Selective ortho-Bromination of Substituted Benzaldoximes Using Pd-Catalyzed C-H Activation: Application to the Synthesis of Substituted 2-Bromobenzaldehydes

Emmanuelle Dubost, Christine Fossey, Thomas Cailly, Sylvain Rault, and Frederic Fabis*
Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA 4258, INC3M FR-CNRS 3038, UFR des Sciences Pharmaceutiques, Université de Caen Basse-Normandie, boulevard Becquerel, 14032 Caen cedex France

S Supporting Information

Abstract

Substituted 2-bromobenzaldehydes were synthesized from benzaldehydes using a three-step sequence involving a selective palladium-catalyzed ortho-bromination as the key step. O-Methyloxime serves as a directing group in this reaction. A rapid deprotection of substituted 2-bromobenzaldoximes afforded substituted 2-bromobenzaldehydes with good overall yields.

12 examples

2-Bromobenzaldehydes are useful synthetic intermediates as they offer the possibility of reaction either at the carboxaldehyde, which can be considered as one of the most easily transformable functional group, or at the bromine site by diverse transition-metal-catalyzed cross-coupling reactions. Moreover, combinations of these two reactive sites in cascade reactions have been successfully used for the synthesis of diverse heterocycles ${ }^{1-4}$ and natural compounds ${ }^{5}$ and have found applications in medicinal chemistry. ${ }^{6}$ Nevertheless, the broad synthetic utility of 2-bromobenzaldehydes remains hampered by the difficulty to selectively synthesize these compounds, leading to low commercial availability and prohibitive costs. The synthesis of 2-bromobenzaldehydes can be classified in three main groups including (1) electrophilic aromatic bromination of aldehydes or precursors, ${ }^{7}$ (2) metal-halogen exchange from ortho-dibrominated arenes followed by formylation, ${ }^{8}$ and (3) directed orthometalation using bromine or DMF as the electrophile. ${ }^{9,10}$ In these three methods, the selective formation of 2-bromobenzaldehydes remains very substituent-dependent and a strong directing group is most often required, limiting their general applicability.

Recently, the transition-metal-catalyzed transformation of inactivated $\mathrm{C}-\mathrm{H}$ bonds has emerged as a new powerful synthetic tool to create $\mathrm{C}-\mathrm{C}$ and C -heteroatom bonds. ${ }^{11-14}$ This method has found broad applications in the functionalization of aromatic $\mathrm{C}-\mathrm{H}$ bonds, allowing the successful selective introduction of numerous substituents including halogens, ${ }^{15-24}$ aryl groups, ${ }^{11}$ ethers, ${ }^{15}$ esters, ${ }^{25}$ sulfones, ${ }^{26}$ or amines. ${ }^{27,28}$ In most of these transformations, a directing group is required to achieve a high selectivity. In the case of a bromination reaction by $\mathrm{C}-\mathrm{H}$ activation, Sandford first described the use of N -bromosuccinimide and pyridines or pyrimidines as the directing group. The group developed a powerful palladium-catalyzed halogenation method that led to a large number of 2 -halogenated compounds. ${ }^{15,17,18}$ Yu's group described the use of more flexible functional groups such as carboxylic acids and acetanilides to
direct the ortho-halogenation of arenes. ${ }^{19,22,24}$ Very recently, the use of O -acetyl oximes as a transformable directing group in $\mathrm{C}-\mathrm{H}$ functionalization of $\mathrm{C} \mathrm{sp}{ }^{2}$ and sp^{3} has been reported. This directing group has been shown to be stable in $\mathrm{C}-\mathrm{H}$ activation conditions and has been used as a precursor of acetophenones, oxazolines, aminophenols, and diols. ${ }^{29}$

Considering that aldehydes are poor directing groups in Pdcatalyzed $\mathrm{C}-\mathrm{H}$ functionalization, ${ }^{18,30,31}$ some authors used successfully O-methylbenzaldoximes as directing groups. ${ }^{25,27,32,33}$ We thought O-methylbenzaldoximes could serve as an orthodirecting group for palladium-catalyzed bromination reactions and should be able to lead selectively to 2-bromobenzaldehydes after deprotection of the oxime group. Moreover, O-methylbenzaldoximes are easily obtained from the corresponding benzaldehydes using standard procedures. ${ }^{32}$

Our initial investigations focused on the $\operatorname{Pd}(\mathrm{OAc})_{2}$-catalyzed bromination of O-methylbenzaldoxime 1 a under various conditions (solvent, additives, and reaction times). In all of our experiments, only starting material and mono- and dibrominated compounds were observed, allowing the easy monitoring of the reactions by ${ }^{1} \mathrm{H}$ NMR (Table 1). Using Sanford's conditions, NBS (2 equiv) and $\mathrm{PdOAc}_{2}(10 \mathrm{~mol} \%)$ in MeCN at $120^{\circ} \mathrm{C}$ for 2 $\mathrm{h}, 2$-bromobenzaldoxime $\mathbf{1 b}$ was obtained along with starting material 1a in a $7: 3$ ratio (entry 1). Without palladium, the starting material was recovered unchanged (entry 2). In order to improve the conversion, we screened some additives commonly used in $\mathrm{C}-\mathrm{H}$ activation reactions (entries $3-8$). Whereas the use of $\mathrm{AgOCOCF}_{3}$ (entry 7) led to the same result, other additives were detrimental to the reaction. Replacing MeCN by DCE as a solvent led to a lower conversion of the starting material (entry 9). Nevertheless, using $\mathrm{AgOCOCF}_{3}(10 \mathrm{~mol} \%)$ led to an almost total conversion, but in this case, significant amounts of dibrominated compound 1 c were observed (entry 10).

[^0]Table 1. Palladium-Catalyzed Bromination of O-Methylbenzaldoxime 1a

entry	solvent	time (h)	additives	$\mathbf{1 a} / \mathbf{l b} / \mathbf{l} \mathbf{c}^{a}$
1^{b}	MeCN	2		$31 / 69 / 0$
$2^{b, c, d}$	MeCN	1		$100 / 0 / 0$
3^{b}	MeCN	2	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$94 / 6 / 0$
4^{b}	MeCN	2	CuBr_{2}	$100 / 0 / 0$
5^{b}	MeCN	2	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$66 / 34 / 0$
6^{b}	MeCN	2	AgOAc_{3}	$63 / 37 / 0$
7^{b}	MeCN	2	$\mathrm{AgOCOCF}_{3}$	$39 / 61 / 0$
8^{b}	MeCN	2	$\mathrm{PhI}\left(\mathrm{OAc}_{2}\right.$	$43 / 57 / 0$
9	DCE	2.5		$47 / 47 / 6$
10	DCE	2.5	$\mathrm{AgOCOCF}_{3}$	$4 / 75 / 21$
11^{d}	DCE	2.5	$\mathrm{AgOCOCF}_{3}$	$50 / 50 / \varepsilon$
12^{d}	DCE	24	$\mathrm{AgOCOCF}_{3}$	$24 / 71 / 5$
$13^{d, e}$	DCE	24	$\mathrm{AgOCOCF}_{3}$	$24 / 76 / \varepsilon$
14^{c}	AcOH	2.5	$\mathrm{AgOCOCF}_{3}$	$27 / 65 / 8$
$15^{d, f}$	DCE	2.5	$\mathrm{AgOCOCF}_{3}$	$16 / 76 / 8$

${ }^{a}{ }^{1} \mathrm{H}$ NMR ratio. ${ }^{b}$ Microwave heating. ${ }^{c}$ No catalyst. ${ }^{d}$ NBS 1 equiv. ${ }^{e} 20$ $\mathrm{mol} \% \mathrm{AgOCOCF} 3 .{ }^{f} 1$ equiv of AcOH .

Decreasing the amount of NBS to 1 equiv led to the decrease of both the conversion of the starting material and the quantity of dibrominated compound (entry 11). A good conversion was obtained in 24 h without significantly increasing the formation of 1c (entry 12). Compared to DCE, the use of AcOH as a solvent seemed to accelerate the bromination reaction (entry 14), and we finally found that using 1 equiv of AcOH in DCE (entry 15) appeared to us as the best compromise between a high conversion and low byproduct formation.

In order to extend the scope of this methodology, we explored the bromination of substituted O-methylbenzaldoximes. For each substrate, reaction conditions were adjusted to give the monobrominated compound as a major product. The best results are summarized in Table 2.

As expected, 2 -substituted benzaldoximes $\mathbf{2 a} \mathbf{- 5 a}$ were selectively monobrominated in moderate to good yields. For compound $\mathbf{2 a}$ bearing the strongly activating methoxy group, a lower heating temperature was crucial to avoid the formation of the electrophilic aromatic substitution (EAS) product observed at $120{ }^{\circ} \mathrm{C}$. For 3-substituted benzaldoximes a selective monobromination was obtained with bulky groups, whereas for small substituents such as fluorine 6a or chlorine 9a dibromination occurred, leading to lower yields. Monobromination was very difficult to achieve with 4 -substituted benzaldoximes, and significant dibromination was generally observed. Lowering the reaction temperature to $90^{\circ} \mathrm{C}$ did not change the dibrominated/ monobrominated ratio but led to a lower conversion of starting material. Overall, electron-donating groups seemed to favor the formation of monobrominated products, whereas electron-withdrawing groups led to lower yields. In many cases, the use of AcOH led to higher yields but with an excessive formation of dibrominated compounds. ${ }^{34}$

Table 2. Palladium-Catalyzed ortho-Bromination of Substituted O-Methylbenzaldoximes

Scheme 1. Mechanistic Proposal for ortho-Bromination

Mechanistic investigations on $\mathrm{C}-\mathrm{H}$ chlorination of arylpyridines or benzo[h]quinolines with NCS seem to involve a $\mathrm{Pd}^{\mathrm{II}}-\mathrm{Pd}^{\mathrm{IV}}$ catalytic cycle ${ }^{35,36}$ or a bimetallic $\mathrm{Pd}^{\mathrm{III}}$-complex. ${ }^{37}$ Although the role of $\mathrm{AgOCOCF}_{3}$ is not well understood in our reaction, it seems to act as a co-catalyst. The use of this silver salt seems to be crucial (Table 1, entries 9 and 10), but increasing its quantity to $20 \mathrm{~mol} \%$ has marginal influence on the reaction (Table 1, entries 12 and 13). Cheng et al. recently reported a $\mathrm{Pd}^{\mathrm{II}}$-catalyzed $\mathrm{C}-\mathrm{H}$ arylation reaction starting from O-methylbenzaldoximes using $\mathrm{Ag}_{2} \mathrm{O}$ as an additive. Their mechanistic investigations have been supported by the isolation of an anionic cyclopalladacycle where silver acts as a counterion leading to an activated catalytic $\mathrm{Pd}^{\mathrm{II}}$ species. ${ }^{32}$ Based on these literature data

Table 3. Deprotection of Benzaldoximes to Benzaldehydes

starting material	product	yields $\%^{a}$
2b 6-OMe	2d	95
3b 6-Me	3d	90
4b 6-F	4d	92
5b 6-Cl	5d	79
6b 5-Cl	6d	86
7b 5-NO	7d	88
8b 5-Br	8d	86
9b 5-F	9d	87
11b 4-CN	11d	97
12b 4,5-diCl	12d	83
13b 4,6-diCl	13d	79^{b}
14b 5,6-diMeO	14d	93
${ }^{a}$ Isolated yields. ${ }^{b}$ 1.5 h.		

and our own observation of a catalytic role of $\mathrm{AgOCOCF}_{3}$, we propose a catalytic cycle involving the formation of the cyclometalated complex \mathbf{A}, which after oxidative addition of NBS should form a $\mathrm{Pd}^{\mathrm{IV}}$ intermediate \mathbf{B} leading to the brominated compound after reductive elimination along with regeneration of the $\mathrm{Pd}^{\mathrm{II}}$ catalyst (scheme 1).

The isolated brominated benzaldoximes were then subjected to deprotection using a modified procedure of Sakamoto and Kikugawa. ${ }^{38}$ Heating the benzaldoximes $\mathbf{2 b} \mathbf{- 1 4 b}$ in a THF/ $\mathrm{H}_{2} \mathrm{O}$ mixture ($10 / 1$) with p-TsOH (2 equiv) and p-formaldehyde (10 equiv) at $100{ }^{\circ} \mathrm{C}$ under microwave irradiation afforded the expected substituted 2-bromobenzaldehydes $\mathbf{2 d} \mathbf{- 1 4 d}$ in high yields within 15 min (Table 3).

In summary, we have developed a selective ortho-bromination of benzaldoximes through a palladium-catalyzed $\mathrm{C}-\mathrm{H}$ activation. The facile deprotection of the O-methylaldoxime group led to substituted 2-bromobenzaldehydes, which are useful key intermediates in organic synthesis. This method offers an alternative and complementary approach to the directed orthometalation and allows the use of sensitive functional groups (e.g., $\left.\mathrm{NO}_{2}, \mathrm{Br}, \mathrm{CN}\right)$.

■ EXPERIMENTAL SECTION

General Procedure for the Synthesis of Substituted Benzaldehyde O-Methyloximes 1a-14a. Substituted benzaldehyde (1 equiv) was added to a solution of O-methylhydroxylamine hydrochloride (1.2 equiv) and pyridine (4 equiv) in dichloromethane ($15 \mathrm{~mL} /$ $5 \mathrm{mmol})$. The solution was stirred for 1 h at room temperature and evaporated in vacuo. The remaining residue was dissolved in dichloromethane and filtered through a short pad of silica gel. All compounds were obtained in almost quantitative yields. The mixtures of (Z) - and (E)-diastereoisomers were not purified and were used in the bromination reaction.
(E)-Benzaldehyde O-Methyloxime $1 \mathrm{a}^{39}$. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.98$ ($\mathrm{s}, 3 \mathrm{H}$), 7.36-7.38 (m, 3 H), $7.57-7.58(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$.
(Z,E)-2-Methoxybenzaldehyde O-Methyloxime $2 a^{40}$. Colorless oil; Z:E ratio 1:9. (E): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 6.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 6.94\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right)$, $7.33\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.77\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0\right.$ Hz), $8.46(\mathrm{~s}, 1 \mathrm{H}) .(Z):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.99(\mathrm{~s}, 3 \mathrm{H}), 6.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 6.94\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.33$ $\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.73(\mathrm{~s}, 1 \mathrm{H}), 8.22\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right.$, ${ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}$).
(E)-2-Methylbenzaldehyde O-Methyloxime $3 a^{33}$. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.41$ ($\mathrm{s}, 3 \mathrm{H}$), 3.99 ($\mathrm{s}, 3 \mathrm{H}$), $7.16-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.70\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 8.34(\mathrm{~s}, 1 \mathrm{H})$.
(E)-2-Fluorobenzaldehyde O-Methyloxime $4 \mathrm{a}^{41}$. Colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.99(\mathrm{~s}, 3 \mathrm{H}), 7.07\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.8\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 7.14\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.32-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{dt}$, $\left.1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}\right), 8.31(\mathrm{~s}, 1 \mathrm{H})$.
(E)-2-Chlorobenzaldehyde O -Methyloxime $5 \mathrm{a}^{39}$. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.00(\mathrm{~s}, 3 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 3 \mathrm{H})$, $7.89\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 8.49(\mathrm{~s}, 1 \mathrm{H})$.
(E)-3-Chlorobenzaldehyde O-Methyloxime 6a. Colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.99(\mathrm{~s}, 3 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.43$ (dd, $1 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}$), $7.61\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=2.0 \mathrm{~Hz}\right), 8.00(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.2,125.3,126.6,129.7,129.9,134.0$, 134.8, 147.1. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NOCl}$ 169.0294, found 169.0297.
(E)-3-Nitrobenzaldehyde O-Methyloxime 7a ${ }^{42}$. White solid, $\mathrm{mp} 53-55^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.02(\mathrm{~s}, 3 \mathrm{H}), 7.55(\mathrm{t}, 1 \mathrm{H}$, $\left.{ }^{3} J=7.8 \mathrm{~Hz}\right), 7.89\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz}\right), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.20\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=7.8\right.$ $\left.\mathrm{Hz},{ }^{4} J=2.0 \mathrm{~Hz}\right), 8.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=2.0 \mathrm{~Hz}\right)$.
(E)-3-Bromobenzaldehyde O-Methyloxime 8a. Colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.98(\mathrm{~s}, 3 \mathrm{H}), 7.23\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right)$, $7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 62.2, 122.8, 125.7, 129.5, 130.2, 132.6, 134.2, 147.0. HRMS/ EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NOBr} 212.9789$, found 212.9780 .
(E)-3-Fluorobenzaldehyde O-Methyloxime 9a. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.98(\mathrm{~s}, 3 \mathrm{H}), 7.03-7.09(\mathrm{~m}, 1 \mathrm{H})$, $7.30-7.36(\mathrm{~m}, 3 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.2$, $113.2\left(\mathrm{~d},{ }^{2} J=23 \mathrm{~Hz}\right), 116.7\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 123.1(\mathrm{~d}, J=3 \mathrm{~Hz}), 130.2(\mathrm{~d}$, $J=8 \mathrm{~Hz}), 134.4(\mathrm{~d}, J=8 \mathrm{~Hz}), 147.3(\mathrm{~d}, J=3 \mathrm{~Hz}), 162.9\left(\mathrm{~d},{ }^{1} J=245 \mathrm{~Hz}\right)$. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{8}$ NOF 153.0590, found 153.0584 .
(E)-4-Trifluoromethylbenzaldehyde O-Methyloxime $10 \mathrm{a}^{43}$. Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.01(\mathrm{~s}, 3 \mathrm{H}), 7.63$ (d, 2 H , $\left.{ }^{3} J=7.8 \mathrm{~Hz}\right), 7.70\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 8.09(\mathrm{~s}, 1 \mathrm{H})$.
(E)-4-Cyanobenzaldehyde O-Methyloxime 11a. White solid, $\mathrm{mp} 111-113{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.02(\mathrm{~m}, 3 \mathrm{H})$, $7.64-7.70(\mathrm{~m}, 4 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.4$, 112.9, 118.4, 127.3 (2C), 132.4 (2C), 136.5, 146.5. HRMS/EI: calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ 160.0636, found 160.0628 .
(E)-2,4-Dichlorobenzaldehyde O-Methyloxime 12a. White solid, $\mathrm{mp} 63-65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.00(\mathrm{~s}, 3 \mathrm{H}), 7.24$ (dd, $\left.1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}\right), 7.39\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=1.9 \mathrm{~Hz}\right), 7.83(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 8.41(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.4,127.4$, 127.8, 128.6, 129.6, 134.2, 136.0, 144.6. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NOCl}_{2} 202.9905$, found 202.9910.
(E)-3,4-Dichlorobenzaldehyde O-Methyloxime 13a. White solid, mp $57-59^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.98(\mathrm{~s}, 3 \mathrm{H}), 7.39$ $\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.68(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.95(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.3,126.1$, 128.4, 130.7, 132.2, 133.1, 133.7, 146.2. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NOCl}_{2}$ 202.9905, found 202.9899 .
(E)-2,3-Dimethoxybenzaldehyde O-Methyloxime 14a. White solid, mp $58-59{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 6.92\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}\right), 7.05\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right)$, $7.41\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 8.41(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 55.7,61.5,61.9,113.4,117.7,124.2,126.0,144.5,147.9,152.8$. HRMS/ EI: calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$ 195.0895, found 195.0900.

General Procedure for the Synthesis of Substituted 2Bromobenzaldehyde O-Methyloximes 1b-14b. In a sealed flask, substituted benzaldehyde O-methyloxime 1a-15a (1 equiv) was added to a solution of N-bromosuccinimide (see Table 2), silver trifluoroacetate ($10 \mathrm{~mol} \%$), palladium acetate ($10 \mathrm{~mol} \%$), and acetic acid (see Table 2) in 1,2-dichloroethane ($2 \mathrm{~mL} / 0.60 \mathrm{mmol}$ of oxime). The resulting mixture was stirred and heated at $120^{\circ} \mathrm{C}$ (see Table 2 for conditions), partitioned between water and dichloromethane, and filtered through a pad of Celite. The aqueous layer was extracted with dichloromethane. The combined organic layers were dried on MgSO_{4}, filtered, evaporated in vacuo, and purified by silica gel chromatography.
(E)-2-Bromobenzaldehyde O-Methyloxime 1b. Starting from benzaldehyde O-methyloxime $\mathbf{1 a}(500 \mathrm{mg}, 3.70 \mathrm{mmol}), \mathbf{1 b}$ was obtained as a colorless oil ($403 \mathrm{mg}, 51 \%$, cyclohexane as eluent). (E)-2-Bromobenzaldehyde O-methyloxime 1b: IR (KBr) $v \mathrm{~cm}^{-1}$) $3434,2935,1591$, $1438,1468,1059,924,753 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.00(\mathrm{~s}, 3 \mathrm{H})$, $7.22\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.30\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}\right), 7.56(\mathrm{dd}$, $\left.1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.87\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 8.45$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.3,123.8,127.5,127.6,131.0$, 131.5, 133.1, 147.9. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NOBr} 212.9789$, found 212.9790. (E)-2,6-Dibromobenzaldehyde O-methyloxime 1c: Obtained as a byproduct during the screening of conditions. White solid, $\mathrm{mp} 78-80^{\circ} \mathrm{C}$. IR (KBr) $\left(\mathrm{cm}^{-1}\right) 3074,2940,1547,1423,1189,1054$, 923, 772. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.03(\mathrm{~s}, 3 \mathrm{H}), 7.06\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8\right.$ $\mathrm{Hz}), 7.58\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 8.15(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 62.5,124.1$ (2C), 130.9, 132.4 (2C), 147.3. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NOBr}_{2} 290.8894$, found 290.8885 .
(E)-2-Bromo-6-methoxybenzaldehyde O-Methyloxime 2b. Starting from 2-methoxybenzaldehyde O-methyloxime 2a (495 mg , $3.00 \mathrm{mmol}), \mathbf{2 b}$ was obtained as a colorless oil ($470 \mathrm{mg}, 64 \%$, petroleum ether/diethyl ether 98/2 as eluent). IR $\left.(\mathrm{KBr}) v \mathrm{~cm}^{-1}\right) 3004,2935,2837$, $1586,1563,1459,1429,1261,1032,918 .{ }^{1}{ }^{1} \mathrm{HMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 6.87\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.14-7.23(\mathrm{~m}, 2 \mathrm{H})$, $8.27(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 56.2,62.1,110.2,111.7$, 124.1, 125.5, 130.7, 145.8, 158.9. HRMS/EI: calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{Br}$ 242.9895, found 242.9889 .
(E)-2-Bromo-6-methylbenzaldehyde O-Methyloxime 3b. Starting from 2-methylbenzaldehyde O-methyloxime 3 a ($448 \mathrm{mg}, 3.00$ mmol), $\mathbf{3 b}$ was obtained as a colorless oil ($306 \mathrm{mg}, 45 \%$, petroleum ether as eluent). IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3435,2934,1449,1052,925,771$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.50(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 7.09(\mathrm{t}, 1 \mathrm{H}$, $\left.{ }^{3} J=7.8 \mathrm{~Hz}\right), 7.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz}\right), 7.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz}\right), 8.41$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.2,62.2,124.9,129.8,130.2$, 130.5, 139.9, 149.0. HRMS/EI: calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NOBr} 226.9946$, found 226.9953.

2-Bromo-6-fluorobenzaldehyde O-Methyloxime $4 b^{40}$. Starting from 2-fluorobenzaldehyde O-methyloxime $\mathbf{4 a}(310 \mathrm{mg}, 2.02 \mathrm{mmol})$, $\mathbf{4 b}$ was obtained as a colorless oil in a $1: 0.9 \mathrm{Z}: E$ ratio $(334 \mathrm{mg}, 71 \%$, petroleum ether/acetone $99 / 1$ as eluent). IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3085,2938,2820,1599$, $1564,1460,1443,1251,1051,925,874,780 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 7.05-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.42(\mathrm{~m}, 3 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(E) \delta 62.6$, $115.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}=22 \mathrm{~Hz}\right), 120.6\left(\mathrm{~d},{ }^{2} J=14 \mathrm{~Hz}\right), 124.4(\mathrm{~d}, J=4 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=$ $4 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9 \mathrm{~Hz}), 144.6(\mathrm{~d}, J=4 \mathrm{~Hz}), 160.8\left(\mathrm{~d},{ }^{1} J=258 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(Z) \delta 62.6,114.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}=22 \mathrm{~Hz}\right), 121.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}=\right.$ $21 \mathrm{~Hz}), 122.5(\mathrm{~d}, J=5 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=4 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=9 \mathrm{~Hz}), 140.5(\mathrm{~d}$, $J=2 \mathrm{~Hz}), 159.7\left(\mathrm{~d},{ }^{1} J=255 \mathrm{~Hz}\right.$).

2-Bromo-6-chlorobenzaldehyde O-Methyloxime 5b. Starting from 2-chlorobenzaldyde O-methyloxime 5 a ($500 \mathrm{mg}, 2.95 \mathrm{mmol}$), $\mathbf{5 b}$ was obtained as a colorless oil in a $1: 2$ E:Z ratio ($591 \mathrm{mg}, 81 \%$, cyclohexane as eluent). IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$ 2968, 2938, 1577, 1554, 1427, 1189, 1078, 1058, $920,776 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$),
diastereoisomer $(Z) \delta 3.95(\mathrm{~s}, 3 \mathrm{H}), 7.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.39$ $\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.51\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), diastereoisomer (E) $\delta 4.03(\mathrm{~s}, 3 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{3} J=7.8 \mathrm{~Hz},\right), 7.39\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 7.54\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 8.21$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.4,62.4,122.4,124.2,128.3$, 129.3, 130.5, 130.6, 130.8, 131.8, 132.1, 133.5, 133.9, 134.9, 143.2, 145.8. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NOBrCl}$ 246.9399, found 246.9401.
(E)-2-Bromo-5-chlorobenzaldehyde O-Methyloxime 6b. Starting from 3-chlorobenzaldehyde O-methyloxime 6a ($529 \mathrm{mg}, 3.12 \mathrm{mmol}$), $\mathbf{6} \mathbf{b}$ was obtained as a white solid ($284 \mathrm{mg}, 37 \%$, petroleum ether as eluent). Mp 70-72 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3084,2938,1461,1394,1059,1027$, 931, 896, 884, 808. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.01(\mathrm{~s}, 3 \mathrm{H}), 7.19$ $\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.9 \mathrm{~Hz}\right), 7.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 7.86\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=\right.$ $2.0 \mathrm{~Hz}), 8.36(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.5,121.4,127.2$, 130.8, 132.9, 133.8, 134.1, 146.7. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NOClBr}$ 246.9399, found 246.9404 .
(E)-2-Bromo-5-nitrobenzaldehyde O-Methyloxime 7b. Starting from 3-nitrobenzaldehyde O-methyloxime 7 a ($500 \mathrm{mg}, 1.93 \mathrm{mmol}$), $7 \mathbf{b}$ was obtained as a white solid ($230 \mathrm{mg}, 32 \%$, cyclohexane/diethyl ether $99 / 1$ as eluent). Mp 117-119 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3097,3078,2937,1560,1594$, 1523, 1345, 1054, 1029, 918, 740. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.06$ $(\mathrm{s}, 3 \mathrm{H}), 7.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 8.05\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}\right), 8.44$ $(\mathrm{s}, 1 \mathrm{H}), 8.72\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.9$, 122.3, 124.7, 129.9, 133.3, 134.2, 145.8, 147.3. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br} 257.9640$, found 257.9637.
(E)-2,5-Dibromobenzaldehyde O-Methyloxime 8b. Starting from 5 -bromobenzaldehyde O-methyloxime $8 \mathbf{a}$ ($500 \mathrm{mg}, 2.34 \mathrm{mmol}$), $\mathbf{8 b}$ was obtained as a white solid ($270 \mathrm{mg}, 40 \%$, petroleum ether/acetone $99 / 1$ as eluent). $\mathrm{Mp} 80-82^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3080,2937,1458$, 1388, 1198, 1059, 1025, $930 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.01$ $(\mathrm{s}, 3 \mathrm{H}), 7.33\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}\right), 7.42\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz}\right)$, $8.01\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.9 \mathrm{~Hz}\right), 8.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 62.5, 121.5, 122.1, 130.1, 133.2, 133.7, 134.3, 146.6. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NOBr}_{2}$ 290.8894, found 290.8890.
(E)-2-Bromo-5-fluorobenzaldehyde O-Methyloxime 9b. Starting from 3-fluorobenzaldehyde O-methyloxime 9a ($518 \mathrm{mg}, 3.38$ $\mathrm{mmol}), 9 \mathbf{b}$ was obtained as a white solid ($67 \mathrm{mg}, 18 \%$, petroleum ether as eluent). 2,6-dibromo-3-fluorobenzaldehyde O-methyloxime 9 c as a byproduct was obtained in a $1: 1 \mathrm{Z}: E$ ratio as a white solid (440 mg , 42%). (E)-2-Bromo-5-fluorobenzaldehyde O-methyloxime 9 b : Mp < $50^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 2932,1599,1568,1460,1417,1263,1158$, 1058, 1031, $917 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.01(\mathrm{~s}, 3 \mathrm{H}), 6.95$ (dt, $\left.1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}\right), 7.51\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 7.60$ (dd, $1 \mathrm{H},{ }^{3} J=9.8 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}$), $8.38\left(\mathrm{~d}, 1 \mathrm{H},{ }^{5} J=1.9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.5,114.0\left(\mathrm{~d},{ }^{2} J=25 \mathrm{~Hz}\right), 117.8(\mathrm{~d}, J=2 \mathrm{~Hz})$, $118.3\left(\mathrm{~d},{ }^{2} J=23 \mathrm{~Hz}\right), 133.2(\mathrm{~d}, J=8 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=8 \mathrm{~Hz}), 147.0$ (d, $J=2 \mathrm{~Hz}$), $161.8\left(\mathrm{~d},{ }^{1} J=246 \mathrm{~Hz}\right) . \mathrm{HRMS} / \mathrm{EI}:$ calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NOFBr}$ 232.9675, found 232.9679. (Z,E)-2,6-Dibromo-3-fluorobenzaldehyde O-methyloxime $9 \mathrm{c}: \mathrm{Mp}<50^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$ 2938, 2820, 1564, 1443, 1400, 1271, 1194, 1056, 998, 897, 813. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 7.00\left(\mathrm{dt}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}\right)$, $7.34(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.56(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 62.4,62.5,110.0\left(\mathrm{~d},{ }^{2} J=22 \mathrm{~Hz}\right), 111.7\left(\mathrm{~d},{ }^{2} J=22 \mathrm{~Hz}\right), 116.3$ $(\mathrm{d}, J=3 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=11 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=11 \mathrm{~Hz}), 118.1$ $(\mathrm{d}, J=4 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=7 \mathrm{~Hz}), 132.9(\mathrm{~d}, J=7 \mathrm{~Hz}), 133.7,135.8$, $143.4(\mathrm{~d}, J=2 \mathrm{~Hz}), 146.4(\mathrm{~d}, J=2 \mathrm{~Hz}), 158.4\left(\mathrm{~d},{ }^{1} J=248 \mathrm{~Hz}\right), 158.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}=\right.$ 246 Hz). HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NOFBr}_{2} 308.8800$, found 308.8808.
(E)-2-Bromo-4-trifluoromethylbenzaldehyde O-Methyloxime 10b. Starting from 4-trifluoromethylbenzaldehyde O-methyloxime 10a ($406 \mathrm{mg}, 2.00 \mathrm{mmol}$), 10b was obtained as a white solid ($230 \mathrm{mg}, 41 \%$, petroleum ether as eluent). $\mathrm{Mp}<50^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3080,2949$, $1597,1466,1399,1325,1171,1038,925,863,836 .{ }^{1}$ H NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.03(\mathrm{~s}, 3 \mathrm{H}), 7.55\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.83(\mathrm{~s}, 1 \mathrm{H}), 8.00$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 8.44(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.5$,
$123.0\left(\mathrm{q},{ }^{1} J=271 \mathrm{~Hz}\right), 123.4,124.2\left(\mathrm{q},{ }^{3} J=3 \mathrm{~Hz}\right), 127.7,130.0\left(\mathrm{q},{ }^{3} J=\right.$ $4 \mathrm{~Hz}), 132.5\left(\mathrm{q},{ }^{2} \mathrm{~J}=33 \mathrm{~Hz}\right)$, 135.0, 146.6. HRMS/EI: calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NOF}_{3} \mathrm{Br} 282.9643$, found 282.9636 .
(E)-2-Bromo-4-cyanobenzaldehyde O-Methyloxime 11b. Starting from 4-cyanobenzaldehyde O-methyloxime 11a ($500 \mathrm{mg}, 3.12$ $\mathrm{mmol}), 11 \mathrm{~b}$ was obtained as a white solid $(237 \mathrm{mg}, 32 \%$, petroleum ether/diethyl ether $98 / 2$ as eluent). $\mathrm{Mp}<50^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right)$ 2939, 2232, 1594, 1388, 1061, 1039, 928, 838. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.04(\mathrm{~s}, 3 \mathrm{H}), 7.57\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}\right), 7.85$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{4} J=2.0 \mathrm{~Hz}\right), 7.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 8.42(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.8,114.2,117.1,123.5,127.7,130.7,136.1$, 136.4, 146.3. HRMS/EI: calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{OBr}$ 237.9742, found 237.9742.
(E)-2-Bromo-4,5-dichlorobenzaldehyde O-Methyloxime 12b. Starting from 3,4-dichlorobenzaldehyde O-methyloxime 12a (500 mg , $2.45 \mathrm{mmol}), \mathbf{1 2 b}$ was obtained as a white solid $(344 \mathrm{mg}, 50 \%$, petroleum ether/diethyl ether 98/2 as eluent). Mp 93-95 ${ }^{\circ} \mathrm{C}$. IR (KBr$) v\left(\mathrm{~cm}^{-1}\right)$ 3088, 2966, 2930, 1594, 1448, 1359, 1202, 1130, 1047, 905, 892. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.01(\mathrm{~s}, 3 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 8.31$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.6,121.2,128.2,131.4,132.3$, 134.1, 134.3, 145.9. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NOBrCl}_{2}$ 280.9010, found 280.9005 .

2-Bromo-4,6-dichlorobenzaldehyde O-Methyloxime 13b. Starting from 2,4-dichlorobenzaldehyde O-methyloxime 13a (400 mg , $1.96 \mathrm{mmol}), \mathbf{1 3 b}$ was obtained in a $1: 2 \mathrm{Z}: E$ ratio as a white solid $(356 \mathrm{mg}$, 64%, petroleum ether/diethyl ether $99 / 1$ as eluent). Mp $77-79{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right) 3075,2928,1576,1536,1364,1182,1078,1047,922$, 856, 767. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right),(E) \delta 4.03(\mathrm{~s}, 3 \mathrm{H}), 7.42(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{4} J=2.0 \mathrm{~Hz}\right), 7.56\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 8.15(\mathrm{~s}, 1 \mathrm{H}) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right),(Z) \delta 3.94(\mathrm{~s}, 3 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.40\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.53$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right),(E) \delta 62.5,124.4$, 129.1, 129.3, 131.7, 135.3, 135.4, 145.0. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), (Z) $\delta 62.5,122.7,128.4,130.7,130.8,134.1,135.6,142.3$. HRMS/EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NOBrCl}_{2}$ 280.9010, found 280.9016 .

2-Bromo-5,6-dimethoxybenzaldehyde O-Methyloxime 14b. Starting from 2,3-dimethoxybenzaldehyde O-methyloxime 14a (500 mg , 2.56 mmol), $\mathbf{1 4 b}$ was obtained in a $1: 1 \mathrm{Z}: E$ ratio as a white solid (505 mg , 72%, petroleum ether/acetone $96 / 4$ as eluent). Mp $48-50^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 2938,1569,1468,1413,1297,1261,1234,1050 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 6.80\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz}\right), 6.81(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.27\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.30\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.41$ $(\mathrm{s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.9,56.1,61.0$, 61.6, 62.1, 62.2, 111.6, 113.5, 113.9, 114.1, 126.5, 127.4, 127.5, 128.4, 143.1, 145.5, 147.3, 148.8, 152.0, 152.7. HRMS/EI: calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{Br}$ 273.0001, found 273.0003.

General Procedure for the Synthesis of Substituted 2-Bromobenzaldehydes $2 d-14 d$. In a sealed microwave vial, p-toluenesulfonic acid (2 equiv) and formaldehyde (10 equiv) were added to a solution of substituted O-methyl-2-bromobenzaldoximes $\mathbf{1 b} \mathbf{- 1 4 b}$ (1 equiv) in a mixture of THF/water $10 / 1(5 \mathrm{~mL} / \mathrm{mmol}$ of oxime $)$. The solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 15 min under microwave irradiation. The solvent was evaporated in vacuo, and the crude residue was dissolved in dichloromethane and filtered through a short pad of silica gel.

2-Bromo-6-methoxybenzaldehyde $2 d^{44}$. Starting from 2-bro-mo-6-methoxybenzaldehyde O-methyloxime $\mathbf{2 b}$ ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$), 2d was obtained as a white solid ($84 \mathrm{mg}, 95 \%$). $\mathrm{Mp} 55-57^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3075,2953,1692,1589,1566,1458,1407,1266,1024,784 .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.92(\mathrm{~s}, 3 \mathrm{H}), 6.96\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.25$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.33\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 10.42(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.2,111.0,123.3,124.9,126.4,134.8$, 161.9, 190.5.

2-Bromo-6-methylbenzaldehyde $3 d^{45}$. Starting from 2-bromo-6-methylbenzaldehyde O-methyloxime 3 b ($200 \mathrm{mg}, 0.88 \mathrm{mmol}$), 3d
was obtained as a white solid ($157 \mathrm{mg}, 90 \%$). Mp $46-48^{\circ} \mathrm{C}$. IR (KBr) v $\left(\mathrm{cm}^{-1}\right) 2926,1695,1450,1187,777 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.58(\mathrm{~s}, 3 \mathrm{H}), 7.23\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.33\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz}\right), 7.50(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 10.53(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2$, 128.3, 131.4, 131.6, 131.7, 133.7, 142.7, 194.6.

2-Bromo-6-fluorobenzaldehyde $4 d^{46}$. Starting from 2-bromo-6-fluorobenzaldehyde O-methyloxime $\mathbf{4 b}(150 \mathrm{mg}, 0.65 \mathrm{mmol}), 4 \mathrm{~d}$ was obtained as a white solid ($121 \mathrm{mg}, 92 \%$). $\mathrm{Mp}<50^{\circ} \mathrm{C}$. IR (KBr) v $\left(\mathrm{cm}^{-1}\right) 2956,1706,1598,1452,1250,1189,889,787 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz}\right), 7.42\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $\left.7.8 \mathrm{~Hz},{ }^{4} J=5.9 \mathrm{~Hz}\right), 7.50\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz}\right), 10.37(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 116.3\left(\mathrm{~d},{ }^{2} J=21 \mathrm{~Hz}\right), 122.8(\mathrm{~d}, J=9 \mathrm{~Hz}), 125.3$ $(\mathrm{d}, J=2 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=3 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=11 \mathrm{~Hz}), 163.1\left(\mathrm{~d},{ }^{1} J=\right.$ $264 \mathrm{~Hz}), 188.5(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz})$.

2-Bromo-6-chlorobenzaldehyde $5 \mathrm{~d}^{10}$. Starting from 2-bromo-6-chlorobenzaldehyde O-methyloxime $\mathbf{5 b}$ ($200 \mathrm{mg}, 0.81 \mathrm{mmol}$), 5 d was obtained as a white solid ($140 \mathrm{mg}, 79 \%$). Mp $74-76^{\circ} \mathrm{C}$. IR (KBr) v $\left(\mathrm{cm}^{-1}\right) 3087,2888,1699,1573,1555,1431,1400,1185,780 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz}\right), 7.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=7.8 \mathrm{~Hz}\right)$, $7.61\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 10.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 124.9, 130.4, 131.7, 133.0, 133.7, 136.7, 190.0.

2-Bromo-5-chlorobenzaldehyde 6d ${ }^{47}$. Starting from 2-bromo-5-chlorobenzaldehyde O-methyloxime $\mathbf{6 b}$ ($100 \mathrm{mg}, 0.40 \mathrm{mmol}$), $\mathbf{6 d}$ was obtained as a white solid ($76 \mathrm{mg}, 86 \%$). Mp $71-73{ }^{\circ} \mathrm{C}$. IR (KBr) v $\left(\mathrm{cm}^{-1}\right) 3060,2925,1692,1455,1189,1092,1030,897,819 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=3.0 \mathrm{~Hz}\right), 7.52(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{3} J=8.8 \mathrm{~Hz}\right), 7.79\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=3.0 \mathrm{~Hz}\right), 10.30(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 124.6,129.6,134.4,134.5,135.0,135.1,190.4$.

2-Bromo-5-nitrobenzaldehyde 7d ${ }^{48}$. Starting from 2-bromo-5-nitrobenzaldehyde O-methyloxime $7 \mathbf{b}$ ($100 \mathrm{mg}, 0.39 \mathrm{mmol}$), $7 \mathbf{d}$ was obtained as a white solid ($78 \mathrm{mg}, 88 \%$). Mp $105-107^{\circ} \mathrm{C}$. IR (KBr) v $\left(\mathrm{cm}^{-1}\right) 3100,1687,1606,1535,1351,1037,736 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 8.31\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3.0\right.$ $\mathrm{Hz}), 8.72\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=3.0 \mathrm{~Hz}\right), 10.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 124.7,128.8,133.0,134.3,135.3,147.6,189.4$.

2,5-Dibromobenzaldehyde $8 d^{49}$. Starting from 2,5-dibromobenzaldehyde O-methyloxime $\mathbf{8 b}$ ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$), $\mathbf{8 d}$ was obtained as a white solid ($78 \mathrm{mg}, 86 \%$). Mp $93-95{ }^{\circ} \mathrm{C}$. IR (KBr) v $\left(\mathrm{cm}^{-1}\right) 3076,2924,2864,1686,1571,1453,1380,1247,1188,1078$, $1022,884,824 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right)$, $7.57\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=2.9 \mathrm{~Hz}\right), 8.02\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=2.9 \mathrm{~Hz}\right), 10.28$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 122.2,125.4,132.6,134.6$, 135.2, 138.0, 190.4.

2-Bromo-5-fluorobenzaldehyde 9d. Starting from 2-bromo-5fluorobenzaldehyde O-methyloxime $9 \mathbf{b}(42 \mathrm{mg}, 0.18 \mathrm{mmol})$, $9 \mathbf{d}$ was obtained as a white solid ($32 \mathrm{mg}, 87 \%$). Mp $53-55{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v$ $\left(\mathrm{cm}^{-1}\right) 3071,1692,1597,1578,1465,1393,1262,1213,1146,1033$, 752. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.611-7.66$ $(\mathrm{m}, 2 \mathrm{H}), 10.31\left(\mathrm{~d}, 1 \mathrm{H},{ }^{5} \mathrm{~J}=2.9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $116.3\left(\mathrm{~d},{ }^{2} J=24 \mathrm{~Hz}\right), 121.1(\mathrm{~d}, J=3 \mathrm{~Hz}), 122.7\left(\mathrm{~d},{ }^{2} J=23 \mathrm{~Hz}\right), 134.8(\mathrm{~d}$, $J=6 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=7 \mathrm{~Hz}), 162.1\left(\mathrm{~d},{ }^{1} J=248 \mathrm{~Hz}\right), 190.7$. HRMS/EI: calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FOBr}$ 201.9430, found 201.9433.

2-Bromo-4-cyanobenzaldehyde 11d. Starting from 2-bromo-4-cyanobenzaldehyde O-methyloxime $\mathbf{1 1 b}(150 \mathrm{mg}, 0.63 \mathrm{mmol}), 11 \mathrm{~d}$ was obtained as a white solid ($128 \mathrm{mg}, 97 \%$). Mp $118-120^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3077,2891,2231,1691,1596,1381,1259,1194,1045,838$, 766. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 7.97$ $(\mathrm{s}, 1 \mathrm{H}), 8.00\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right), 10.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 116.3,118.6,126.8,130.2,131.3,136.2,137.2,190.2$. HRMS/ EI: calcd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NOBr}$ 208.9476, found 208.9481.

2-Bromo-4,5-dichlorobenzaldehyde 12d. Starting from 2-bromo-4,5-dichlorobenzaldehyde O-methyloxime $\mathbf{1 2 b}(100 \mathrm{mg}$, 0.35 mmol), 12 d was obtained as a white solid ($75 \mathrm{mg}, 83 \%$). Mp $116-118^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right) 3082,2997,1690,1569,1442,1342$,

1193, 1178, 1059, 923, 899. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}$, $1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 10.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 124.3, 130.9, 132.7, 133.3, 135.0, 139.5, 189.4. HRMS/EI: calcd for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{OBrCl}_{2}$ 251.8744, found 251.8740 .

2-Bromo-4,6-dichlorobenzaldehyde 13d. Starting from 2-bromo-4,5-dichlorobenzaldehyde O-methyloxime 13b ($54 \mathrm{mg}, 0.19$ $\mathrm{mmol}), 13 \mathrm{~d}$ was obtained as a white solid ($35 \mathrm{mg}, 79 \%$). $\mathrm{Mp} 59-61^{\circ} \mathrm{C}$. $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right) 3073,2924,2852,1700,1570,1535,1361,855 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}\right), 7.63\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} J=\right.$ $1.9 \mathrm{~Hz}), 10.32(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 125.5,129.8$, 130.4, 132.9, 137.5, 139.4, 188.8. HRMS/EI: calcd for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{OBrCl}_{2}$ 251.8744, found 251.8743 .

2-Bromo-5,6-dimethoxybenzaldehyde $14 d^{50}$. Starting from 2-bromo-5,6-dimethoxybenzaldehyde O-methyloxime $\mathbf{1 4 b}$ (100 mg , 0.37 mmol), $\mathbf{1 4 d}$ was obtained as a white solid ($83 \mathrm{mg}, 93 \%$). Mp $83-85{ }^{\circ} \mathrm{C}$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 2950,1702,1687,1571,1474,1434$, 1390, 1298, 1269, 1236, 993, 923, 814. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 6.96\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}\right), 7.35\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.8\right.$ $\mathrm{Hz}), 10.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.2,62.4,112.8$, 117.5, 128.6, 129.4, 152.1, 152.8, 190.5.

■ ASSOCIATED CONTENT

(s) Supporting Information. ${ }^{1} \mathrm{H}$ spectra for compounds $\mathbf{1 a}-14 a, \mathbf{1 b}-\mathbf{1 4 b}$. and $\mathbf{1 d}-\mathbf{1 4 d} ;{ }^{13} \mathrm{C}$ NMR spectra for compounds 6a, 8a, 9a, 11a-14a, 1b-14b. and 1d-14d; RX(ORTEP) of $\mathbf{7 b}$ and table presenting the influence of AcOH on the bromination reaction. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: frederic.fabis@unicaen.fr.

ACKNOWLEDGMENT

We thank Mr. Albert Marcual (Bio-organic Mass Spectrometry, UMR-CNRS 6014, COBRA, University of Rouen) for HRMS data and Dr. J. Sopkova-de Oliveira Santos for RX data.

- REFERENCES

(1) Cai, Q.; Li, Z.; Wei, J.; Ha, C.; Pei, D.; Ding, K. Chem. Commun. 2009, 48, 7581.
(2) Cho, C. S.; Lim, D. K.; Heo, N. H.; Kim, T. J.; Shim, S. C. Chem. Соттип. 2004, 104.
(3) Cai, Q.; Li, Z.; Wei, J.; Fu, L.; Ha, C.; Pei, D.; Ding, K. Org. Lett. 2010, 12, 1500.
(4) Kim, Y. H.; Lee, H.; Kim, Y.J.; Kim, B. T.; Heo, J. N. J. Org. Chem. 2008, 73, 495.
(5) Lin, J.; Zhang, W.; Jiang, N.; Niu, Z.; Bao, K.; Zhang, L.; Liu, D.; Pan, C.; Yao, X. J. Nat. Prod. 2008, 71, 1938.
(6) Roberts, L. R.; Fish, P. V.; Storer, R. I.; Whitlock, G. A. Bioorg. Med. Chem. Lett. 2009, 19, 3113.
(7) Wang, L.; Jing, H.; Bu, X.; Chang, T.; Jin, L.; Liang, Y. Catal. Commun. 2007, 8,80 and references therein.
(8) Menzel, K.; Machrouhi, F.; Bodenstein, M.; Alorati, A.; Cowden, C.; Gibson, A. W.; Bishop, B.; Ikemoto, N.; Nelson, T. D.; Kress, M. H.; Frantz, D. E. Org. Process Res. Dev. 2009, 13, 519.
(9) Meyers, A. I.; Himmelsbach, R. J.; Reuman, M. J. Org. Chem. 1983, 48, 4053.
(10) Dabrowski, M.; Kubicka, J.; Lulinski, S.; Serwatowski, J. Tetrahedron Lett. 2005, 46, 4175.
(11) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
(12) Chen, X.; Engel, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(13) Muñiz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
(14) Lyons, T. W.; Sandford, M. S. Chem. Rev. 2010, 110, 1147.
(15) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
(16) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416.
(17) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523.
(18) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Tetrahedron 2006, 62, 11483.
(19) Mei, T. S.; Giri, R.; Maugel, N.; Yu, J. Q. Angew. Chem., Int. Ed. 2008, 47, 5215.
(20) Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310.
(21) Song, B.; Zheng, X.; Mo, J.; Xu, B. Adv. Synth. Catal. 2010, 352, 329.
(22) Mei, T. S.; Wang, D. H.; Yu, J. Q. Org. Lett. 2010, 12, 3140.
(23) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134.
(24) Li, J. J.; Mei, T. S.; Yu, J. Q. Angew. Chem., Int. Ed. 2008, 47, 6452.
(25) Yu, W. Y.; Sit, W. N.; Lai, K. M.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304.
(26) Zhao, X.; Dimitrijević, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.
(27) Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 9048.
(28) Ng, K. H.; Chan, A. S. C.; Yu, W. Y. J. Am. Chem. Soc. 2010, 132, 12862.
(29) Neufeldt, S. R.; Sanford, M. S. Org. Lett. 2010, 12, 532.
(30) Terao, Y.; Kametani, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2001, 57, 5967.
(31) Gürbüz, N.; Ozdemir, I.; Cetinkaya, B. Tetrahedron Lett. 2005, 46, 2273.
(32) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C. H. Angew. Chem., Int. Ed. 2008, 47, 9462.
(33) Sun, C. L.; Liu, N.; Li, B. J.; Yu, D. G.; Wang, Y.; Shi, Z. J. Org. Lett. 2010, 12, 184.
(34) See Supporting Information for details.
(35) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142.
(36) Stowers, K. J.; Sanford, M. S. Org. Lett. 2009, 11, 4584.
(37) Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14530.
(38) Sakamoto, T.; Kikugawa, Y. Synthesis 1993, 563.
(39) Tanimoto, S.; Yamadera, T.; Sugimoto, T.; Okano, M. Bull. Chem. Soc. Jpn. 1979, 52, 627.
(40) Chang, C.-J.; Shieh, T.-L.; Floss, H. G. J. Med. Chem. 1977, 20, 176.
(41) Lukin, K.; Hsu, M. C.; Fernando, D.; Leanna, R. J. Org. Chem. 2006, 71, 8166.
(42) Said, S. B.; Skarzewski, S.; Mlochowski, J. Synth. Commun. 1992, 22, 1851.
(43) Medwid, J. B.; Paul, R.; Baker, J. S.; Brockman, J. A.; Du, M. T.; Hallett, W. A.; Hanifin, J. W.; Hardy, R. A.; Tarrant, M. E.; Torley, L. W.; Wrenn, S. J. Med. Chem. 1990, 33, 1230.
(44) Glennon, R. A.; Raghupathi, R.; Bartyzel, P.; Teitler, M.; Leonhardt, S. J. Med. Chem. 1992, 35, 734.
(45) Fleckenstein, C. A.; Plenio, H. Chem.-Eur. J. 2007, 13, 2701.
(46) Lee, S.; Lee, H.; Yi, K. Y.; Lee, B. H.; Yoo, S. E.; Lee, K.; Cho, L. S. Bioorg. Med. Chem. Lett. 2005, 15, 2998.
(47) Spring, D. R.; Krishnan, S.; Blackwell, H. E.; Schreiber, S. L. J. Am. Chem. Soc. 2002, 124, 1354.
(48) Kabawata, T.; Jiang, C.; Hayashi, K.; Tsubaki, K.; Yoshimura, T.; Majumdar, S.; Sasamori, T.; Takitoh, N. J. Am. Chem. Soc. 2009, 131, 54.
(49) Cade, I.; Long, N. J.; White, A. J. P.; Williams, D. J. J. Organomet. Chem. 2006, 691, 1389.
(50) Kessar, S. V.; Gupta, Y. P.; Balakrishnan, P.; Sawal, K. K.; Mohammad, T.; Dutt, M. J. Org. Chem. 1988, 53, 1708.

[^0]: Received: May 11, 2011
 Published: June 20, 2011

