ORIGINAL RESEARCH

Effect of chiral polyhydrochromenes on cannabinoid system

Nikolai S. Li-Zhulanov^{1,2} · Irina V. Il'ina^{1,2} · Andrea Chicca³ · Patricia Schenker³ · Oksana S. Patrusheva¹ · Ekaterina V. Nazimova¹ · Dina V. Korchagina¹ · Mikhail Krasavin⁴ · Konstantin P. Volcho ^{1,2} · Nariman F. Salakhutdinov^{1,2}

Received: 5 October 2018 / Accepted: 23 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

A set of chiral polyhydrochromenes was synthesized by clay-catalyzed reactions of monoterpenoids (–)-isopulegol, (+)-neoisopulegol and (1*R*,2*R*,6*S*)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol **5** with aromatic and heteroaromatic aldehydes. These compounds resemble in structure phytocannabinoids, some of them demonstrated analgesic activity in vivo. Polyhydrochromenes containing amino groups were obtained through the interaction of (–)-isopulegol with 5-hydroxymethylfurfural, followed by substitution of hydroxy-group with bromine and further reaction with amines. The ability of all synthesized compounds to influence the endocannabinoid system was studied for the first time. Although the polyhydrochromenes did not significantly bind to CB₁ and CB₂ cannabinoid receptors and did not inhibit MAGL activity at the concentration of 10 μ M, isopulegol derivative **2i** containing 3-bromothiophene substituent inhibited FAAH activity with an IC₅₀ value of 7.6 μ M. Thus, this compound may increase endocannabinoid system activity.

Keywords $CB_1 \cdot CB_2 \cdot Anandamide \cdot Fatty acid amide hydrolase (FAAH) \cdot Monoacylglycerol lipase (MAGL) \cdot Isopulegol \cdot Aldehyde$

Introduction

The endocannabinoid system consists of two type of Gprotein coupled receptors (CB₁ and CB₂) and a group of neuromodulatory lipids derived from arachidonic acid, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG) (Aghazadeh Tabrizi et al. 2016). Endocannabinoid levels

Supplementary information The online version of this article (https://doi.org/10.1007/s00044-019-02294-9) contains supplementary material, which is available to authorized users.

Konstantin P. Volcho volcho@nioch.nsc.ru

- ¹ Novosibirsk Institute of Organic Chemistry, Lavrentjev av. 9, Novosibirsk, Russian Federation630090
- ² Novosibirsk State University, Pirogova st. 1, Novosibirsk, Russian Federation630090
- ³ Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
- ⁴ Saint Petersburg State University, Saint Petersburg, Russian Federation199034

are controlled by the hydrolytic activity of fatty acid amide hydrolase (FAAH) for AEA and monoacylglycerol lipase (MAGL) for 2-AG (Makriyannis 2014). Cannabinoid receptors are involved in the regulation of nausea, obesity, pain, anxiety, depression, and neurodegenerative disorders (Khurana et al. 2017).

The most known exocannabinoid ligands are phytocannabinoids. Cannabidiol and Δ^9 -tetrahydrocannabinol (Fig. 1) isolated from Cannabis and combining monoterpenoid fragment with para-menthane structure and aromatic ring are the most abundant phytocannabinoids with pronounced biological effects (Woodhams et al. 2017; Dos Santos et al. 2015; Javid et al. 2016). In particular, pronounced analgesic effect of phytocannabinoids attracts special attention due to their ability to control neuropathic pain (King et al. 2017; Walter et al. 2016). Earlier we have found that several heterocyclic compounds 1 and 2 (Fig. 1) also containing *para*-menthane and aromatic moieties and synthesized by interaction of monoterpenoid alcohols with aldehydes possess high analgesic activity in vivo along with low acute toxicity (Mikhalchenko et al. 2013; Il'Ina et al. 2014; Pavlova et al. 2015; Pavlova et al. 2016; Nazimova et al. 2016; Pavlova et al. 2017). For compound 1a, it was shown the

loss of analgesic effect in presence of the selective CB₁ receptor antagonist rimonabant (Pavlova et al. 2017). It means that the endocannabinoid system may be involved in the mechanism of action of this compound. At the same time, the ability of these compounds to effect cannabinoid system was not studied yet. The only published data concern competition binding of a small set of dimethyl-substituted compounds of type **2** with CB₁ and CB₂ cannabinoid receptor subtypes (Slater et al. 2018). Among these compounds, only **2a** was marginally active against these receptors with ~20% displacement of radioligand at 10 μ M concentration.

The goal of this work is to study whether compounds of types 1 and 2 having different substituents at aromatic/ heteroaromatic ring can interact with cannabinoid system.

Results and discussion

Chemistry

Compounds of types 1 and 2 can be synthesized by acidcatalyzed interaction of monoterpenoids with aldehydes (Patrusheva et al. 2018). Although different catalysts, including TsOH/SiO₂ (Macedo et al. 2010), BF₃·Et₂O (Bondalapati et al. 2011), Sc(OTf)₃ (Yadav et al. 2010), I₂ (Silva and Quintiliano 2009), and zeolites (Stekrova et al. 2015) can be applied for these transformations, the most often catalysts used are clays (Baishya et al. 2013; Stekrova et al. 2015; Timofeeva et al. 2015; Timofeeva et al. 2016; Sidorenko et al. 2018a; Sidorenko et al. 2018b). Earlier, we obtained a set of compounds 2b-l by clay K10 catalyzed reactions of (-)-isopulegol with heteroaromatic aldehydes (Scheme 1) (Nazimova et al. 2016; Nazimova et al. 2017). These octahydrochromene derivatives with heteroaromatic substituents demonstrated high analgesic activity in vivo. Compounds **3a**, **b** were synthesized by (+)-neoisopulegol reactions with corresponding aldehydes (Nazimova et al. 2016). The products were formed as a mixture of diastereomers at C-4.

It was found recently that the use of BF_3 ·Et₂O/H₂O system for reaction of monoterpenoid alcohols with aldehydes led to formation of fluorine containing compounds **4** along with compounds of type **2** (Scheme 2) (Mikhalchenko et al. 2016; Patrusheva et al. 2016). Thus, compounds **2m** and **4a** were obtained by the reaction of (–)-isopulegol with 3,4,5-trimethoxybenzaldehyde (Mikhalchenko et al. 2016). In addition to these compounds, in this work fluorine containing compounds **4b–f**, as well as hydroxyl containing analogues **2n–p** were synthesized.

Acid-catalyzed reactions of isopulegol with aromatic/ heteroaromatic aldehydes allow one to obtain octahydrochromenes with various substituents in the aromatic ring excluding amine-containing substituent. To synthesize these compounds, three step approaches has been elaborated in the current work (Scheme 3). At first step, compound 2q was synthesized by clay catalyzed reaction of (-)-isopulegol with 5-hydroxymethylfurfural obtained from fructose in accordance with (Tian et al. 2013). The individual stereoisomer (R)-2q and mixture of (R)-2q and (S)-2q (dr 1.0) were isolated by column chromatography. Then, bromide $2\mathbf{r}$ was synthesized by the reaction of (*R*)-2q or mixture 2q with PBr₃. This compound appeared to be unstable at room temperature and was involved in the reaction with a set of secondary amines without separation, giving amine-containing compounds 2s-v.

The last group of monoterpenoid based compounds was synthesized from diol **5**, obtained in three stages from (–)-verbenone in accordance with (Il'ina et al. 2007). Clay catalyzed reaction of monoterpenoid **5** with a set aldehydes led to formation of compound **1a** and its analogues **1b–e** (Scheme 4).

Thus, large set of chiral octahydrochromenes belonging to four structural types, 1, 2, 3 and 4, has been synthesized from monoterpenoid alcohols (-)-isopulegol, (+)-neoisopulegol and compound 5.

Scheme 1 Synthesis of 2b-l and 3a, b; *dr* is the 4*R*/4*S* diastereomers ratio (Nazimova et al. 2016)

Biology

The ability of substituted polyhydrochromenes **1–4** to bind to CB₁ and CB₂ receptors was studied with a radioactivitybased binding assay. The experiments were performed using membrane preparations overexpressing hCB₁ and hCB₂ using [³H]CP55,940 as a competitive ligand as previously reported (Chicca et al. 2017). While the classic CB₁ receptor agonist (*R*)-WIN55,212-2 (Showalter et al. 1996) decreased [³H]CP55,940 signal to 10%, all tested chromenes did not significantly bind to CB₁ receptor at the screening concentration of 10 µM (Fig. 2).

In the case of CB₂ receptor, five compounds (1a, 2b, 2k, 4a, and 4d) marginally interacted with the receptor leading to a 15–25% displacement of the [³H]CP55,940 (Fig. 3). Compounds 2b and 2k are furan-containing analogues of recently studied chromenol 2a (Slater et al. 2018), which demonstrated similar activity. Compounds 4a and 4d contain fluorine atom, their counterparts with hydroxy group 2m and 2p were not active. Note, that just for compound 1a it was shown the loss of analgesic effect in vivo in presence of rimonabant (Pavlova et al. 2017).

As all tested compounds did not show significant interaction with CB receptors at $10 \,\mu$ M concentration, we also studied their ability to influence AEA and 2-AG hydrolysis.

FAAH is primarily responsible for AEA degradation and indirectly involved in AEA uptake (Chicca et al. 2012; Nicolussi et al. 2014; Chicca et al. 2017), thus its inhibition leads to increasing endocannabinoid system activity. FAAH activity was measured using U937 cell homogenate in the presence of test compounds (10 µM) as previously reported (Chicca et al. 2017). We found, that isopulegol derivative 2i containing 3-bromothiophene substituent inhibited FAAH activity with an IC_{50} value (50% inhibiting concentration) of $7.6 \pm 1.5 \,\mu\text{M}$ (Fig. 4a). In agreement with the inhibition of FAAH, compound 2i also inhibited AEA uptake in living U937 cells with an IC₅₀ value of $15.1 \pm 2.1 \,\mu\text{M}$ (Fig. 4b). None of the other compounds inhibited FAAH activity or AEA uptake at the concentration of 10 µM (Suppl. Figs 1 and 2). Note, that high in vivo analgesic activity of compound 2i in acetic acid-induced writhing test (10 mg/kg dose, mice) was recently reported (Nazimova et al. 2016). It is known, that FAAH inhibition attenuates neuropathic pain (Jhaveri et al. 2006) and gastric ulceration (Naidu et al. 2009) in rodents. Thus, the analgesic effect of 2i may be caused, at least partly, by FAAH inhibition. The potent and selective AEA uptake inhibitor WOBE437 (Chicca et al. 2017) exerted analgesic and anti-inflammatory effects at the dose of 10 mg/kg in a model of chronic inflammation in BALB/C mice (monoarthitis of the knee) (Reynoso-Moreno et al. 2018). At the same time, structurally similar compounds 2e and 2h also demonstrated an analgesic effect (Nazimova et al. 2016), do not influence cannabinoid system, which implies the existence of other mechanisms of action.

2-AG activity is terminated by enzymatic hydrolysis primarily mediated by MAGL and MAGL inhibitors produce antinociceptive effects (Kinsey et al. 2013; Aghazadeh Tabrizi et al. 2018). None of our compounds showed a significant inhibition of MAGL activity at the concentration Scheme 2 Synthesis of 2b, e, m-p and 4a-f; *dr* is 4*S*/4*R* the diastereomers ratio

of $10 \,\mu$ M, unlike the classic MAGL inhibitor JZL184 (Kinsey et al. 2013), which was used as a positive control (Suppl. Fig. 3).

Conclusion

Large set of chiral hydrochromenes was synthesized by clay-catalyzed reactions of monoterpenoids (-)-isopulegol, (+)-neoisopulegol and (1R, 2R, 6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1.2-diol 5 with aromatic and heteroaromatic aldehydes. It is known that some of these compounds possess analgesic activity with possible involvement of cannabinoid system. Amine-containing derivatives were obtained through the interaction of (-)-isopulegol with 5-hydroxymethylfurfural, followed by substitution of hydroxy-group with bromine and further reaction with amines.

The ability of all synthesized compounds to influence the endocannabinoid system was studied for the first time. We found, that all these chromene derivatives do not bind to CB₁ receptor at the concentration of 10 μ M concentration. Five compounds (1a, 2b, 2k, 4a, and 4d) marginally interact at the same concentration with CB₂ receptor leading to 15–25% displacement of the radioligand. Moreover, all tested compounds do not affect MAGL activity. At the same time, isopulegol derivative 2i containing 3-bromothiophene substituent inhibits FAAH activity with an IC₅₀ value of 7.6 μ M, and thus may increase endocannabinoid system activity. Taking into account that FAAH inhibition attenuates various types of pain, it can be assumed that earlier found analgesic effect of 2i may be caused, at least partly, by FAAH inhibition.

Materials and methods

Chemistry

All commercially available compounds and solvents were reagent grade and were used without further treatment unless otherwise noted. As the catalyst, we used mon-tmorillonite K10 clay (*Aldrich*). The clay was calcinated at 105° C for 3 h immediately before use. CH₂Cl₂ was passed

through calcined Al₂O₃. (–)-Isopulegol $([a]_D^{31} = -21 (c \ 0.4, CHCl_3))$ was purchased from Aldrich. (+)-Neoisopulegol $[a]_D^{30,6} = +29 (c \ 0.498, C_6H_{14})$ was synthesized according to (Chavan et al. 1993) from (–)-isopulegol (*Aldrich*), the content of the main substance was not less than 98.0%. (1*R*,2*R*,6*S*)-3-Methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-

1,2-diol **5** ($[a]_D^{30,6} = -49.1$ (*c* 0.26, CHCl₃)) was synthesized according to (II'ina et al. 2007) from (–)-verbenone (*Aldrich*), the content of the main substance was not less than 98.0%.

Column chromatography: silica gel $(SiO_2; 60-200 \mu;$ Macherey-Nagel); hexane/EtOAc $100:0 \rightarrow 0:100$. GC/MS (purity control and products analysis): Agilent 7890A with a quadrupole mass spectrometer Agilent 5975C as a detector, HP-5MS quartz column, 30,000 × 0.25 mm, He (1 atm) as carrier gas. Optical rotation: polAAr 3005 spectrometer, CHCl₃ soln. HR-MS: DFS-Thermo-Scientific spectrometer in a full scan mode (15-500 m/z, 70 eV electronimpact ionization, direct sample introduction). ¹H and ¹³C NMR: Bruker DRX-500 apparatus at 500.13 MHz (¹H) and 125.76 MHz (¹³C) and *Bruker* Avance-III 600 apparatus at 600.30 MHz (¹H) and 150.95 MHz (¹³C) in CDCl₃ or CDCl₃/CD₃OD; chemical shifts δ in ppm rel. to residual CHCl₃ (δ (H) 7.24, δ (C) 76.90 ppm), J in Hz; structure determinations by analyzing the ¹H NMR spectra, including ¹H-¹H double resonance spectra and ¹H-¹H 2D homonuclear correlation (COSY, NOESY); J-modulated ¹³C NMR spectra (JMOD), and ¹³C-¹H 2D heteronuclear correlation with one-bond and long-range spin-spin coupling constants (C–H COSY, ${}^{1}J(C,H) = 135$ Hz; HSQC, ${}^{1}J(C,H)$ = 145 Hz; COLOC, ${}^{2,3}J(C,H) = 10$ Hz; HMBC, ${}^{2,3}J(C,H)$ = 7 Hz). All the target compounds reported in this paper have the purity of at least 95%. Please note that numeration of atoms in the compounds (see SI) is given for assigning the signals in the NMR spectra and does not coincide with that for the names according to the nomenclature of compounds.

Spectral and analytical studies were carried out at the Collective Chemical Service Center of the Siberian Branch of the Russian Academy of Sciences.

Compounds **2a–l** were obtained from (–)-isopulegol and corresponding aldehydes in the presence of montmorillonite K10 according to the described procedures (Nazimova et al. 2016) in the following yields: **2b** (86%, *dr* 3.0), **2c** (65%, *dr*

3.5), **2d** (54%, *dr* 0.67), **2e** (78%, *dr* 5.0), **2f** (80%, *dr* 4.5), **2g** (69%, *dr* 10.0), **2h** (76%, *dr* 6.5), **2i** (74%, *dr* 3.0), **2j** (50%, *dr* 1.0), **2k** (61%, *dr* 8.0), **2l** (63%, *dr* 1.5).

Compounds **3a**, **3b** were obtained from (+)-neoisopulegol and corresponding aldehydes in the presence of montmorillonite K10 according to the described procedures (Nazimova et al. 2016) in the following yields: **3a** (41%, dr 0.67), **3b** (75%, dr 1.0).

Compounds **4a** and **2m** were obtained from (–)-isopulegol and 3,4,5-trimethoxybenzaldehyde in the presence of BF₃·Et₂O/H₂O system according to the described procedures (Mikhalchenko et al. 2016) in the following yields: **4a** (76%, dr 0.29), **2m** (15%, dr 5.0).

Compound **1a** (29%, dr 5.0) was obtained from diol **5** and 3-hydroxy-4-methoxybenzaldehyde in the presence of montmorillonite K10 according to the described procedures (II'ina et al. 2011).

Compounds **1c**, **1e** were obtained from diol **5** and corresponding aldehydes in the presence of montmorillonite K10 according to the described procedures (Pavlova et al. 2016) in the following yields: **1c** (42%, dr 3.3), **1e** (54%, dr 2.8).

General procedure 1 for compounds 2n-e and 4b-f synthesis (GP 1)

(-)-Isopulegol (2.4 mmol) and aldehyde (2.9 mmol) were dissolved in CH_2Cl_2 (5 ml) and cooled to 2 °C. Then water (17.8 mmol) was added to the BF_3 · Et_2O (3.6 mmol) solution

in CH₂Cl₂ (5 ml) under vigorous stirring. Resulting cloudy solution of BF₃·Et₂O was added dropwise to the mixture of aldehyde and (–)-isopulegol, and then the reaction mixture was stirred for required time period at 2 °C. Then 10% NaHCO₃ solution was added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 15 ml). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. Reaction mixture was separated on a SiO₂ column (hexane/EtOAc 100:0–0:100 as eluent).

General procedure 2 for compounds 2s-v synthesis (GP 2)

The mixture of 2q (3 eqv.), PBr₃ (1 eqv.) and NaHCO₃ (4 eqv.) in 5 ml Et₂O was stirred at 0 °C for 45 min. Then an appropriate amine (21 eqv.) was added and mixture was stirred at 0 °C for 2.5 h. The residue was filtered off, the solvent was distilled off, and the reaction mixture was separated on a SiO₂ column (hexane/EtOAc 100:0–0:100 as eluent).

General procedure 3 for compounds 1b, 1d synthesis (GP 3)

The solution of diol **2** and an appropriate aldehyde in CH_2Cl_2 (10 ml) was added to a suspension of K10 in CH_2Cl_2 (10 ml). The solvent was distilled off. The mixture was stored at r.t. for the required period of time. Then ethyl acetate (10 ml) was added. The catalyst was filtered off, the solvent was distilled off, and the residue was separated on a SiO₂ column (hexane/EtOAc 100:0–0:100 as eluent).

Scheme 4 Synthesis of 1a–e; *dr* is the 4*S*/4*R* diastereomers ratio

(2R,4S,4aR,7R,8aR)-4-Fluoro-4,7-dimethyl-2phenyloctahydro-2H-chromene 4b and (2R,4R (S),4aR,7R,8aR)-4,7-Dimethyl-2-phenyloctahydro-2Hchromen-4-ol 2n

Compound (*S*)-**4b** (0.475 g, 70%) and **2n** (0.135 g, 20%, *dr* 0.22) were obtained from (–)-isopulegol and benzaldehyde according to the *GP1*. Compound (*R*)-**4b** formed only in trace amounts. The reaction was carried out for 120 min. The ¹H and ¹³C NMR spectra of **2n** correspond to the literature data (Yadav et al. 2010).

(**S**)-**4b** NMR ¹H (500 MHz, CDCl₃, δ, ppm, J/Hz): 0.89– 0.99 (m, 1H, H_a-8), 0.95 (d, 3H, $J_{18.9} = 6.6$, Me-18), 1.06– 1.15 (m, 1H, H_a-10), 1.17-1.36 (m, 2H, H_a-6, H_a-7), 1.35 (d, 3H, ${}^{3}J_{17F} = 21.4$, Me-17), 1.46–1.58 (m, 1H, H_a-9), 1.72 (ddd, 1H, ${}^{3}J_{4a,F} = 39.4$, $J_{4a,4e} = 14.2$, $J_{4a,3a} = 11.8$, H_a-4), 1.73–1.79 (m, 1H, H_e-8), 1.90 (dm, 1H, $J_{7e,7a} = 13.1$, the others J < 3.5 Hz, H_e-7), 2.03 (dm, 1H, $J_{10e,10a} = 12.2$, the others J < 4.5 Hz, H_e-10), 2.09 (ddd, 1H, $J_{4e,4a} = 14.2$, ${}^{3}J_{4e}$. $_F = 9.6, J_{4e,3a} = 2.4, H_e-4), 3.56-3.62$ (m, 1H, H_a-1), 4.77 (dd, 1H, $J_{3a,4a} = 11.8$, $J_{3a,4e} = 2.4$, H_a-3), 7.22–7.26 (m, 1H, H-14), 7.29-7.37 (m, 4H, H-12, H-13, H-15, H-16). NMR ¹³C (125 MHz, CDCl₃, δ, ppm, J_{C,F}, Hz): 75.71 (d, C-1), 74.64 (d, C-3), 45.77 (t, ${}^{2}J = 21.4$, C-4), 93.36 (s, ${}^{1}J =$ 171.5, C-5), 48.48 (d, ${}^{2}J = 20.3$, C-6), 22.42 (t, ${}^{3}J = 2.0$, C-7), 34.36 (t, C-8), 31.11 (d C-9), 41.16 (t, C-10), 142.30 (s, C-11), 125.79 (d, C-12, C-16), 128.25 (d, C-13, C-15), 127.27 (d, C-14), 24.20 (q, ${}^{2}J = 24.9$, C-17), 22.12 (q, C-18). $[\alpha]_D^{25.3} = 58.3$ (c 0.33, CHCl₃). HR-MS: m/z calcd. for C₁₅H₂₀O₄: 264.1356. Found: 264.1358.

(2R,4S,4aR,7R,8aR)-4-Fluoro-4,7-dimethyl-2-(4-nitrophenyl) octahydro-2H-chromene (S)-4c and (2R,4S(R),4aR,7R,8aR)-4,7-dimethyl-2-(4-nitrophenyl)octahydro-2H-chromen-4-ol 20

Compounds (S)-4c (0.480 g, 60%) and 2o (0.198 g, 25%, dr 1.5) were obtained from (–)-isopulegol and 4-nitrobenzaldehyde according to the *GP1*. The reaction was carried out for 120 min.

(5)-4c NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 0.88– 0.98 (m, 1H, H_a-8), 0.94 (d, 3H, $J_{18,9} = 6.6$, Me-18), 1.11 (ddd, 1H, $J_{10a,10e} \approx J_{10a,1a} \approx J_{10a,9a} = 12.2$, $J_{10a,F} = 1.5$, H_a-

10), 1.16–1.34 (m, 2H, H_a-6, H_a-7), 1.34 (d, 3H, ${}^{3}J_{17,F} =$ 21.5, Me-17), 1.46–1.57 (m, 1H, H_a-9), 1.61 (ddd, 1H, ³J_{4a}) $_F = 38.6, J_{4a,4e} = 14.2, J_{4a,3a} = 11.8, H_a-4), 1.76$ (dm, 1H, $J_{8e,8a} = 13.2$, the others J < 3.5 Hz, H_e-8), 1.86–1.92 (m, 1H, H_e-7), 2.01 (dm, 1H, $J_{10e,10a} = 12.2$, the others J < 4.5Hz, H_e-10), 2.10 (ddd, 1H, $J_{4e,4a} = 14.2$, ${}^{3}J_{4e,F} = 9.3$, $J_{4e,3a}$ = 2.4, H_e-4), 3.55–3.62 (m, 1H, H_a-1), 4.86 (dd, 1H, $J_{3a,4a}$ = 11.8, $J_{3a,4e}$ = 2.4, H_a-3), 7.50 (br.d, 2H, $J_{12,13}$ = $J_{16,15}$ = 8.9, H-12, H-16), 8.16 (br.d, 2H, $J_{13,12} = J_{15,16} = 8.9$, H-13, H-15). NMR ¹³C (125 MHz, CDCl₃, δ , ppm, $J_{C,F}$, Hz): 75.77 (d, C-1), 73.64 (d, C-3), 45.64 (t, ${}^{2}J = 21.5$, C-4), 93.01 (s, ${}^{1}J = 172.3$, C-5), 48.33 (d, ${}^{2}J = 20.1$, C-6), 22.34 $(t, {}^{3}J = 2.6, C-7), 34.23 (t, C-8), 31.05 (d, C-9), 40.97 (t, C-7))$ 10), 149.78 (s, C-11), 126.35 (d, C-12, C-16), 123.47 (d, C-13, C-15), 147.07 (c, C-14), 24.07 (q, ${}^{2}J = 24.8$, C-17), 22.06 (q, C-18). $[\alpha]_D^{25.3} = 56.4$ (c 0.47, CHCl₃). HRMS: m/zcalcd. for C₁₇H₂₂O₃NF: 307.1578. Found: 307.1580.

The NMR spectra were recorded for the mixture (S)-20 and (R)-20 isomers (1:0.70)

(**5**)-20 NMR ¹H (600 MHz, CDCl₃, δ, ppm, J/Hz): 0.88– 0.98 (m, 1H, H_a-8), 0.93 (d, 3H, $J_{18,9} = 6.6$, Me-18), 1.06– 1.21 (m, 3H, Ha-7, Ha-6, Ha-10), 1.22 (c, 3H, Me-17), 1.42-1.54 (m, 1H, H_a-9), 1.57 (dd, 1H, $J_{4a,4e} = 13.8$, $J_{4a,3a} =$ 11.7, Ha-4), 1.71-1.77 (m, 1H, He-8), 1.80-1.85 (m, 1H, H_e-7), 1.85 (dd, 1H, $J_{4e,4a} = 13.8$, $J_{4e,3a} = 2.4$, H_e-4), 1.96– 2.03 (m, 1H, He-10), 3.56-3.61 (m, 1H, Ha-1), 4.89 (dd, 1H, $J_{3a,4a} = 11.7, J_{3a,4e} = 2.4, H_a-3), 7.50$ (br.d, 2H, $J_{12,13} =$ $J_{16,15} = 8.8$, H-12, H-16), 8.15 (br.d, 2H, $J_{13,12} = J_{15,16} =$ 8.8, H-13, H-15). NMR ¹³C (150 MHz, CDCl₃, δ, ppm): 75.47 (d, C-1), 73.64 (d, C-3), 47.99 (t, C-4), 69.22 (s, C-5), 49.23 (d, C-6), 22.37 (t, C-7), 34.24 (t, C-8), 31.14 (d, C-9), 41.09 (t, C-10), 150.51 (s, C-11), 126.41 (d, C-12, C-16), 123.41 (d, C-13, C-15), 146.88 (c, C-14), 28.08 (q, C-17), 22.10 (q, C-18). HRMS: m/z calcd. for $C_{17}H_{23}O_4N$: 305.1622. Found: 305.1618.

(*R*)-20 NMR ¹H (600 MHz, CDCl₃, δ , ppm, J/Hz): 0.88– 0.99 (m, 1H, H_a-8), 0.94 (d, 3H, $J_{18,9} = 6.6$, Me-18), 1.00– 1.08 (m, 1H, H_a-7), 1.11–1.18 (m, 1H, H_a-10), 1.28–1.33 (m, 1H, H_a-6,), 1.30 (c, 3H, Me-17), 1.42–1.54 (m, 1H, H_a-9), 1.64 (br.dd, 1H, $J_{4a,4e} = 12.8$, $J_{4a,3a} = 12.0$, H_a-4), 1.71– 1.77 (m, 1H, H_e-8), 1.92 (dd, 1H, $J_{4e,4a} = 12.8$, $J_{4e,3a} = 2.3$, H_e-4), 1.91–1.96 (m, 1H, H_e-7), 1.96–2.03 (m, 1H, H_e-10),

Fig. 2 CB₁ receptor binding in CHO membranes (WIN55,212 and compounds, $10 \,\mu$ M)

3.28 (ddd, 1H, $J_{1a,6a} \approx J_{1a,10a} = 10.5$, $J_{1a,10e} = 4.2$, H_a-1), 4.53 (dd, 1H, $J_{3a,4a} = 12.0$, $J_{3a,4e} = 2.3$, H_a-3), 7.49 (br.d, 2H, $J_{12,13} = J_{16,15} = 8.8$, H-12, H-16), 8.16 (br.d, 2H, $J_{13,12} = J_{15,16} = 8.8$, H-13, H-15). NMR ¹³C (150 MHz, CDCl₃, 8, ppm): 77.41 (d, C-1), 75.55 (d, C-3), 50.08 (t, C-4), 70.62 (s, C-5), 51.82 (d, C-6), 22.86 (t, C-7), 34.18 (t, C-8), 31.30 (d, C-9), 41.26 (t, C-10), 149.62 (s, C-11), 126.42 (d, C-12, C-16), 123.49 (d, C-13, C-15), 147.04 (c, C-14), 21.16 (q, C-17), 22.05 (q, C-18). HRMS: m/z calcd. for C₁₇H₂₃O₄N: 305.1622. Found: 305.1618.

(2R,4S(R),4aR,7R,8aR)-2-Cyclohexyl-4-fluoro-4,7dimethyloctahydro-2H-chromene 4d and (2R,4S,4aR,7R,8aR)-2-cyclohexyl-4,7-dimethyloctahydro-2Hchromen-4-ol 2p

Compounds **4d** (0.417 g, 60%, *dr* 2.0) and (*S*)-**2p** (0.105 g, 15%) were obtained from (–)-isopulegol and cyclohexanecarbaldehyde according to the *GP1*. The reaction was carried out for 120 min. The ¹H and ¹³C NMR spectra of **2p** correspond to the literature data (Yadav et al. 2010).

The NMR spectra were recorded for the mixture (*S*)-**4d** and (*R*)-**4d** isomers (1:0.5). The most signals NMR ¹H of these two isomers overlapped (are the same), separately we managed to observe some signals only.

(5)-4d NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 0.89 (d, 3H, $J_{18,9} = 6.6$, Me-18), 1.29 (d, 3H, ${}^{3}J_{17,F} = 21.5$, Me-17), 3.27–3.33 (m, 1H, H_a-1), 3.38 (ddd, 1H, $J_{3a,4a} = 11.7$, $J_{3a,11} = 6.8$, $J_{3a,4e} = 2.0$, H_a-3), the remaining proton signals are overlapping multiplets at 0.81–1.50, 1.57–1.74, and 1.78–1.96 ppm. NMR ¹³C (125 MHz, CDCl₃, δ , ppm, $J_{C,F}$, Hz): 75.21 (d, C-1), 76.61 (d, C-3), 40.72 (t, ${}^{2}J = 21.6$, C-4), 93.43 (s, ${}^{1}J = 170.8$, C-5), 48.85 (d, ${}^{2}J = 20.3$, C-6), 22.41 (t, ${}^{3}J = 2.8$, C-7), 34.37 (t, C-8), 31.09 (d, C-9), 41.20 (t, C-

10), 42.49 (d, C-11), 28.34 and 29.04 (2t, C-12, C-16), 25.99, 26.08 and 26.48 (3t, C-13, C-14, C-15), 24.51 (q, ${}^{2}J$ = 25.2, C-17), 22.10 (q, C-18). HRMS: *m*/*z* calcd. for C₁₇H₂₈OF: 267.2119. Found: 267.2112.

(*R*)-4d NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 0.90 (d, 3H, $J_{18,9} = 6.6$, Me-18), 1.29 (d, 3H, ${}^{3}J_{17,F} = 23.4$, Me-17), 2.95 (ddd, 1H, $J_{1a,10a} \approx J_{1a,6a} \approx 10.5$, $J_{1a,10e} = 4.3$, Ha-1), 3.02 (br.dd, 1H, $J_{3a,4a} = 11.8$, $J_{3a,11} = 6.2$, Ha-3), the remaining proton signals are overlapping multiplets at 0.81–1.50, 1.57–1.74, and 1.78–1.96 ppm. NMR ¹³C (125 MHz, CDCl₃, δ , ppm, $J_{C,F}$, Hz): 76.91 (d, ${}^{3}J = 9.8$, C-1), 78.91 (d, ${}^{3}J = 11.1$, C-3), 42.41 (t, ${}^{2}J = 19.6$, C-4), 95.55 (s, ${}^{1}J = 171.7$, C-5), 50.25 (d, ${}^{2}J = 19.1$, C-6), 23.19 (t, C-7), 33.98 (t, C-8), 31.24 (d, C-9), 41.32 (t, C-10), 42.59 (d, C-11), 29.05 and 28.50 (2t, C-12, C-16), 25.99, 26.07 and 26.45 (3t, C-13, C-14, C-15), 19.58 (q, ${}^{2}J = 26.2$, C-17), 22.05 (q, C-18). HRMS: *m/z* calcd. for C₁₇H₂₈OF: 267.2119. Found: 267.2112.

(2R,4S(R),4aR,7R,8aR)-4-Fluoro-2-(furan-2-yl)-4,7dimethyloctahydro-2H-chromene 4e

Compounds **4e** (0.417 g, 70%, dr 7.3) and **2b** (0.105 g, 20%, dr 0.5) were obtained from (–)-isopulegol and furan-2-carbaldehyde according to the *GP1*. The reaction was carried out for 120 min. The ¹H and ¹³C NMR spectra of **2b** correspond to the literature data (Nazimova et al. 2016).

The NMR spectra were recorded for the mixture (S)-4e and (R)-4e isomers (1:0.1)

(S)-4e NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 0.85– 0.95 (m, 1H, H_a-8), 0.91 (d, 3H, $J_{16,9} = 6.6$, Me-16), 1.05 (ddd, 1H, $J_{10a,10e} = J_{10a,1a} = J_{10a,9a} = 12.2$, $J_{10a,F} = 1.5$,

Fig. 3 CB₂ binding in CHO membranes (WIN and compounds, $10 \,\mu$ M)

H_a-10), 1.16–1.36 (m, 2H, H_a-6, H_a-7), 1.36 (d, 3H, ${}^{3}J_{15,F}$ = 21.4, Me-15), 1.43–1.55 (m, 1H, H_a-9), 1.69–1.76 (m, 1H, H_e-8), 1.84–1.90 (m, 1H, H_e-7), 1.95–2.10 (m, 3H, 2H-4, H_e-10), 3.52–3.59 (m, 1H, H_a-1), 4.77-4.84 (m, 1H, H_a-3), 6.24 (ddd, 1H, $J_{14,13}$ = 3.3, $J_{14,12}$ = 0.9, $J_{14,3a}$ = 0.7, H-14), 6.29 (dd, 1H, $J_{13,14}$ = 3.3, $J_{13,12}$ = 1.8, H-13), 7.35 (dd, 1H, $J_{12,13}$ = 1.8, $J_{12,14}$ = 0.9, H-12). NMR ¹³C (125 MHz, CDCl₃, δ, ppm, $J_{C,F}$, Hz): 75.71 (d, C-1), 68.21 (d, C-3), 41.43 (t, ${}^{2}J$ = 21.9, C-4), 93.04 (s, ${}^{1}J$ = 171.7, C-5), 48.29 (d, ${}^{2}J$ = 20.3, C-6), 22.36 (t, ${}^{3}J$ = 2.6, C-7), 34.21 (t, C-8), 31.06 (d, C-9), 40.92 (t, C-10), 154.10 (s, C-11), 142.13 (d, C-12), 109.91 (d, C-13), 106.73 (d, C-14), 24.14 (q, ${}^{2}J$ = 24.8, C-15), 21.03 (q, C-16). HRMS: m/z calcd. for C₁₅H₂₁O₂F: 252.1520. Found: 252.1517.

(*R*)-4e NMR ¹H (500 MHz, CDCl₃, δ, ppm, J/Hz): 0.92 (d, 3H, $J_{16.9} = 6.6$, Me-16), 1.06–1.15 (m, 1H, H_a -10), 1.39 (dd, 3H, ${}^{3}J_{15,F} = 23.2$, $J_{15,4a} = 0.8$, Me-15), 1.43– 1.53 (m, 1H, H_a-9), 1.54–1.62 (m, 1H, H_a-6), 1.89–1.95 (m, 1H, He-7), 2.18–2.26 (m, 1H, H-4), 3.18–3.24 (m, 1H, H_a -1), 4.45 (dm, 1H, $J_{3a,4a} = 12.1$, the others J < 2.5 Hz, H_a -3), 6.26 (ddd, 1H, $J_{14,13} = 3.3$, $J_{14,12} = 0.9$, $J_{14,3a} = 0.7$, H-14), 6.31 (dd, 1H, *J*_{13,14} = 3.3, *J*_{13,12} = 1.8, H-13), 7.36 (dd, 1H, J_{12} $_{13} = 1.8$, J_{12} $_{14} = 0.9$, H-12), the remaining proton signals are overlapped by the signals of the main isomer (S)-4e at 0.85-0.95, 1.69–1.76 and 1.95–2.10 ppm. NMR ¹³C (125 MHz, CDCl₃, δ , ppm, $J_{C,F}$, Hz): 77.43 (d, ${}^{3}J = 9.9$, C-1), 70.05 (d, ${}^{3}J = 12.7$, C-3), 43.09 (t, ${}^{2}J =$ 21.1, C-4), 94.51 (s, ${}^{1}J = 173.2$, C-5), 49.76 (d, ${}^{2}J = 19.5$, C-6), 23.12 (t, C-7), 33.82 (t, C-8), 31.22 (d, C-9), 41.06 (t, C-10), 153.68 (s, C-11), 142.18 (d, C-12), 109.99 (d, C-13), 106.70 (d, C-14), 19.31 (q, ${}^{2}J = 26.0$, C-15), 21.98 (q, C-16). HRMS: m/z calcd. for C₁₅H₂₁O₂F: 252.1520. Found: 252.1517.

(2R,4S(R),4aR,7R,8aR)-4-Fluoro-4,7-dimethyl-2-(thiophen-2yl)octahydro-2H-chromene 4f

Compounds **4f** (0.416 g, 60%, dr 3.5) and **2e** (0.205 g, 30%, dr 0.29) were obtained from (–)-isopulegol and thiophene-2-carbaldehyde according to the *GP1*. The reaction was carried out for 60 min. The ¹H and ¹³C NMR spectra of **2e** correspond to the literature data (Nazimova et al. 2016).

The NMR spectra were recorded for the mixture (S)-4f and (R)-4f isomers (1:0.2)

(**S**)-4f NMR ¹H (500 MHz, CDCl₃, δ, ppm, J/Hz): 0.87– 0.97 (m, 1H, H_a-8), 0.93 (d, 3H, $J_{16.9} = 6.6$, Me-16), 1.04– 1.12 (m, 1H, H_a-10), 1.17–1.34 (m, 2H, H_a-6, H_a-7), 1.36 (d, 3H, ${}^{3}J_{15F} = 21.5$, Me-15), 1.44–1.55 (m, 1H, H_a-9), 1.71–1.78 (m, 1H, H_e-8), 1.86 (ddd, 1H, ${}^{3}J_{4a,F} = 39.0$, J_{4a,4e} $= 14.1, J_{4a,3a} = 11.6, H_a-4), 1.85-1.91$ (m, 1H, H_e-7), 2.02 (dm, 1H, $J_{10e,10a} = 12.2$, the others J < 4.5 Hz, H_e-10), 2.20 (ddd, 1H, $J_{4e,4a} = 14.1$, ${}^{3}J_{4e,F} = 9.5$, $J_{4e,3a} = 2.4$, H_e-4), 3.55–3.62 (m, 1H, H_a-1), 5.01 (dd, 1H, $J_{3a,4a} = 11.6$, $J_{3a,4e}$ = 2.4, H_a-3), 6.94 (dd, 1H, $J_{13,12}$ = 5.0, $J_{13,14}$ = 3.5, H-13), 6.96 (ddd, 1H, $J_{14,13} = 3.5$, $J_{14,12} = 1.3$, $J_{14,3a} = 0.8$, H-14), 7.21 (dd, 1H, $J_{12}_{13} = 5.0$, $J_{12}_{14} = 1.3$, H-12). NMR ¹³C (125 MHz, CDCl₃, δ, ppm, J_{C,F}, Hz): 75.94 (d, C-1), 70.71 (d, C-3), 45.54 (t, ${}^{2}J = 21.5$, C-4), 93.23 (s, ${}^{1}J = 171.8$, C-5), 48.32 (d, ${}^{2}J = 20.3$, C-6), 22.38 (t, ${}^{3}J = 2.6$, C-7), 34.27 (t, C-8), 31.10 (d, C-9), 41.00 (t, C-10), 145.42 (s, C-11), 124.43 (d, C-12), 126.32 (d, C-13), 123.55 (d, C-14), 24.13 $(q, {}^{2}J = 24.8, C-15), 22.07 (q, C-16).$ HRMS: *m/z* calcd. for C15H21OFS: 268.1292. Found: 268.1288.

(*R*)-4f NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 0.94 (d, 3H, $J_{16,9} = 6.6$, Me-16), 1.04–1.17 (m, 2H, H_a-7, H_a-10),

Fig. 4 a FAAH activity in the presence of 2i or URB597 measured in U937 cell homogenate. t_{Inh} 15', AEA 100 nM 15', 400 rpm, 37 °C, U937 1 Mio/mL. b AEA uptake in the presence of 2i or WOBE437 measured in U937 living cells. t_{Inh} 15', AEA 100 nM 15', 37 °C, U937 2 Mio/mL

1.42 (dd, 3H, ${}^{3}J_{15,F} = 23.3$, $J_{15,4a} = 0.8$, Me-15), 1.91–1.96 (m, 1H, H_e-7), 2.08–2.23 (m, 2H, 2H-4), 3.21–3.27 (m, 1H, H_a-1), 4.61–4.69 (m, 1H, H_a-3), 6.92–6.98 (m, 2H, H-13, H-14), 7.23 (dd, 1H, $J_{12,13} = 5.0$, $J_{12,14} = 1.3$, H-12), the remaining proton signals are overlapped by the signals of the main isomer (*S*)-**4f** at 0.87–1.01, 1.44–1.57, 1.70–1.78 and 1.99–2.06 ppm. NMR ¹³C (125 MHz, CDCl₃, δ , ppm, $J_{C,F}$, Hz): 77.60 (d, ${}^{3}J = 9.8$, C-1), 72.47 (d, ${}^{3}J = 12.6$, C-3), 47.00 (t, ${}^{2}J = 20.3$, C-4), 94.59 (s, ${}^{1}J = 173.0$, C-5), 49.75 (d, ${}^{2}J = 19.5$, C-6), 23.15 (t, C-7), 33.87 (t, C-8), 31.26 (d, C-9), 41.13 (t, C-10), 145.42 (s, C-11), 124.74 (d, C-12), 126.32 (d, C-13), 123.67 (d, C-14), 19.41 (q, ${}^{2}J = 25.9$, C-15), 22.02 (q, C-16). HRMS: *m*/*z* calcd. for C₁₅H₂₁OFS: 268.1292. Found: 268.1288.

5-Hydroxymethylfurfural (5-(hydroxymethyl)furan-2carbaldehyde)

A solution of fructose (10.8 g), SnCl_4 (1.50 g), TBAB (1.92 g) in DMSO (60 ml) was heated at 100 °C for 2 h in air. Then, a saturated NaHCO₃ solution was added and product was extracted with EtOAc (6 × 20 ml). The combined organic layers was washed twice with 20 ml brine and dried over Na₂SO₄. The solvent was distilled off and of 5-(hydroxymethyl)furan-2-carbaldehyde (1.58 g, 21%) was obtained.

(2R,4R(S),4aR,7R,8aR)-2-(5-(Hydroxymethyl)furan-2-yl)-4,7dimethyloctahydro-2H-chromen-4-ol 2q

5-(Hydroxymethyl)furan-2-carbaldehyde (1.17 g) and the solution of (-)-isopulegol $(1.72 \text{ g} \text{ in } 10 \text{ ml } \text{CH}_2\text{Cl}_2)$ were added to the suspension of K10 clay (3 g in 20 ml CH_2Cl_2). The solvent was distilled off. The mixture was stored at r.t. for 2 h and then ethyl acetate (15 ml) was added. The catalyst was filtered off, the solvent was distilled off, and the

residue was separated on a SiO₂ column to afford (*R*)-2q (0.502 g, 16%) and mixture of (*R*)-2q and (*S*)-2q isomers (0.218 g, 7%, dr 1.0).

(**S**)-2q NMR ¹H (600 MHz, CDCl₃, δ, ppm, J/Hz): 0.84– 0.93 (m, 1H, H_a-8), 0.89 (d, 3H, $J_{16.9} = 6.6$, Me-16), 0.97– 1.05 (m, 1H, H_a-10), 1.10-1.19 (m, 2H, H_a-6, H_a-7), 1.23 (s, 3H, Me-15), 1.39-1.47 (m, 1H, Ha-9), 1.67-1.73 (m, 1H, H_e-8), 1.79 (dd, 1H, $J_{4e,4a} = 13.7$, $J_{4e,3a} = 2.2$, H_e-4), 1.90 (dm, 1H, $J_{7e,7a} = 13.2$, the others J < 3.5 Hz, H_e-7), 1.92– 1.97 (m, 1H, H_e-10), 1.94 (dd, 1H, $J_{4a,4e} = 13.7$, $J_{4a,3a} =$ 12.0, H_a-4), 3.52-3.57 (m, 1H, H_a-1), 4.52 (s, 2H, 2H-17), 4.80 (dd, 1H, $J_{3a,4a} = 12.0$, $J_{3a,4e} = 2.2$, H_a-3), 6.15–6.18 (m, 2H, H-13, H-14). NMR ¹³C (150 MHz, CDCl₃, δ, ppm): 75.55 (d, C-1), 68.18 (d, C-3), 43.57 (t, C-4), 69.05 (s, C-5), 49.18 (d, C-6), 22.39 (t, C-7), 34.22 (t, C-8), 31.15 (d, C-9), 41.00 (t, C-10), 154.63 (s, C-11), 153.54 (d, C-12), 108.11 (d, C-13), 107.41 (d, C-14), 28.08 (q, C-15), 22.07 (q, C-16), 57.38 (t, C-17). HRMS: m/z calcd. for C₁₆H₂₄O₄: 280.1675. Found: 280.1672.

(*R*)-2q NMR ¹H (600 MHz, CDCl₃, δ , ppm, J/Hz): 0.84– 0.93 (m, 1H, H_a-8), 0.90 (d, 3H, $J_{16,9} = 6.6$, Me-16), 0.95– 1.03 (m, 1H, H_a-7), 1.04–1.10 (m, 1H, H_a-10), 1.29 (s, 3H, Me-15), 1.38–1.46 (m, 1H, H_a-9), 1.45–1.51 (m, 1H, H_a-6), 1.64–1.70 (m, 1H, H_e-8), 1.75–1.82 (m, 1H, H_e-7), 1.95–2.00 (m, 1H, H_e-10), 2.01 (dd, 1H, $J_{4e,4a} = 12.4$, $J_{4e,3a} = 2.4$, H_e-4), 2.08 (dd, 1H, $J_{4a,4e} = 12.4$, $J_{4a,3a} = 11.8$, H_a-4), 3.28–3.33 (m, 1H, H_a-1), 4.47 (dd, 1H, $J_{3a,4a} = 11.8$, $J_{3a,4e} = 2.4$, H_a-3), 4.54 (s, 2H, 2H-17), 6.19–6.21 (m, 2H, H-13, H-14). NMR ¹³C (150 MHz, CDCl₃, δ , ppm): 77.13 (d, C-1), 69.85 (d, C-3), 40.80 (t, C-4), 75.89 (s, C-5), 48.91 (d, C-6), 23.03 (t, C-7), 34.07 (t, C-8), 31.26 (d, C-9), 41.26 (t, C-10), 154.06 (s, C-11), 153.63 (d, C-12), 108.23 (d, C-13), 107.44 (d, C-14), 18.15 (q, C-15), 22.01 (q, C-16), 57.34 (t, C-17). HRMS: *m/z* calcd. for C₁₆H₂₄O₄: 280.1675. Found: 280.1672.

(2R,4R,4aR,7R,8aR)-4,7-Dimethyl-2-(5-((4-methylpiperidin-1-yl)methyl)furan-2-yl)octahydro-2H-chromen-4-ol 2s

According to the *GP2* the reaction of (*R*)-2q (0.191 g) and 4-methylpiperidine (0.475 g) gave compound 2s (0.135 g, 55%).

(*R*)-2s NMR ¹H (600 MHz, CDCl₃, δ , ppm, J/Hz): 0.85– 0.94 (m, 1H, H_a-8), 0.88 (d, 3H, $J_{23,20} = 6.2$, Me-23), 0.90 (d, 3H, $J_{16.9} = 6.6$, Me-16), 0.97–1.05 (m, 1H, H_a-7), 1.06 (ddd, 1H, $J_{10a,10e} = J_{10a,9a} = 12.2$, $J_{10a,1a} = 11.1$, H_a-10), 1.20-1.32 (m, 4H, Ha-6, H-19, H-20, H-21), 1.23 (s, 3H, Me-15), 1.38-1.47 (m, 1H, Ha-9), 1.54-1.60 (m, 2H, H-19', H-21'), 1.70 (dm, 1H, $J_{8e,8a} = 12.9$, the others J <3.6 Hz, H_{e} -8), 1.87–2.00 (m, 6H, 2H-4, H_{e} -7, H_{e} -10, H-18, H-22), 2.81-2.88 (m, 2H, H-18', H-22'), 3.21 (ddd, 1H, $J_{1a,10a} = 11.1$, $J_{1a,6a} = 10.2$, $J_{1a,10e} = 4.3$, H_a-1), 3.45 (d, 1H, ${}^{2}J = 14.1$) and 3.50 (d, 1H, ${}^{2}J = 14.1$) -2H-17 (AB system), 4.48 (dd, 1H, $J_{3a,4a} = 9.0$, $J_{3a,4e} = 5.2$, H_a -3), 6.10 (d, 1H, $J_{13,14}$ = 3.2, H-13), 6.18 (d, 1H, $J_{14,13}$ = 3.2, H-14). NMR ¹³C (150 MHz, CDCl₃, δ , ppm): 77.35 (d, C-1), 70.08 (d, C-3), 45.69 (t, C-4), 70.60 (s, C-5), 51.91 (d, C-6), 22.93 (t, C-7), 34.23 (t, C-8), 31.37 (d, C-9), 41.26 (t, C-10), 153.90 (s, C-11), 151.50 (s, C-12), 109.21 (d, C-13), 106.98 (d, C-14), 21.15 (q, C-15), 22.04 (q, C-16), 55.16 (t, C-17), 53.50 and 53.36 (t, C-18, C-22), 33.98 and 33.99 (t, C-19, C-21) 30.40 (d, C-20), 21.70 (q, C-23). HRMS: m/z calcd. for C₂₂H₃₅NO₃: 361.2617. Found: 361.2612.

(2R,4R(S),4aR,7R,8aR)-4,7-Dimethyl-2-(5-(pyrrolidin-1ylmethyl)furan-2-yl)octahydro-2H-chromen-4-ol 2t

According to the *GP2* the reaction of 2q (0.150 g, dr 1.0) and pyrrolidine (0.266 g) gave compound 2t (0.128 g, 72%, dr 4.0).

The NMR spectra were recorded for the mixture (R)-2t and (S)-2t isomers (1:0.25)

(*R*)-2t NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 0.84– 0.93 (m, 1H, H_a-8), 0.89 (d, 3H, $J_{16,9} = 6.5$, Me-16), 0.95– 1.09 (m, 2H, H_a-7, H_a-10), 1.21 (s, 3H, Me-15), 1.26 (ddd, 1H, $J_{6a,7a} = 12.2$, $J_{6a,1a} = 10.2$, $J_{6a,7e} = 3.2$, H_a-6), 1.35– 1.47 (m, 1H, H_a-9), 1.69 (dm, 1H, $J_{8e,8a} = 12.8$, the others J < 3.5 Hz, H_e-8), 1.72–1.77 (m, 4H, 2H-19, 2H-20), 1.87– 1.99 (m, 4H, 2H-4, H_e-7, H_e-10), 2.48–2.54 (m, 4H, 2H-18, 2H-21), 3.20 (ddd, 1H, $J_{1a,10a} = 11.0$, $J_{1a,6a} = 10.2$, $J_{1a,10e} = 4.3$, H_a-1), 3.54 (d, 1H, ²J = 14.0) and 3.60 (d, 1H, ²J = 14.0) –2H-17 (AB system), 4.46 (dd, 1H, $J_{3a,4a} = 10.0$, $J_{3a,4e} = 4.3$, H_a-3), 6.08 (d, 1H, $J_{13,14} = 3.1$, H-13), 6.16 (d, 1H, $J_{14,13} = 3.1$, H-14). NMR ¹³C (125 MHz, CDCl₃, δ , ppm): 77.32 (d, C-1), 70.08 (d, C-3), 45.73 (t, C-4), 70.47 (s, C-5), 51.88 (d, C-6), 22.90 (t, C-7), 34.22 (t, C-8), 31.34 (d, C-9), 41.26 (t, C-10), 153.73 (s, C-11), 152.34 (s, C-12), 108.17 (d, C-13), 106.93 (d, C-14), 21.08 (q, C-15), 22.01 (q, C-16), 52.01 (t, C-17), 53.70 (t, C-18, C-21), 23.32 (t, C-19, C-20). HRMS: m/z calcd. for C₂₀H₃₁NO₃: 333.2304. Found: 333.2299.

(**5**)-2t NMR ¹H (500 MHz, CDCl₃, δ, ppm, J/Hz): 0.88 (d, 3H, $J_{16.9} = 6.5$, Me-16), 1.11–1.17 (m, 1H, H_a-6), 1.22 (s, 3H, Me-15), 1.72-1.81 (m, 2H, 2H-4), 3.49-3.55 (m, 1H, H_a-1), 3.56 (d, 1H, ${}^{2}J = 14.0$) and 3.59 (d, 1H, ${}^{2}J = 14.0$) – 2H-17 (AB system), 4.79 (dd, 1H, $J_{3a,4a} = 12.0$, $J_{3a,4e} = 2.3$, H_a -3), 6.07 (d, 1H, $J_{13,14}$ = 3.1, H-13), 6.14 (d, 1H, $J_{14,13}$ = 3.1, H-14), the remaining proton signals are overlapped by the signals of the main isomer (R)-2t at 0.83–0.93, 0.97– 1.10, 1.35–1.47, 1.66–1.77 and 2.47–2.55 ppm. NMR ¹³C (125 MHz, CDCl₃, δ, ppm): 75.44 (d, C-1), 68.20 (d, C-3), 43.74 (t, C-4), 69.03 (s, C-5), 49.23 (d, C-6), 22.41 (t, C-7), 34.29 (t, C-8), 31.17 (d, C-9), 41.08 (t, C-10), 152.26 (s, C-12), 108.12 (d, C-13), 106.97 (d, C-14), 28.14 (q, C-15), 22.07 (q, C-16), 51.99 (t, C-17), 53.65 (t, C-18, C-21), 23.32 (t, C-19, C-20), we could not assign the signal of C-11 with certainty. HRMS: m/z calcd. for C₂₀H₃₁NO₃: 333.2304. Found: 333.2299.

(2R,4R,4aR,7R,8aR)-4,7-Dimethyl-2-(5-(morpholinomethyl) furan-2-yl)octahydro-2H-chromen-4-ol 2u

According to the *GP2* the reaction of (*R*)-2q (0.231 g) and morpholine (0.493 g) gave compound 2u (0.242 g, 84%).

(*R*)-2u NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 0.78– 0.88 (m, 1H, H_a-8), 0.84 (d, 3H, $J_{16.9} = 6.6$, Me-16), 0.90-0.99 (m, 1H, H_a-7), 1.00 (ddd, 1H, $J_{10a,10e} = J_{10a,9a} = 12.2$, $J_{10a,1a} = 11.0, H_a-10), 1.16$ (s, 3H, Me-15), 1.22 (ddd, 1H, $J_{6a,7a} = 12.2, J_{6a,1a} = 10.2, J_{6a,7e} = 3.2, H_a-6), 1.31-1.43$ (m, 1H, H_a-9), 1.64 (dm, 1H, $J_{8e,8a} = 12.8$, the others J <3.5 Hz, He-8), 1.84-1.95 (m, 4H, 2H-4, He-7, He-10), 2.36-2.41 (m, 4H, 2H-18, 2H-21), 3.16 (ddd, 1H, *J*_{1a,10a} = 11.0, $J_{1a,6a} = 10.2, J_{1a,10e} = 4.3, H_a-1), 3.40$ (d, 1H, ²J = 14.0) and 3.44 (d, 1H, ${}^{2}J = 14.0$) –2H-17 (AB system), 3.60–3.65 (m, 4H, 2H-19, 2H-20), 4.41 (dd, 1H, $J_{3a,4a} = 10.5$, $J_{3a,4e} =$ 3.6, H_a -3), 6.06 (d, 1H, $J_{13,14}$ = 3.2, H-13), 6.12 (d, 1H, $J_{14,13} = 3.2$, H-14). NMR ¹³C (125 MHz, CDCl₃, δ , ppm): 77.20 (d, C-1), 69.88 (d, C-3), 45.55 (t, C-4), 70.12 (s, C-5), 51.69 (d, C-6), 22.76 (t, C-7), 34.11 (t, C-8), 31.20 (d, C-9), 41.14 (t, C-10), 154.17 (s, C-11), 150.45 (s, C-12), 109.36 (d, C-13), 106.82 (d, C-14), 20.91 (q, C-15), 21.89 (q, C-16), 55.01 (t, C-17), 52.92 (t, C-18, C-21), 66.51 (t, C-19, C-20). $[\alpha]_D^{27.3} = -7.0$ (c 0.74, CHCl₃). HRMS: m/z calcd. for C₂₀H₃₁NO₄: 349.2253. Found: 349.2248.

(2R,4R,4aR,7R,8aR)-2-(5-((Dibutylamino)methyl)furan-2-yl)-4,7-dimethyloctahydro-2H-chromen-4-ol 2v

According to the *GP2* the reaction of (*R*)-2q (0.170 g) and dibutylamine (0.542 g) gave compound 2v (0.112 g, 48%).

(*R*)-2v NMR 1 H (600 MHz, CDCl₃, δ , ppm, J/Hz): 0.85– 0.94 (m, 1H, H_a-8), 0.87 (t, 6H, $J_{21,20} = J_{25,24} = 7.4$, Me-21, Me-25), 0.90 (d, 3H, $J_{16,9} = 6.6$, Me-16), 0.98–1.06 (m, 1H, H_a -7), 1.07 (ddd, 1H, $J_{10a,10e} = J_{10a,9a} = 12.2$, $J_{10a,1a} = 11.1$, Ha-10), 1.22-1.31 (m, 5H, Ha-6, 2H-20, 2H-24), 1.24 (s, 3H, Me-15), 1.39-1.47 (m, 5H, Ha-9, 2H-19, 2H-23), 1.71 (dm, 1H, $J_{8e.8a} = 12.8$, H_e-8), 1.89–2.01 (m, 4H, 2H-4, H_e-7, He-10), 2.35–2.43 (m, 4H, 2H-18, 2H-22), 3.23 (ddd, 1H, $J_{1a,10a} = 11.1, J_{1a,6a} = 10.2, J_{1a,10e} = 4.3, H_a-1), 3.58 (d, 1H, d)$ ${}^{2}J = 15.3$) and 3.60 (d, 1H, ${}^{2}J = 15.3$) – 2H-17, 4.46 (dd, 1H, $J_{3a,4a} = 11.2$, $J_{3a,4e} = 2.8$, H_a-3), 6.07 (d, 1H, $J_{13,14} =$ 3.1, H-13), 6.18 (d, 1H, $J_{14,13} = 3.1$, H-14). NMR ¹³C (150) MHz, CDCl₃, δ, ppm): 77.33 (d, C-1), 70.11 (d, C-3), 45.73 (t, C-4), 70.61 (s, C-5), 51.92 (d, C-6), 22.93 (t, C-7), 34.23 (t, C-8), 31.37 (d, C-9), 41.28 (t, C-10), 153.48 (s, C-11), 152.37 (s, C-12), 108.65 (d, C-13), 107.01 (d, C-14), 21.13 (q, C-15), 22.05 (q, C-16), 49.99 (t, C-17), 53.43 (t, C-18, C-22), 29.02 (t, C-19, C-23), 20.54 (t, C-20, C-24), 13.95 (t, C-21, C-25). $[\alpha]_D^{27.3} = -8.2$ (c 0.34, CHCl₃). HRMS: m/zcalcd. for C₂₄H₄₁NO₃: 391.3086. Found: 391.3081.

(2S,4S(R),4aR,8R,8aR)-2-(Furan-2-yl)-4,7-dimethyl-3,4,4a,5,8,8a-hexahydro-2H-chromene-4,8-diol 1b

According to the *GP3* the reaction of diol **5** (0.30 g), furan-2-carbaldehyde (0.17 g) and montmorillonite K10 (1.0 g) for 45 min gave compound **1b** (0.268 g, 63% on converted **5**, dr 1.0). The conversion of the diol **5** was 90%.

NMR spectra were recorded for a mixture (S)-1b and (R)-1b (1.0: 0.75)

(**5**)-1**b** NMR ¹H (600 MHz, CDCl₃ + CD₃OD, δ , ppm, J/Hz): 1.48 (s, 3H, Me-15), 1.70 (br.d, 1H, $J_{4e,4a} = 13.3$, He-4), 1.77 (br.s, 3H, Me-16), 1.78–1.83 (m, 1H, Ha-6), 2.13–2.22 (m, 3H, Ha-4, 2H-7), 3.80 (br.t, 1H, $J_{1e,6a} \approx J_{1e,10e} \approx 2.2$, He-1), 3.91 (br.s, 1H, He-10), 4.49 (dd, 1H, $J_{3a,4a} = 12.4$, $J_{3a,4e} = 2.4$, HHa-3), 5.60–5.63 (m, 1H, H-8), 6.26 (d, 1H, $J_{14,13} = 3.2$, HH-14), 6.29 (dd, 1H, $J_{13,14} = 3.2$, $J_{13,12} = 1.9$, H-13), 7.35 (d, 1H, $J_{12,13} = 1.9$, H-12). NMR ¹³C (150 MHz, CDCl₃ + CD₃OD, δ , ppm): 77.80 (d, C-1), 70.89 (d, C-3), 38.55 (t, C-4), 70.77 (s, C-5), 38.54 (d, C-6), 22.52 (t, C-7), 124.77 (d, C-8), 131.24 (s, C-9), 70.39 (d, C-10), 153.71 (s, C-11), 142.27 (d, C-12), 110.02 (d, C-13), 107.03 (d, C-14), 26.96 (q, C-15), 20.61 (q, C-16). HR-MS: m/z calcd. for C₁₅H₂₀O₄: 264.1356. Found: 264.1358.

(*R*)-1b NMR ¹H (600 MHz, CDCl₃ + CD₃OD, δ , ppm, J/ Hz): 1.27 (s, 3H, Me-15), 1.62 (br.d, 1H, $J_{4e,4a} = 14.0$, H_e-4), 1.65–1.70 (m, 1H, H_a-6), 1.77 (br.s, 3H, Me-16), 1.98– 2.03 (m, 2H, H-7), 2.07 (dd, 1H, $J_{4a,4e} = 14.0$, $J_{4a,3a} = 12.0$, H_a-4), 3.92 (br.s, 1H, H_e-10), 4.23 (br.t, 1H, $J_{1e,6a} < 2.5$, H_e-1), 4.84 (dd, 1H, $J_{3a,4a} = 12.0$, $J_{3a,4e} = 2.4$, H_a-3), 5.54–5.57 (m, 1H, H-8), 6.23 (d, 1H, $J_{14,13} = 3.2$, H-14), 6.28 (dd, 1H, $J_{13,14} = 3.2$, $J_{13,12} = 1.9$, H-13), 7.34 (d, 1H, $J_{12,13} = 1.9$, H-12) NMR ¹³C (150 MHz, CDCl₃ + CD₃OD, δ , ppm): 75.35 (d, C-1), 69.27 (d, C-3), 37.57 (t, C-4), 70.47 (s, C-5), 38.21 (d, C-6), 24.40 (t, C-7), 124.17 (d, C-8), 131.70 (s, C-9), 70.36 (d, C-10), 154.28 (s, C-11), 142.17 (d, C-12), 109.94 (d, C-13), 106.97 (d, C-14), 28.36 (q, C-15), 20.71 (q, C-16). HR-MS: *m*/z calcd. for C₁₅H₂₀O₄: 264.1356. Found: 264.1358.

(2S,4S(R),4aR,8R,8aR)-2-(Furan-3-yl)-4,7-dimethyl-3,4,4a,5,8,8a-hexahydro-2H-chromene-4,8-diol 1d

According to the *GP3* the reaction of diol **5** (0.30 g, dr 1.0), furan-3-carbaldehyde (0.17 g) and montmorillonite K10 (1.0 g) for 45 min gave compound **1d** (0.243 g, 63% on converted **5**, dr 1.4). The conversion of the diol **5** was 78%.

(S)-1d NMR ¹H (500 MHz, CDCl₃/CD₃OD, δ , ppm, J/Hz): 1.41 (d, 3H, $J_{15,4a} = 0.7$, Me-15), 1.60 (ddd, 1H, $J_{4e,4a} =$ 13.3, $J_{4e,3a} = 2.7$, $J_{4e,6a} = 1.2$, H_e-4), 1.72 (m, 3H, all $J \le$ 2.5 Hz, Me-16), 1.72-1.77 (m, 1H, Ha-6), 1.92 (ddq, 1H, $J_{4a,4e} = 13.3, J_{4a,3a} = 12.1, J_{4a,15} = 0.7, H_a-4), 2.04-2.10$ (m, 2H, 2H-7), 3.71 (dd, 1H, $J_{1e,10e} = 2.4$, $J_{1e,6a} = 2.2$, H_e -1), 3.78 (br.s, 1H, H_e-10), 4.37 (dd, 1H, $J_{3a,4a} = 12.1$, $J_{3a,4e}$ $= 2.7, H_a-3$, 5.53–5.57 (m, 1H, H-8), 6.32 (dd, 1H, $J_{14,13}$ = 1.8, $J_{14,12}$ = 0.8, H-14), 7.28 (dd, 1H, $J_{13,14}$ = 1.8, $J_{13,12}$ = 1.5, H-13), 7.32 (ddd, 1H, $J_{12,13} = 1.5$, $J_{12,14} = 0.8$, $J_{12,3a}$ = 0.6, H-12). NMR ¹³C (125 MHz, CDCl₃/CD₃OD, δ , ppm): 77.77 (d, C-1), 70.27 (d, C-3), 40.86 (t, C-4), 70.33 (s, C-5), 38.27 (d, C-6), 22.49 (t, C-7), 124.42 (d, C-8), 131.09 (s, C-9), 70.09 (d, C-10), 126.26 (s, C-11), 139.11 (d, C-12), 142.86 (d, C-13), 108.77 (d, C-14), 26.58 (q, C-15), 20.45 (q, C-16). HRMS: m/z calcd. for C₁₅H₂₀O₄: 264.1356. Found: 264.1357.

NMR spectra (R)-1d were recorded for a mixture (S)-1d and (R)-1d (1.0:2.0)

(*R*)-1d NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 1.23 (s, 3H, Me-15), 1.62 (ddd, $J_{4e,4a} = 14.1$, $J_{4e,3a} = 2.6$, $J_{4e,6a} = 1.3$, H_e-4), 1.65–1.70 (m, 1H, H_a-6), 1.78 (m, 3H, all $J \le 2.5$ Hz, Me-16), 1.81 (dd, 1H, $J_{4a,4e} = 14.1$, $J_{4a,3a} = 11.8$, H_a-4), 1.92–2.01 (m, 2H, 2H-7), 3.90 (br.s, 1H, H_e-10), 4.20 (dd, 1H, $J_{1e,10e} = 2.4$, $J_{1e,6a} = 2.2$, H_e-1), 4.76 (dd, 1H, $J_{3a,4a} = 11.8$, $J_{3a,4e} = 2.6$, H_a-3), 5.53–5.56 (m, 1H, H-8), 6.35

(dd, 1H, $J_{14,13} = 1.8$, $J_{14,12} = 0.8$, H-14), 7.32 (dd, 1H, $J_{13,14} = 1.8$, $J_{13,12} = 1.5$, H-13), 7.34 (ddd, 1H, $J_{12,13} = 1.5$, $J_{12,14} = 0.8$, $J_{12,3a} = 0.5$, H-12). NMR ¹³C (125 MHz, CDCl₃, δ , ppm): 75.17 (d, C-1), 68.73 (d, C-3), 40.33 (t, C-4), 70.67 (s, C-5), 38.10 (d, C-6), 24.44 (t, C-7), 124.06 (d, C-8), 131.70 (s, C-9), 70.50 (d, C-10), 126.68 (s, C-11), 139.05 (d, C-12), 142.84 (d, C-13), 108.85 (d, C-14), 28.25 (q, C-15), 20.72 (q, C-16). HRMS: m/z calcd. for C₁₅H₂₀O₄: 264.1356. Found: 264.1357.

(2S,4S(R),4aR,8R,8aR)-4,7-dimethyl-2-(5-methylfuran-2-yl)-3,4,4a,5,8,8a-hexahydro-2H-chromene-4,8-diol 1e

According to the *GP3* the reaction of diol **5** (0.40 g), 5methylfuran-2-carbaldehyde (0.26 g) and montmorillonite K10 (1.3 g) for 150 min gave compounds **1e** (0.359 g, 58% on converted **5**, dr 1.5), (2*S*,4a*S*,8*R*,8a*R*)-7-methyl-4methylene-2-(5-methylfuran-2-yl)-3,4,4a,5,8,8a-hexahydro-2*H*-chromen-8-ol **6** (0.025 g, 5% on converted **5**) and (2*S*,4*S*,4a*R*,8*S*,8a*R*)-4,7-dimethyl-2-(5-methylfuran-2-yl)-

3,4,4a,5,8,8a-hexahydro-2H-4,8-epoxychromene 7 (0.029 g, 5% on converted 5). The conversion of the diol 5 was 93%.

NMR spectra were recorded for a mixture (S)-1e and (R)-1e (1.0: 0.75)

(S)-1e NMR ¹H (500 MHz, CDCl₃/CD₃OD, δ , ppm, J/Hz): 1.47 (s, 3H, Me-15), 1.64 (ddd, 1H, $J_{4e,4a} = 13.3$, $J_{4e,3a} =$ 2.5, $J_{4e,6a} = 1.2$, H_e-4), 1.77 (m, 3H, all $J \le 2.5$ Hz, Me-16), 1.84 (br.t, 1H, $J_{6a,7} = 8.3$, H_a-6), 2.12–2.18 (m, 2H, 2H-7), 2.21 (dd, 1H, $J_{4a,4e} = 13.3$, $J_{4a,3a} = 12.4$, H_a-4), 2.25 (d, 3H, $J_{17,13} = 1.0$, Me-17), 3.79 (dd, 1H, $J_{1e,10e} = 2.4$, $J_{1e,6a} = 2.1$, H_e-1), 3.83 (br.s, 1H, H_e-10), 4.46 (dd, 1H, $J_{3a,4a} = 12.4$, $J_{3a.4e} = 2.5$, H_a-3), 5.59–5.63 (m, 1H, H-8), 5.90 (dq, 1H, $J_{13,14} = 3.1, J_{13,17} = 1.0, \text{H-13}$, 6.17 (d, 1H, $J_{14,13} = 3.1, \text{H-}$ 14). NMR ¹³C (125 MHz, CDCl₃/CD₃OD, δ, ppm): 78.83 (d, C-1), 71.60 (d, C-3), 38.49 (t, C-4), 70.79 (s, C-5), 39.08 (d, C-6), 23.23 (t, C-7), 125.06 (d, C-8), 131.76 (s, C-9), 70.49 (d, C-10), 152.77 (s, C-11), 152.57 (s, C-12), 106.59 (d, C-13), 108.61 (d, C-14), 26.89 (q, C-15), 20.90 (q, C-16), 13.56 (q, C-17). HR-MS: m/z calcd. for C₁₆H₂₂O₄: 278.1513. Found: 278.1514.

(*R*)-1e NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 1.18 (s, 3H, Me-15), 1.53 (ddd, 1H, $J_{4e,4a} = 14.0$, $J_{4e,3a} = 2.5$, $J_{4e,6a} = 1.4$, H_e-4), 1.61 (br.t, 1H, $J_{6a,7} = 8.8$, H_a-6), 1.70 (m, 3H, all $J \le 2.5$ Hz, Me-16), 1.89–1.96 (m, 2H, 2H-7), 1.98 (dd, 1H, $J_{4a,4e} = 14.0$, $J_{4a,3a} = 12.1$, H_a-4), 2.18 (d, 3H, $J_{17,13} = 1.0$, Me-17), 3.81 (br.s, 1H, H_e-10), 4.12 (dd, 1H, $J_{1e,10e} = 2.4$, $J_{1e,6a} = 2.1$, H_e-1), 4.70 (dd, 1H, $J_{3a,4a} = 12.1$, $J_{3a,4e} = 2.5$, H_a-3), 5.46–5.50 (m, 1H, H-8), 5.80 (dq, 1H, $J_{13,17} = 3.1$, $J_{13,17} = 1.0$, H-13), 6.05 (d, 1H, $J_{14,13} = 3.1$, H-14).

NMR ¹³C (125 MHz, CDCl₃, δ , ppm): 75.31 (d, C-1), 69.20 (d, C-3), 37.08 (t, C-4), 69.99 (s, C-5), 37.78 (d, C-6), 24.22 (t, C-7), 123.83 (d, C-8), 131.58 (s, C-9), 69.93 (d, C-10), 152.45 (s, C-11), 151.73 (s, C-12), 105.81 (d, C-13), 107.83 (d, C-14), 27.83 (q, C-15), 20.49 (q, C-16), 13.25 (q, C-17). HR-MS: *m*/*z* calcd. for C₁₆H₂₂O₄: 278.1513. Found: 278.1514.

6 NMR ¹H (500 MHz, CDCl₃, δ , ppm, J/Hz): 1.79 (m, 3H, all J \leq 2.5 Hz, Me-16), 1.93 (dddq, 1H, $J_{7e,7a} = 17.8$, $J_{7e,6a}$ $= 6.3, J_{7e,8} = 5.4, J_{7e,16} = 1.5, H_e-7), 2.25$ (d, 3H, $J_{17,13} =$ 1.0, Me-17), 2.30 (dd, 1H, $J_{4e,4a} = 14.1$, $J_{4e,3a} = 2.7$, He-4), 2.34 (ddm, 1H, $J_{7a,7e} = 17.8$, $J_{7a,6a} = 10.8$, H_a -7), 2.51 (ddd, 1H, $J_{6a,7a} = 10.8$, $J_{6a,7e} = 6.3$, $J_{6a,1e} = 2.1$, H_a -6), 2.79 (ddt, 1H, $J_{4a,4e} = 14.1$, $J_{4a,3a} = 12.0$, $J_{4a,15} = 2.0$, H_a-4), 3.71 (dd, 1H, $J_{1e,10e} = 2.4$, $J_{1e,6a} = 2.1$, He-1), 3.93 (br.s, 1H, He-10), 4.36 (dd, 1H, $J_{3a,4a} = 12.0$, $J_{3a,4e} = 2.7$, H_a-3), 4.80 (dd, 1H, $J_{15,4a} = 2.0, J_{15,15'} = 1.8, \text{H-15}$, 4.89 (dd, 1H, $J_{15',4a} = 2.0$, $J_{15',15} = 1.8$, H⁻¹⁵), 5.58–5.61 (m, 1H, H-8), 5.88 (dq, 1H, $J_{13,14} = 3.1, J_{13,17} = 1.0, \text{H-13}$, 6.15 (d, 1H, $J_{14,13} = 3.1, \text{H-13}$) 14). NMR ¹³C (125 MHz, CDCl₃, δ, ppm): 80.48 (d, C-1), 73.93 (d, C-3), 34.09 (t, C-4), 146.32 (s, C-5), 36.94 (d, C-6), 26.19 (t, C-7), 124.67 (d, C-8), 131.37 (s, C-9), 70.28 (d, C-10), 152.12 (s, C-11), 152.05 (s, C-12), 106.02 (d, C-13), 107.96 (d, C-14), 110.11 (t, C-15), 20.81 (q, C-16), 13.49 (q, C-17). HR-MS: m/z calcd. for C₁₆H₂₀O₃: 260.1407. Found: 278.1405.

7 NMR ¹H (500 MHz, CDCl₃, δ, ppm, J/Hz): 1.39 (s, 3H, Me-15), 1.73 (m, 3H, all $J \le 2.5$ Hz, Me-16), 1.78 (dd, 1H, $J_{4e,4a} = 13.0, J_{4e,3a} = 4.2, H_{e}-4), 1.99 \text{ (dd, 1H, } J_{4a,4e} = 13.0,$ $J_{4a,3a} = 11.0$, H_a-4), 2.09 (br.d, 1H, $J_{6,7} = 5.7$, H-6), 2.26 (d, 3H, $J_{17,13} = 1.0$, Me-17), 2.34 (ddm, 1H, $J_{7,7'} = 18.8$, $J_{7,6} =$ 5.7, H-7), 2.51 (dm, 1H, J_{7',7} = 18.8, H'-7), 4.24 (br.s, 1H, H_e -10), 4.38 (br.s, 1H, H-1), 5.07 (dd, 1H, $J_{3a,4a} = 11.0$, $J_{3a,4e} = 4.2, H_a-3$, 5.12–5.16 (m, 1H, H-8), 5.87 (dq, 1H, $J_{13,14} = 3.1, J_{13,17} = 1.1, \text{H-13}$, 6.13 (d, 1H, $J_{14,13} = 3.1, \text{H-13}$) 14). NMR ¹³C (125 MHz, CDCl₃, δ, ppm): 80.97 (d, C-1), 67.34 (d, C-3), 42.94 (t, C-4), 83.02 (s, C-5), 45.44 (d, C-6), 28.14 (t, C-7), 120.73 (d, C-8), 139.57 (s, C-9), 80.27 (d, C-10), 152.19 (s, C-11), 152.09 (s, C-12), 105.90 (d, C-13), 108.07 (d, C-14), 21.55 (q, C-15), 20.84 (q, C-16), 13.45 (q, C-17). HR-MS: *m*/*z* calcd. for C₁₆H₂₀O₃: 260.1407. Found: 278.1405.

Biology

CB1R and CB2R binding assays

Receptor binding experiments were performed with membrane preparations as previously reported (Chicca et al. 2017). Briefly, clean membranes expressing hCB_1 or hCB_2 were resuspended in binding buffer (50 mM Tris-HCl, 2.5 mM EDTA, 5 mM MgCl₂, 0.5% fatty acid-free bovine serum albumin (BSA), pH 7.4) and incubated with vehicle or compounds at the concentration of 10 μ M in presence of 0.5 nM of [³H]CP55,940 for 90 min at 30 °C. Non-specific binding was determined in presence of 10 μ M WIN55,512. After incubation, membranes were filtered through a presoaked 96-well microplate bonded with GF/B filters under vacuum and washed twelve times with 150 μ l of ice-cold binding buffer. The filters were dried under air drier and then added with 45 μ l of Microscint 20 scintillation cocktail. The radioactivity was measured using a Packard Tri-Carb 2100 TR scintillation counter. All experiments were performed at least in two independent experiments each performed in triplicate and data are reported as mean values \pm SD.

FAAH and MAGL assays

FAAH and MAGL assays were performed as previously described (Chicca et al. 2017). Briefly, the assays were performed using U937 cell homogenate (100 µg) which were diluted in 200 µl of Tris-HCl 10 mM, EDTA 1 mM, pH 8 containing 0.1% fatty acid-free BSA. Compounds were added at the screening concentration of 10 µM and pre-incubated for 30 min at 37 °C under shaking (400 rpm). URB597 (0.1 μ M) and JZL184 (1 μ M) were used as positive controls for complete FAAH and MAGL inhibition, respectively. Then, 100 nM of AEA containing 1 nM of [ethanolamine-1-³H]AEA as a tracer for FAAH or 10 µM of 2-OG containing 1 nM of [glycerol-1,2,3-³H]2-OG was added to the homogenates and incubated for 15 min at 37 °C under shaking (400 rpm). The reaction was stopped by adding 400 µl of ice-cold CHCl₃: MeOH (1:1). Samples were vortexed and rapidly centrifuged at $16,000 \times g$ for 10 min at 4 °C. The aqueous phases were collected, transferred to scintillation tubes and mixed with 3 ml of Ultima Gold scintillation liquid. The radioactivity associated with the ³H]glycerol formation was measured for tritium content by liquid scintillation spectroscopy. Compounds were tested in two independent experiments, each performed in triplicates and data are reported as mean values \pm SD.

AEA uptake

AEA uptake inhibition was measured in U937 living cells as previously described in detail (Chicca at al. 2017). Briefly, 0.5×10^6 U937 cells per sample were diluted in 250 µl of RPMI cell culture medium without FBS. Compounds at the screening concentration of 10 µM or different concentrations of compound **2i** were pre-incubated with the cells for 15 min at 37 °C under shaking (400 rpm). A mixture of [ethanolamine-1-³H]AEA (1 nM) and unlabeled AEA (final concentration of 100 nM) was added to the cells and incubated for 15 min at 37 °C under shaking (400 rpm). The uptake process was stopped by rapid filtration onto a 96-well microplate bonded with GF/C filters under vacuum and washed 3 times with 150 μ l of ice-cold PBS supplemented with 1% BSA fatty acid free. The filters were dried under air drier and then added with 45 μ l of Microscint 20 scintillation cocktail. The radioactivity was measured using a Packard Tri-Carb 2100 TR scintillation counter. All experiments were performed in two independent experiments each performed in triplicate and data are reported as mean values ± SD.

Acknowledgements Synthetic part of this work was supported by Russian Science Foundation (grant 15-13-00017). Authors would like to acknowledge the Multi-Access Chemical Service Center SB RAS for spectral and analytical measurements. AC thanks Prof. Juerg Gertsch for the continuous support on his research activity and inspiring discussions.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Ruggiero E, De Stefano L, Rizzolio F, Di Cesare Mannelli L, Ghelardini C, Chicca A, Lapillo M, Gertsch J, Manera C, Macchia M, Martinelli A, Granchi C, Minutolo F, Tuccinardi T (2018) Discovery of 1,5diphenylpyrazole-3-carboxamide derivatives as potent, reversible, and selective monoacylglycerol lipase (MAGL) inhibitors. J Med Chem 61:1340–1354
- Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K (2016) Medicinal chemistry, pharmacology, and potential therapeutic benefits of cannabinoid CB2 receptor agonists. Chem Rev 116:519–560
- Baishya G, Sarmah B, Hazarika N (2013) An environmentally benign synthesis of octahydro-2 H-chromen-4-ols via modified montmorillonite K10 catalyzed Prins cyclization reaction. Synlett 24:1137–1141
- Bondalapati S, Reddy UC, Saha P, Saikia AK (2011) An efficient synthesis of dihydro- and tetrahydropyrans via oxonium-ene cyclization reaction. Org Biomol Chem 9:3428–3438
- Chavan SP, Zubaidha PK, Dhondge VD (1993) A short and efficient synthesis of (-) Mintlactone and (+) iso-mintlactone. Tetrahedron 49(29):6429–6436
- Chicca A, Marazzi J, Nicolussi S, Gertsch J (2012) Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 287:34660–34682
- Chicca A, Nicolussi S, Bartholomäus R, Blunder M, Rey AA, Petrucci V, Reynoso-Moreno IC, Viveros-Paredes JM, Gens MD, Lutz B, Schiöth HB, Soeberdt M, Abels C, Charles R-P, Altmann K-H, Gertsch J (2017) Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. PNAS 114(25): E5006–E5015
- Dos Santos RG, Hallak JEC, Leite JP, Zuardi AW, Crippa JAS (2015) Phytocannabinoids and epilepsy. J Clin Pharm Ther 40:135–143

- Il'Ina I, Mikhalchenko O, Pavlova A, Korchagina D, Tolstikova T, Volcho K, Salakhutdinov N, Pokushalov E (2014) Highly potent analgesic activity of monoterpene-derived (2S,4aR,8R,8aR)-2aryl-4,7-dimethyl-3,4,4a,5,8,8a-hexahydro-2H-chromene-4,8diols. Med Chem Res 23:5063–5073
- Il'ina IV, Volcho KP, Korchagina DV, Barkhash VA, Salakhutdinov NF (2007) Reactions of allyl alcohols of the pinane series and of their epoxides in the presence of montmorillonite clay. Helv Chim Acta 90:353–368
- II'ina IV, Volcho KP, Mikhalchenko OS, Korchagina DV, Salakhutdinov NF (2011) Reactions of verbenol epoxide with aromatic aldehydes containing hydroxy or methoxy groups in the presence of montmorillonite clay. Helv Chim Acta 94(3): 502–513
- Javid FA, Phillips RM, Afshinjavid S, Verde R, Ligresti A (2016) Cannabinoid pharmacology in cancer research: a new hope for cancer patients? Eur J Pharmacol 775:1–14
- Jhaveri MD, Richardson D, Kendall DA, Barrett DA, Chapman V (2006) Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J Neurosci 26:13318–13327
- King KM, Myers AM, Soroka-Monzo AJ, Tuma RF, Tallarida RJ, Walker EA, Ward SJ (2017) Single and combined effects of Δ 9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br J Pharmacol 174 (17):2832–2841
- Kinsey SG, Wise LE, Ramesh D, Abdullah R, Selley DE, Cravatt BF, Lichtman AH (2013) Repeated low-dose administration of the monoacylglycerol lipase inhibitor JZL184 retains cannabinoid receptor type 1–mediated antinociceptive and gastroprotective effects. J Pharmacol Exp Ther 345:492–501
- Khurana L, Mackie K, Piomelli D, Kendall DA (2017) Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities. Neuropharmacology 124:3–12
- Naidu PS, Booker L, Cravatt BF, Lichtman AH (2009) Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J Pharmacol Exp Ther 329:48–56
- Macedo A, Wendler EP, Dos Santos AA, Zukerman-Schpector J, Tiekink ERT (2010) Solvent-free catalysed synthesis of tetrahydropyran odorants: the role of SiO2•p-TSA catalyst on the Prins-cyclization reaction. J Braz Chem Soc 21:1563–1571
- Makriyannis A (2014) 2012 division of medicinal chemistry award address. Trekking cannabinoid road: a personal perspective. J Med Chem 57:3891–3911
- Mikhalchenko O, Il'Ina I, Pavlova A, Morozova E, Korchagina D, Tolstikova T, Pokushalov E, Volcho K, Salakhutdinov N (2013) Synthesis and analgesic activity of new heterocyclic compounds derived from monoterpenoids. Med Chem Res 22:3026–3034
- Mikhalchenko OS, Korchagina DV, Volcho KP, Salakhutdinov NF (2016) A practical way to synthesize chiral fluoro-containing polyhydro-2H-chromenes from monoterpenoids. Beilstein J Org Chem 12:648–653
- Nazimova E, Pavlova A, Mikhalchenko O, Il'ina I, Korchagina D, Tolstikova T, Volcho K, Salakhutdinov N (2016) Discovery of highly potent analgesic activity of isopulegol-derived (2R,4aR,7R,8aR)-4,7-dimethyl-2-(thiophen-2-yl)octahydro-2Hchromen-4-ol. Med Chem Res 25:1369–1383
- Nazimova EV, Shtro AA, Anikin VB, Patrusheva OS, Il'ina IV, Korchagina DV, Zarubaev VV, Volcho KP, Salakhutdinov NF (2017) Influenza antiviral activity of Br-containing [2R,4R (S),4aR,7R,8aR]-4,7-dimethyl-2-(thiophen-2-yl)octahydro-2Hchromen-4-ols prepared from (–)-isopulegol. Chem Nat Compd 53(2):260–264
- Nicolussi S, Chicca A, Rau M, Rihs S, Soeberdt M, Abels C, Gertsch J (2014) Correlating FAAH and anandamide cellular uptake

inhibition using N-alkylcarbamate inhibitors: From ultrapotent to hyperpotent. Biochem Pharmacol 92(4):669–689

- Patrusheva OS, Volcho KP, Salakhutdinov NF (2018) Synthesis of oxygen-containing heterocyclic compounds based on mono-terpenoids. Russ Chem Rev 87:771–796
- Patrusheva OS, Zarubaev VV, Shtro AA, Orshanskaya YR, Boldyrev SA, Ilyina IV, Kurbakova SY, Korchagina DV, Volcho KP, Salakhutdinov NF (2016) Anti-influenza activity of monoterpenederived substituted hexahydro-2H-chromenes. Bioorg Chem 24:5158–5161
- Pavlova A, Mikhalchenko O, Rogachev A, Il'ina I, Korchagina D, Gatilov Y, Tolstikova T, Volcho K, Salakhutdinov N (2015) Synthesis and analgesic activity of stereoisomers of 2-(3(4)hydroxy-4(3)-methoxyphenyl)-4,7-dimethyl-3,4,4a,5,8,8a-hexahydro-2H-chromene-4,8-diols. Med Chem Res 24:3821–3830
- Pavlova A, Patrusheva O, Il'ina I, Volcho K, Tolstikova T, Salakhutdinov N (2017) The decisive role of mutual arrangement of hydroxy and methoxy groups in (3(4)-hydroxy-4(3)-methoxyphenyl)-4,7-dimethyl-3,4,4a,5,8,8ahexahydro-4,8-diols in their biological activity. Lett Drug Des Discov 14:508–514
- Pavlova AV, Nazimova EV, Mikhal'chenko OS, Il'ina IV, Korchagina DV, Ardashov OV, Morozova EA, Tolstikova TG, Volcho KP, Salakhutdinov NF (2016) Synthesis and analgesic activity of 4,7-Dimethyl-3,4,4a,5,8,8a-Hexahydro-2H-Chromen-4,8-Diols containing thiophene substituents. Chem Nat Comp 52:813–820
- Reynoso-Moreno I, Chicca A, Flores-Soto ME, Viveros-Paredes JM, Gertsch J (2018) The endocannabinoid reuptake inhibitor WOBE437 is orally bioavailable and exerts indirect polypharmacological effects via different endocannabinoid receptors. Front Mol Neurosci 11:180
- Sidorenko AY, Kravtsova AV, Aho A, Heinmaa I, Volcho KP, Salakhutdinov NF, Agabekov VE, Murzin DY (2018a) Acidmodified halloysite nanotubes as a stereoselective catalyst for synthesis of 2 H -chromene derivatives by the reaction of isopulegol with aldehydes. ChemCatChem 10:3950–3954. https:// doi.org/10.1002/cctc.201800974.
- Sidorenko AY, Kravtsova AV, Wärnå J, Aho A, Heinmaa I, Il'ina IV, Ardashov OV, Volcho KP, Salakhutdinov NF, Murzin DY, Agabekov VE (2018b) Preparation of octahydro-2H-chromen-4ol with analgesic activity from isopulegol and thiophene-2carbaldehyde in the presence of acid-modified clays. Mol Catal 453:139–148
- Silva LF, Quintiliano SA (2009) An expeditious synthesis of hexahydrobenzo[f]isochromenes and of hexahydrobenzo[f]isoquinoline via iodine-catalyzed Prins and aza-Prins cyclization. Tetrahedron Lett 50:2256–2260
- Showalter VM, Compton DR, Martin BR, Abood ME (1996) Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther 278:989–999
- Slater S, Lasonkar PB, Haider S, Alqahtani MJ, Chittiboyina AG, Khan IA (2018) One-step, stereoselective synthesis of octahydrochromanes via the Prins reaction and their cannabinoid activities. Tetrahedron Lett 59:807–810
- Stekrova M, Mäki-Arvela P, Kumar N, Behravesh E, Aho A, Balme Q, Volcho KP, Salakhutdinov NF, Murzin DY (2015) Prins cyclization: Synthesis of compounds with tetrahydropyran moiety over heterogeneous catalysts. J Mol Catal A Chem 410:260–270
- Tian G, Tong X, Cheng Y, Xue S (2013) Tin–catalyzed efficient conversion of carbohydrates for the production of 5–hydroxymethylfurfural in the presence of quaternary ammonium salts. Carbohydr Res 370:33–37
- Timofeeva MN, Panchenko VN, Volcho KP, Zakusin SV, Krupskaya VV, Gil A, Mikhalchenko OS, Vicente MA (2016) Effect of acid modification of kaolin and metakaolin on Brønstedacidity and

catalytic properties in the synthesis ofoctahydro-2H-chromen-4-ol from vanillin and isopulegol. J Mol Catal A Chem 414:160–166

- Timofeeva MN, Volcho KP, Mikhalchenko OS, Panchenko VN, Krupskaya VV, Tsybulya SV, Gil A, Vicente MA, Salakhutdinov NF (2015) Synthesis of octahydro-2H-chromen-4-ol from vanillin and isopulegol over acid modified montmorillonite clays: effect of acidity on the Prins cyclization. J Mol Catal A Chem 398:26–34
- Walter C, Oertel BG, Felden L, Kell CA, Nöth U, Vermehren J, Kaiser J, Deichmann R, Lötsch J (2016) Brain mapping-based model of

 Δ 9-tetrahydrocannabinol effects on connectivity in the pain matrix. Neuropsychopharmacology 41:1659–1669

- Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V (2017) The cannabinoid system and pain. Neuropharmacology 124:105–120
- Yadav JS, Reddy BVS, Ganesh AV, Narayana Kumar GGKS (2010) Sc(OTf)3-catalyzed one-pot ene-Prins cyclization: a novel synthesis of octahydro-2H-chromen-4-ols. Tetrahedron Lett 51:2963–2966