similar poses were clustered at a RMSD threshold of 1 Å. 
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Figure Legends 

Figure 1. General structure of FPR1/FPR2 agonist, based on pyridazin-3(2H)-one scaffold. 

 

Figure 2. Docking of compounds 8a and 8e into the FPR1 homology model. Panel A. Docking 

poses of compounds 8a (violet) and 8e (light-blue) into the FPR1 binding site of FPR1. The ligand 

binding site is represented by a surface colored according to electrostatic properties (red – 

negatively charged areas, blue – positively charged areas). Panel B. Docking pose of compound 8a 

and residues of FPR1 within 4 Å from the pose. H-bonds are shown as light-blue dashed lines. 

 

Figure 3. Docking of compounds 13a-c into the FPR2 homology model. Panel A. Docking poses 

of compounds 13a (blue), 13b (green), and 13c (yellow) with a fragment of the FPR2 surface (cut 

for clarity). Panel B. Docking pose of compound 13a and residues of FPR2 within 4 Å from the 

pose. H-bonds are shown as light-blue dashed lines. Panel C. Docking pose of compound 13c and 

residues of FPR2 within 4 Å from the pose. H-bonds are shown as light-blue dashed lines. 
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