

Available online at www.sciencedirect.com

European Journal of Medicinal Chemistry 43 (2008) 1781-1784

http://www.elsevier.com/locate/ejmech

Study of the intramolecular cyclization of N-methyl-3-phenyl-N-(2-(E)-phenylethenyl)-*trans*(*cis*)-oxiranecarboxamide — Syntheses of Homoclausenamide and Dehydroclausenamide

Laboratory note

Nianchun Ma*, Kemei Wu, Liang Huang

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China

Received 27 September 2007; received in revised form 22 November 2007; accepted 27 November 2007 Available online 11 January 2008

Abstract

Homoclausenamide was synthesized for the first time, and the intramolecular cyclization study of *N*-methyl-3-phenyl-N-(2-(*E*)-phenyle-thenyl)-*trans*(*cis*)-oxiranecarboxamide well demonstrated how the stereochemistry affects the cyclization paths. © 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Homoclausenamide; Dehydroclausenamide; Amides; Bicyclic compound; Biomimetic syntheses

1. Introduction

Clausena lansium has attracted increasing attention for its leaves can be used as Chinese Traditional Medicine for hepatoprotection [1,2]. The components of the leaves were studied and five cyclic amides, among which 1-4 are racemic mixtures and 5 is optically active, were isolated (Fig. 1) [1,3-5]. The initial pharmacological study showed that all of the cyclic amides 1-5 have hepatoprotective activity against chemical toxins, such as carbon tetrachloride and thioacetamide, and have inducing effect on cytochrome P450 [1,3-5]. The total syntheses of Clausenamide 3, Neoclausenamide 4, and Dehydroclausenamide 5 have been fulfilled via different routes [6-11]. However, no other work has been reported on the synthesis of Homoclausenamide 1, except for our earlier report as a summary [12]. Its poor content (16.2 ppm) [4] in the leaves stimulated us to study its synthesis by the cyclization of N-methyl-3-phenyl-N-(2-(E)-phenylethenyl)-transoxiranecarboxamide 8 under Lewis acid condition.

2. Results and discussion

The Darzen's condensation [13] of benzaldehyde with 2-chloro-*N*-methyl-*N*-(2-(*E*)-phenylethenyl)-acetamide **7** was conducted in anhydrous MeOH with NaOMe as the base to give *trans* and *cis* epoxides: *N*-methyl-3-phenyl-*N*-(2-(*E*)-phenylethenyl)-*trans*-oxiranecarboxamide **8** ($J_{\text{H}\alpha,\beta} = 2.2 \text{ Hz}$) and *N*-methyl-3-phenyl-*N*-(2-(*E*)-phenylethenyl)-*cis*-oxiranecarboxamide **9** ($J_{\text{H}\alpha,\beta} = 4 \text{ Hz}$), along with a base replaced by-product **10**. The reaction was slow and more (15%) of kinetically controlled **9** was produced (Eq. (1)).

^{*} Corresponding author. Present address: NDT Corporation, 501 Via Del Monte, Oceanside, CA 92054, USA. Tel.: +1 760 435 7024; fax: +1 760 435 7050.

E-mail address: manianch@yahoo.com (N. Ma).

Fig. 1.

The cyclization of compound 8 was conducted in anhydrous CH_2Cl_2 under the presence of $BF_3 \cdot OEt_2$. The reaction was progressed slowly, and it took 12 h to complete even at room temperature under the presence of excess (4 eq) $BF_3 \cdot OEt_2$. Four compounds were isolated in which the desired compound 1 with m.p. 199-201 °C and identical spectra with those of the authentic sample (m.p. 201.5–202.5 °C) [4] were obtained but only in yield of 13%. Compound 5 with m.p. 164-166 °C gave identical ¹H NMR and MS with those of the natural Dehydroclausenamide 5 (m.p. 164-166 °C) [1], except it is a racemic compound while the natural product is optically active with optical purity of 50% ee [5]. The structure of compound 11 with m.p. 188-191 °C was identified as a bicyclic compound which (m.p. 188-190 °C) has been obtained previously while treating Neoclausenamide 4 with acid on heating [1]. In addition, a dehydrated product 12 was also obtained. Apparently C_1-C_β (exo) and C_2-C_β (endo) cyclizations of compound 8 have taken place giving the corresponding five and six member rings (Scheme 1).

The cyclization of compound **9** was also conducted under the presence of $BF_3 \cdot OEt_2$. But the reaction was progressed very quickly (30 min), and the result was very different, giving mainly six-membered ring products. Opening the epoxide and the cyclization was taking place at the same time, so the cyclizations of **8** and **9** afforded only compounds **1** and **13**, respectively. For the cyclization of **9**, *anti*-elimination is greatly favored to give predominantly dehydrated product **12** (Eq. (2)).

3. Conclusion

The cyclization study of compounds 8 and 9 well demonstrated how the stereochemistry of the starting materials

affects the cyclization to give absolutely different products. In addition, the cyclization of **8** not only gave the desired Homoclausenamide **1**, but also afforded Dehydroclausenamide **5** and the dehydro-derivative **11** of Neoclausenamide **4**, which would provide important information for the biomimetic syntheses of the cyclic amides.

4. Experimental

4.1. General

Melting points were measured with a YANACO MP-500 apparatus and were not corrected. IR spectra were recorded on a Perkin-Elmer 399B spectrometer (KBr disk). Mass spectra (electron impact) were obtained on a ZAB-2F, MAT711 instrument. ¹H NMR spectra were recorded on a JEOL FX-90Q (90 MHz) spectrometer using TMS as internal standard. UV spectra were recorded on a Shimadzu UV240 spectrometer. Analyses indicated by the symbols of the elements were within $\pm 0.4\%$ of the theoretical values. Column chromatography was performed using silica gel H (10-40 µm, Qingdao Haiyang Chemical Factory, China). TLC plate was prepared by coating silica gel G254 (Qingdao Haiyang Chemical Factory, China) on a sheet of glass, and the sample to be analyzed ran two times on the plate unless otherwise mentioned. Anhydrous CH₂Cl₂ was dried and distilled from P₂O₅; MeOH was treated with Mg, and related anhydrous reactions were conducted under N₂.

4.1.1. Synthesis of compounds 8 and 9

To the solution of benzaldehyde (1.70 g, 99%, 16.0 mmol) and compound 7 [14] (2.10 g, 10.0 mmol) in anhydrous MeOH (100 ml) was added dropwise a solution of sodium methoxide (prepared from Na and MeOH) in MeOH (15.46 g, 5.59% g/g, 16.0 mmol) at 15-20 °C. After the addition, it was stirred at the same temperature till the starting material 7 was disappeared (4 days, settled during night). It was cooled to 0-5 °C, and AcOH (0.36 g, 6.0 mmol) was added to neutralise the base. It was concentrated, and the residue was dissolved in CH₂Cl₂ (100 ml). It was washed with water, and the aqueous phase was extracted with Et₂O. The combined organic phase was washed with water and brine, dried (Na₂SO₄) and concentrated for column chromatography using petroleum ether (30-60 °C) and EtOAc (2:1) as the eluent to afford 8 [14] (1.11 g, 40%) and 9 (0.42 g, 15%); m.p.: 152-154 °C. ¹H NMR (90 MHz, CDCl₃) δ ppm: 3.00 and 3.16 (s, 3H, NCH₃), 4.01 and 4.05 (d, J = 4 Hz, 1H, Ph–CH), 4.32 and 4.37 (d, J = 4 Hz, 1H, CH-CO), 5.82 and 5.90 (d, J = 14.4 Hz, 1H, = CH-Ph, 7.00-7.60 (m, 11H, H-Ar andN-CH=). MS m/z (%): 280 (M⁺ + 1, 9), 279 (M⁺, 40), 193 (24), 173 (22), 144 (90), 133 (41), 132 (19), 117 (23), 91 (100). Anal. C₁₈H₁₇NO₂ (C, H, N). In addition, by-product **10** (370 mg, 18%) was obtained; m.p.: 37–39 °C. ¹H NMR (90 MHz, CDCl₃) δ ppm: 3.21 (s, 3H, NCH₃), 3.44 (s, 3H, OCH₃), 4.26 (s, 2H, CH–CO), 5.98 (d, J = 14.4 Hz, 1H, =CH-Ph), 7.00-7.50 (m, 6H, H-Ar and N-CH=). Anal. C₁₂H₁₅NO₂ (C, H, N).

4.1.2. The intramolecular cyclization of compound 8

To the solution of **8** (419 mg, 1.5 mmol) in anhydrous CH_2Cl_2 (40 ml) was added dropwise a solution of $BF_3 \cdot OEt_2$ (859 mg, 6 mmol) in anhydrous CH_2Cl_2 (4 ml) at 20–25 °C. After being stirred for 12 h, it was diluted with Et_2O (80 ml) and washed with water. The aqueous phase was extracted with Et_2O . The combined organic phase was washed with water and brine, dried (Na₂SO₄) and concentrated for column chromatography using petroleum ether (30–60 °C) and EtOAc (2:1) as the eluent to afford following products.

Dehydroclausenamide **5** [1] (81 mg, 19%); m.p.: 164– 166 °C; $R_{\rm f}$: 0.64 (petroleum ether–EtOAc, 2:1). ¹H NMR (90 MHz, CDCl₃) δ ppm: 2.94 (s, 3H, NCH₃), 3.59 (br s, 1H, CH–CO), 4.07 (br s, 1H, CH–N), 4.81 (br s, 1H, Ph–CH), 4.99 (br s, 1H, Ph–CH–O), 7.11–7.51 (m, 10H, H–Ar). MS m/z (%): 280 (M⁺ + 1, 1), 279 (M⁺, 2), 173 (100), 144 (61), 91 (19), 77 (13), 65 (4), 42 (22).

Homoclausenamide **1** [4] (54 mg, 13%); m.p.: 199–201 °C; $R_{\rm f}$: 0.47 (petroleum ether—EtOAc, 2:1). ¹H NMR (90 MHz, CDCl₃) δ ppm: 2.96–3.16 (br s, 1H, exchangeable with D₂O, OH), 3.22 (s, 3H, NCH₃), 4.17 (d, J = 10 Hz, 1H, Ph–CH), 4.37 (d, J = 10 Hz, 1H, CH–CO), 6.38 (s, 1H, N–CH=), 6.90–7.30 (m, 10H, H–Ar). MS *m*/*z* (%): 280 (M⁺ + 1, 18), 279 (M⁺, 84), 262 (2), 251 (18), 250 (100), 222 (15), 91 (18), 77 (10), 42 (26). IR (KBr, cm⁻¹): 3263, 1663, 1648, 1394, 1219, 1058.

Product **12** (25 mg, 6%); m.p.: 177–179 °C; R_{f} : 0.42 (petroleum ether–EtOA, 2: 1). ¹H NMR (90 MHz, CDCl₃)

δ ppm: 3.68 (s, 3 H, NCH₃), 7.20–7.80 (m, 12 H, H–Ar and CH–CO, N–CH=). MS *m/z* (%): 262 (M⁺ + 1, 18), 261 (M⁺, 100), 233 (16), 192 (2), 191 (7), 91 (20), 41 (27). ¹³C NMR (125 Hz, CDCl₃) δ ppm: 38.5, 120.0, 125.8, 127.3, 127.8, 128.1, 128.7, 129.1, 131.4, 134.7, 136.6, 136.7, 137.5, 161.2. IR (KBr, cm⁻¹): 3445, 3063, 1648, 1595, 1555, 1500, 755, 697. UV/vis (CHCl₃) λ_{max} (log ε) (nm): 255 (4.34), 340 (3.98). Anal. (recrystallized from MeOH) C₁₈H₁₅NO₂·1/5CH₃OH (C, H, N).

Product **11** [1] (165 mg, 39%); m.p.: 188–191 °C; $R_{\rm f}$: 0.20 (petroleum ether–EtOAc, 2:1). ¹H NMR (90 MHz, CDCl₃) δ ppm: 2.71 (br s, 1H, exchangeable with D₂O, OH), 2.92 (s, 3H), 3.96 (m, 1H), 4.32 (m, 3H), 6.80–7.48 (m, 9H). MS m/z (%): 280 (M⁺ + 1, 25), 279 (M⁺, 100), 262 (17), 204 (33), 192 (72), 178 (25), 165 (30), 144 (17), 115 (30), 91 (19), 77 (12), 42 (56).

4.1.3. The intramolecular cyclization of compound 9

To the solution of **9** (279 mg, 1.0 mmol) in anhydrous CH_2Cl_2 (20 ml) was added dropwise the solution of $BF_3 \cdot OEt_2$ (170 mg, 1.2 mmol) in anhydrous CH_2Cl_2 (2 ml) at 10–15 °C. After being stirred for 30 min (TLC showed that reaction was finished), it was diluted with Et_2O (50 ml) and washed with water. The aqueous phase was extracted with Et_2O . The combined organic phase was washed with brine, dried (Na₂SO₄) and concentrated for column chromatography using petroleum ether (30–60 °C) and EtOAc (2:1) as the eluent to afford **13** (25 mg, 9%); m.p.: 153–155 °C; R_f : 0.71

(petroleum ether–EtOAc, 3:1, ran three times). ¹H NMR (90 MHz, CDCl₃) δ ppm: 3.24 (s, 3H, NCH₃), 3.22–3.32 (br s, 1H, exchangeable with D₂O, OH), 4.18 (d, J = 7.6 Hz, 1H, Ph–CH), 4.74 (d, J = 7.6 Hz, 1H, CH–CO), 6.61 (s, 1H, N–CH=), 7.04–7.60 (m, 10H, H–Ar). MS *m/z* (%): 280 (M⁺ + 1, 15), 279 (M⁺, 82), 262 (2), 251 (16), 250 (100), 222 (15), 91 (14). Anal. C₁₈H₁₇NO₂ (C, H, N). In addition, compound **12** (136 mg, 52%) was isolated.

Acknowledgment

We are grateful to National Science Foundation of China for financial support.

References

 M.H. Yang, Y.H. Cao, Y.Q. Yang, Y.Y. Chen, L. Huang, Yaoxue Xuebao 22 (1) (1987) 33-40.

- [2] V. Lakshmi, R. Kumar, S.K. Agarwal, Nat. Prod. Res. 19 (4) (2005) 355–357 and references cited therein.
- [3] M.H. Yang, Y.Y. Chen, L. Huang, Phytochemistry 27 (2) (1988) 445-450.
- [4] M.H. Yang, Y.Y. Chen, L. Huang, Chin. Chem. Lett. 2 (4) (1991) 291–292.
- [5] M.H. Yang, L. Huang, Chin. Chem. Lett. 2 (6) (1991) 775-776.
- [6] W. Hartwig, L. Born, J. Org. Chem. 52 (19) (1987) 4352-4358.
- [7] G.Z. Yang, L.H. Wang, L. Huang, Chin. Chem. Lett. 4 (12) (1993) 1035–1036.
- [8] E.C. Rao, H. Hong, G.Z. Yang, H. Lin, L. Huang, Chin. Chem. Lett. 5 (4) (1994) 267–268.
- [9] M.W. Cappi, R.W. Flood, S.M. Roberts, J. Skidmore, N.M. Williamson, W.P. Chen, Y.W. Liao, J.A. Smith, Chem. Commun 10 (1998) 1159–1160.
- [10] T. Yakura, Y. Matsumura, M. Ikeda, Synlett 1991 (5) (1991) 343-344.
- [11] D.F. Huang, L. Huang, Tetrahedron 46 (9) (1990) 3135-3142.
- [12] N.C. Ma, K.M. Wu, L. Huang, Chin. Chem. Lett. 7 (8) (1996) 706-708.
- [13] C.C. Tung, A.J. Speziale, H.W. Franzier, J. Org. Chem. 28 (6) (1963) 1514–1521.
- [14] For the preparation of compounds 7 and 8 see: N. Ma, K. Wu, L. Huang Eur. J. Med. Chem. (2007) Available online 3 June.