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(–)/(–)-cis-Clausenamide
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Abstract: A facile regio- and diastereoselective nitrile oxide cyc-
loaddition method using magnesium-coordinated chelation control
of chiral α-alkoxymethyl ether nitrile oxide is reported. This reac-
tion could be successfully applied as a key step in both the formal
total synthesis of (–)-clausenamide and the total synthesis of (–)-cis-
clausenamide.
Key words: cycloaddition, magnesium, nitrile oxide, diastereo-
selectivity, natural products

The 1,3-dipolar cycloaddition of nitrile oxides has attract-
ed considerable attention in synthetic organic chemistry
because of its application in the synthesis of complex nat-
ural products.1 Thus, numerous examples of regio- and/or
diastereoselective nitrile oxide cycloaddition reactions
have been developed and intensely studied.2 One of the
major advances in this field is the metal-coordinated 1,3-
dipolar cycloaddition of benzonitrile oxide with allylic al-
cohols in the presence of magnesium alkoxides, which in-
troduce a high reaction rate enhancement and absolute
regiocontrol, as reported by Kanemasa et al.3 Recently,
Carreira et al. have developed convenient and broadly ap-
plicable (i.e., including aliphatic nitrile oxides) reaction
conditions for highly diastereoselective cycloaddition re-
actions by improving upon Kanemasa’s methods.4 In this
contribution, we describe the regio- and diastereoselective
1,3-dipolar cycloaddition of α-alkoxy aliphatic nitrile ox-
ides to 3-substituted allylic alcohols.
Racemic clausenamide was first isolated from Clausena
lansium (Lours.) Skeels, a Chinese folk medicine;
(–)-clausenamide (1) has shown potent nootropic activi-
ties in many behavioral experiments, and is currently be-
ing developed as a promising antidementia drug.5
Moreover, (–)-cis-clausenamide (2), the C3 isomer of 1, is
demonstrated to be nearly twice as active as 1 (Figure 1).6
Given the important pharmacological activity and inter-
esting molecular structure — namely, a densely substitut-
ed pyrrolidinone ring with four contiguous stereocenters
— it is clear why the clausenamides are widely studied by
synthetic chemists as important synthetic targets.7

In the context of our study on 1,3-dipolar cycloaddition
reactions, we succeeded in the development of a new syn-

thetic route toward the stereocontrolled synthesis of 3,4,5-
trisubstituted 2-isoxazolines, including an improvement
in cycloaddition diastereoselectivity by use of a combina-
tion of alkoxymethyl ether nitrile oxides with magnesium
alkoxide. This facile approach to the synthesis of substi-
tuted 2-isoxazolines was applied to both a formal total
synthesis of 1 and a total synthesis of 2.
The outline of our synthesis strategy toward the clau-
senamides is illustrated in Scheme 1. The clausenamides
may be synthesized from 2-isoxazoline A, by
(a) oxidation and esterification, (b) selective reduction,
and (c) N–O bond cleavage and subsequent recyclization
to construct the pyrrolidinone rings. 2-Isoxazoline A may
be obtained by a putative 1,3-dipolar cycloaddition of ni-
trile oxide B with cinnamyl alcohol 3 from the less hin-
dered face in an exo fashion.

Scheme 1 Retrosynthetic analysis of clausenamides

On the basis of our strategy, various chiral nitrile oxide
precursors, hydroximoyl chlorides 4a–e, were readily pre-
pared from known ester L-methyl mandelate (Table 1).8
When compound 4a was treated with (E)-cinnamyl alco-

Figure 1 Structure of (–)-clausenamide (1) and (–)-cis-clausen-
amide (2)
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hol (3)9 in the presence of i-PrOH and EtMgBr in CH2Cl2
at room temperature, the cycloaddition proceeded to give
a 62:38 separable mixture of cycloadduct 5a and its dias-
tereomer 5a' in 69% combined yield (entry 1). Treatment
of 4b with 3 under similar conditions resulted in a de-
crease in diastereoselectivity to give a 54:46 mixture of 5b
and 5b' in 80% yield (entry 2). However, when a similar
reaction was carried out with 4c, with an α-hydroxy hy-
droximoyl chloride and a MOM protecting group, the
starting material was smoothly consumed to give a 75:25
separable mixture of 5c and its diastereomer 5c' in 85%
yield (entry 3). When 4d, possessing MEM substitution,
was treated under similar conditions, the diastereoselec-
tivity of the cycloaddition was slightly increased to 78:22
(entry 4). Finally, the use of toluene as a solvent with 4d
gave more satisfactory results, affording the correspond-
ing cycloadducts in 64% yield with 87:13 diastereoselec-
tivity (entry 5). Treatment of 4e with 3, to verify that the
method preserves the stereochemical configuration at the
benzyl position, gave the corresponding cycloadducts in
56% yield, similar to the result obtained using 4d, without
racemization (entry 6).
The significant increase in diastereoselectivity in the reac-
tions of nitrile oxides 4c and 4d with cinnamyl alcohol (3)
might be explained by considering the chelation effect be-
tween magnesium alkoxides and the MOM and MEM
group of the nitrile oxide. This chelation effect, which
causes a steric interaction with the phenyl group of 3 in the
cycloaddition transition state, results in the cycloadduct
being obtained by reaction in the less hindered exo mode
(Figure 2). 
This effect between magnesium alkoxides and α-
alkoxymethyl ether nitrile oxide might be supported by an
experiment in which replacing the MEM group of the ni-
trile oxide with an alkyl group would result in a change in
diastereoselectivity. The structure of major cycloadduct
5c was established by X-ray crystallographic analysis af-
ter further elaboration to 7, as shown in Scheme 2. Treat-

ment of 5c with Dess–Martin periodinane, followed by
oxidation with sodium chlorite, yielded the corresponding
carboxylic acid. Subsequent methyl ester formation with
TMS-diazomethane gave methyl ester 6 in 91% yield over
three steps. Deprotection of 6 with acid produced the cor-
responding alcohol, which was esterified with 4-nitroben-
zoyl chloride to give a crystalline product, ester 7, in 90%
yield.11

Table 1  1,3-Dipolar Cycloaddition of Cinnamyl Alcohol 3 with α-Hydroxy-Protected Nitrile Oxides 4a–e10

Entry 4 R1 (4) Solvent Cycloadducts Yield (%)a Ratiob

1 4a TBDMS CH2Cl2 5a/5a' 69 62:38

2 4b n-propyl CH2Cl2 5b/5b' 80 54:46

3 4c MOM CH2Cl2 5c/5c' 85 75:25

4 4d MEM CH2Cl2 5d/5d' 56 78:22

5 4d MEM toluene 5d/5d' 64 87:13

6 4e (+)-menthoxymethyl CH2Cl2 5e/5e' 56 77:23
a Isolated yield after column chromatography.
b Determined by 1H NMR spectroscopic analysis after purification.
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Scheme 2 Reagents and conditions: (a) Dess–Martin periodinane,
CH2Cl2, r.t.; (b) NaClO2, NaH2PO4, 2-methyl-2-butene, t-BuOH–
H2O, r.t.; (c) TMSCHN2, benzene–MeOH, 91% from 5c; (d) HCl aq,
THF, r.t., (e) 4-nitrobenzoyl chloride, Et3N, CH2Cl2, r.t., 90% from 6.
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We then examined the elaboration of 8 to intermediate 9
en route to (–)-clausenamide (1) (Scheme 3). 2-Isoxazo-
line 8, which was available from MOM-group cleavage of
6, was subjected to trimethyloxonium tetrafluoroborate to
give N-methylisoxazolinium salt C.12 In our trials using
several hydride-delivering reagents (data not shown) for
the conversion of C into 9, treatment with zinc borohy-
dride successfully afforded 9 as a single stereoisomer in
63% yield from 8. To our knowledge, this is the first ex-
ample of a stereoselective reduction of the C=N bond of a
3,4,5-trisubstituted isoxazolinium salt.13

The hydroxyl group of 9 was protected as the acetate by
using acetic anhydride, then reduction of 10 with zinc dust
and acetic acid effected cleavage of the N–O bond fol-
lowed by concomitant cyclization of the resulting amino
ester to pyrrolidinone 11 in 73% yield. By using the Bar-
ton–McCombie deoxygenation protocol,14 11 was trans-
formed into thionocarbonate 12, which was then treated
with tributyltin hydride and a stoichiometric amount of
triethylborane to afford the deoxygenated intermediate.
Subsequent treatment with LiOH gave deoxypyrrolidi-
none 13 in 63% yield over two steps; the latter compound
is a known intermediate of (–)-clausenamide (1).7a,15 Fi-
nally, reductive cleavage of 9 with zinc dust and acetic
acid gave (–)-cis-clausenamide (2) in 66% yield (Scheme
4).16

Scheme 3 Reagents and conditions: (a) (CH3)3BF4, CH2Cl2, r.t.; (b)
Zn(BH4)2, THF, –78 °C, 63% from 8; (c) Ac2O, DMAP, pyridine,
CH2Cl2, r.t.; (d) Zn, AcOH–H2O, 90 °C, 73% from 9; (e) O-phenyl
chlorothionoformate, pyridine, DMAP, CH2Cl2, 40%; (f) Bu3SnH,
cat. Et3B, toluene, r.t.; (g) aq LiOH, MeOH, r.t. 63% from 11.

Scheme 4 Reagents and conditions: (a) Zn, AcOH–H2O, 90 °C,
66%.

In conclusion, we have revealed that magnesium alkox-
ides influence not only the regioselectivity, but also the di-
astereoselectivity of the 1,3-dipolar cycloaddition of α-
alkoxymethyl ether nitrile oxide and cinnamyl alcohol;
we have used this mode of reactivity to develop a new
route for the synthesis of clausenamide and derivatives.
We believe that our results constitute a valuable contribu-
tion toward asymmetric 1,3-dipolar cycloaddition reac-
tions without chiral catalysts and/or auxiliaries. The
elucidation of the mechanism for the diastereoselectivity
of the cycloaddition and further applications of this meth-
od to the synthesis of additional natural products are under
intense investigation.
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