Three-Component Carboboration of Alkenes under Copper Catalysis

Ikuo Kageyuki, Hiroto Yoshida,* Ken Takaki

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan Fax +81(82)4245494; E-mail: yhiroto@hiroshima-u.ac.jp

Received: 28.02.2014; Accepted after revision: 01.04.2014

Abstract: Three-component carboboration of alkenes takes place efficiently by the reaction with a diboron compound and carbon electrophiles with the aid of a copper–NHC catalyst. The carboboration afforded diverse multisubstituted borylalkanes via the regioselective formation of carbon–boron and carbon–carbon bonds.

Key words: alkenes, carboboration, copper, equol, multicomponent reaction

The development of new synthetic routes to organoboron compounds,¹ in which the carbon–boron bonds can be transformed into various functional groups and carboncarbon bonds through Suzuki-Miyaura cross-coupling,² the Petasis reaction,³ etc., has been of great importance in modern organic synthesis. Recently, much attention has focused on unique copper catalysis for carbon-boron bond-forming reactions by the use of unsaturated hydrocarbons and organic halides,⁴ and we have also reported the copper-catalyzed diborylation^{5a} and borylstannylation^{5b} of alkynes, in which β -borylalkenylcopper species arising from insertion of alkynes into borylcopper species⁶ act as common intermediates. Furthermore, β borylalkenylcopper species are captured by carbon electrophiles leading to the catalytic three-component carboboration of alkynes,⁷⁻¹¹ which provides a direct entry to multisubstituted borylalkenes through simultaneous carbon-carbon and carbon-boron bond-forming processes. In view of the high affinity of the borylcopper species for unsaturated hydrocarbons other than alkynes,^{4k,12} we have also applied the carboboration protocol to simple alkenes,¹³ which should lead to a direct approach to multisubstituted borylalkanes.

Initially we carried out the reaction of styrene (1a) with bis(pinacolato)diboron [2, (pin)B–B(pin)] and benzyl chloride (3a) in *N*,*N*-dimethylformamide at room temperature in the presence of copper(II) acetate–tricyclohex-ylphosphine, which produces a copper(I) complex in situ,¹⁴ and potassium *tert*-butoxide, and observed the regioselective formation of a carbon–boron (at the terminal carbon of 1a) and a carbon–carbon (at the internal carbon of 1a) bond to provide 1-boryl-2,3-diphenylpropane 4aa in 57% yield (Table 1, entry 1). Although the reaction with such a bidentate phosphine ligand as Xantphos or *rac*-BINAP proceeded in similar yield (Table 1, entries 2 and 3), the use of copper–N-heterocyclic carbene (Cu–

NHC) complexes improved the efficiency of the carboboration (Table 1, entries 4–6), and chloro(1,3-dimesitylimidazolidin-2-ylidene)copper (SIMesCuCl) (Figure 1) gave the best result (77%) among the catalysts surveyed (Table 1, entry 6). A drop in basicity led to a decrease in yield: the reaction using potassium acetate or potassium carbonate afforded **4aa** in only 13% or 51% yield (Table 1, entries 7 and 8).

Table 1 Optimization of Reaction Conditions^a

	+ (pin)B—B(pin) +	C Bn—Cl	u catalyst (2 mol%) KO <i>t-</i> Bu (1.5 equiv)	Bn B(pin)
Pn ∖ 1a	2	3a	DMF, r.t.	Ph 4aa
(1 equiv)	(1.3 equiv)	(3 equiv)	B(pin) = B	-
Entry	Cu Catalyst ^b		Time (h)	Yield ^c (%)
1	$Cu(OAc)_2, Cy_3$	P ^d	0.5	57
2	CuI, Xantphos		0.5	53
3	CuCl, rac-BINA	AP	1	66
4	IPrCuCl		1	71
5	IMesCuCl		0.5	70
6	SIMesCuCl		0.5	77
7 ^e	SIMesCuCl		7	13
8 ^f	SIMesCuCl		4	51

 a Reaction conditions: styrene (0.30 mmol), (pin)B–B(pin) (0.39 mmol), BnCl (0.90 mmol), KOt-Bu (0.45 mmol), Cu catalyst (6.0 μ mol), DMF (0.55 mL).

^b See also Figure 1.

^c Determined by ¹H NMR.

^d A copper(I) complex is produced in situ.¹⁴

^e KOAc instead of KO*t*-Bu.

^f K₂CO₃ instead of KOt-Bu.

Figure 1 NHC ligands utilized

The optimized reaction was then examined using a range of monosubstituted alkenes (Table 2). The carboboration

SYNTHESIS 2014, 46, 1924–1932 Advanced online publication: 14.05.2014 DOI: 10.1055/s-0033-1341267; Art ID: ss-2014-c0143-st © Georg Thieme Verlag Stuttgart · New York

of styrene derivatives bearing an electron-donating **1b** or electron-withdrawing substituent **1c** also proceeded with high regioselectivity to afford the respective products, although the yields were lower (Table 2, entries 2 and 3).¹⁵ The reaction was applied to 2-vinylpyridine (**1d**), vinylborane **1e**, and vinylsilanes **1f** and **1g** and gave borylalkanes **4da–ga** in good to high yields, in which the benzyl moiety was attached to the internal carbon of the alkene (Table 2, entries 4–7). In marked contrast, aliphatic alkenes, such as oct-1-ene (**1h**) or vinylcyclohexane (**1i**), underwent the reaction with the inverse regioselectivity to furnish **4h'** and **4i'** as the major products with the benzyl moiety at the terminal carbon of the alkene (Table 2, entries 8 and 9).

Table 2	Copper-Catalyzed Carboboration of Monosubstituted Al-
kenes ^a	

R 1 (1 equi	≥ + v)	(pin)B—B(pin) 2 (1.3 equiv)	+ Bn ; (3 e	—Cl 3a equiv)		
	:	SIMesCuCl (2 mol ^s KO <i>t</i> -Bu (1.5 equiv	%) /) Br	n B(pin)	Bn	B(pin)
		DMF, r.t	F	1		R
				4	4′	
Entry	Alkene	R	Time (h)	Product	Yield ^b (%)	Ratio ^c (4/4')
1	1a	Ph	1	4 aa	65	>99:1
2	1b	4-MeOC ₆ H ₄	1	4ba, 4ba'	47	88:12
3	1c	$4-ClC_6H_4$	1	4ca	12	>99:1
4	1d	2-pyridyl	1	4da, 4da'	52	91:9
5	1e	B(pin)	7	4ea, 4ea'	68	98:2
6	1f	SiMe ₂ Ph	8	4fa, 4fa'	85	94:6
7	1g	TMS	1	4ga, 4ga'	82	93:7
8	1h	(CH ₂) ₅ Me	1	4ha, 4ha'	45	2:98
9	1i	Су	1	4ia, 4ia'	38	17:83

^a Reaction conditions: alkene (0.30 mmol), (pin)B–B(pin) (0.39 mmol), BnCl (0.90 mmol), KOt-Bu (0.45 mmol), SIMesCuCl (6.0 μmol), DMF (0.55 mL).

^b Yield of isolated 4 and 4'.

^c Determined by ¹H NMR.

As shown in Table 3, disubstituted alkenes could also participate in the carboboration; perfect regioselectivity was observed in the reaction of 1,1-disubstituted alkenes 1j-l(Table 3, entries 1–3), but a mixture of stereoisomers¹⁶ was formed with 1,2-disubstituted alkenes *cis*-stilbene (1m) or norbornene (1n) (Table 3, entries 4 and 5). However, boryl and benzyl moieties were introduced into 1,2dihydronaphthalene (10) regio- and stereoselectively affording *syn*-adduct 40a in 75% yield (Table 3, entry 6).

The versatility of the carboboration was further expanded by employing various carbon electrophiles (Table 4). The reaction of para- or ortho-substituted benzyl chlorides **3b–g** with vinylsilane **1f** and diboron **2** furnished high yields of the respective products (Table 4, entries 1-6), irrespective of the electronic character of the substituents, and sterically congested 2,4,6-triisopropylbenzyl chloride (3h), 2,4,6-trimethylbenzyl chloride (3i), and 1-naphthylmethyl chloride (3j) could also act as a carbon electrophile (Table 4, entries 7-9). In addition to benzyl chlorides, the present reaction was applied to butyl bromide (3k) and methyl iodide (3l) to provide the alkylboration products in 70% and 50% yield, respectively (Table 4, entries 10 and 11). The sole formation of the cyclopropylmethylated product 4fm in the reaction with 3m suggested that a radical pathway is not operating in the carboboration (Table 4, entry 12),¹⁷ and moreover chemoselective reaction with 1,5-dibromopentane (3n) or ethyl 4-bromobutanoate (30) occurred, leaving the reactive functional groups (C-Br and ester moieties) intact (Table 4, entries 13 and 14).

As was the case with the previous copper-catalyzed carboboration of alkynes,¹¹ a β -borylalkylcopper species **6**, generated by the addition of a borylcopper species **5** to an alkene,^{4h,12b,18} should also serve as a key intermediate in the present reaction (Scheme 1). Subsequent reaction of **6** with potassium *tert*-butoxide produces cuprate **7**, which is then captured by a carbon electrophile to provide a carboboration product and copper(I) *tert*-butoxide.¹⁹ The observed regioselectivity in the reaction of aryl-, boryl-, and silylalkenes should be ascribed to the selective formation of the carbon–copper bond at the α position of these substituents in the borylcupration **5** to **6**, induced by the electronic-directing effect of the substituents.

Scheme 1 A plausible catalytic cycle for carboboration

Table 3	Copper-Catalyzed	Carboboration	of Disubstituted	Alkenes ^a
---------	------------------	---------------	------------------	----------------------

1 + (1 equiv)	(pin)B—B(pin) 2 (1.3 equiv)	+ Bn—Cl 3a (3 equiv)	SIMesCuCl (2 mol%) KO <i>t</i> -Bu (1.5 equiv)	4 + 4'			
Entry	Alkene		Time (h)	Product		Yield ^b (%)	Ratio ^c (4/4')
1	1j	= Ph	1	4ja	(pin)B	34	>99:1
2	1k	= CO₂Me	1	4ka	(pin)B CO ₂ Me	40	>99:1
3	11	Ph Ph	0.5	4la	(pin)B Ph Ph	35	>99:1
4	1m	Ph Ph	4	4ma, 4ma'	(pin)B Bn Ph Ph	40	77:23 ^d
5	1n		0.5	4na, 4na'	Bn	60	62:38 ^d
6	10] 0.5	4oa	Bn B(pin)	75	>99:1 ^d

^a Reaction conditions: alkene (0.30 mmol), (pin)B–B(pin) (0.39 mmol), BnCl (0.90 mmol), KOt-Bu (0.45 mmol), SIMesCuCl (6.0 μmol), DMF (0.55 mL).

^b Yield of isolated 4 and 4'.

^c Determined by ¹H NMR.

^d Ratio of stereoisomers.

Table 4 Copper-Catalyzed Carboboration with Various Carbon Electrophiles^a

		S	IMesCuCl (2 mol%) KO <i>t-</i> Bu (1.5 equiv)		oin) C E	8(pin)	
PhMe ₂ Si ² 1f	+ B(nip)—B(pin) 2 (1.2 oguity)	+ C-X -	DMF, r.t	PhMe ₂ Si ⁷ 4	+ `s	SiMe ₂ Ph	
Entry	C–X	(S equiv)	3	Time (h)	Product	Yield ^b (%)	Ratio ^c (4/4') ^c
1	R	<i>i</i> -Pr	3b	4	4fb, 4fb'	90	92:8
2		Me	3c	3	4fc, 4fc'	88	95:5
3		Cl	3d	3	4fd, 4fd'	85	95:5
4		OMe	3e	3	4fe, 4fe'	90	97:3
5	CI	Me	3f	4	4ff, 4ff'	90	96:4
6		Cl	3g	4	4fg, 4fg'	73	98:2
7	R	<i>i-</i> Pr	3h	2	4fh, 4fh'	46	88:12
8	CI	Me	3i	2	4fi, 4fi'	58	91:9

Table 4	Copper-Catalyzed	Carboboration with	Various Carbon	n Electrophiles ^a	(continued)
---------	------------------	--------------------	----------------	------------------------------	-------------

PhMe ₂ Si 1f (1 equiv)	+ B(nip)—B(pin) 2 (1.3 equiv)	+ C—X 3 (3 equiv)	SIMesCuCl (2 mol%) KO <i>t-</i> Bu (1.5 equiv) DMF, r.t	C B(p PhMe ₂ Si 4	+ 4'	B(pin) SiMe₂Ph	
Entry	C–X	R	3	Time (h)	Product	Yield ^b (%)	Ratio ^c (4/4') ^c
9	CI		3j	7	4fj, 4fj′	72	97:3
10	BuBr		3k	10	4fk, 4fk'	70	97:3
11	MeI		31	3	4fl	50	>99:1
12	Br		3m	7	4fm	85	>99:1
13	Br		3n	7	4fn, 4fn'	70	98:2
14	EtO ₂ CBr		30	7	4fo, 4fo'	37	96:4

^a Reaction conditions: dimethyl(phenyl)vinylsilane (0.30 mmol), (pin)B–B(pin) (0.39 mmol), carbon electrophile (0.90 mmol), KO*t*-Bu (0.45 mmol), SIMesCuCl (6.0 μmol), DMF (0.55 mL).

^b Yield of isolated **4** and **4'**.

^c Determined by ¹H NMR.

Finally, the synthetic utility of the carboboration product was demonstrated by the formal total synthesis (Scheme 2) of equol, which has potential anti-osteoporosis and anti-breast cancer activity with its estrogen-like effects.^{20,21} Thus, the carboboration using 4-methoxystyrene (**1b**), diboron **2**, and 2-bromo-4-methoxybenzyl bromide (**3p**) afforded the borylalkane **4bp**, in which the C–B bond was readily converted into a C–OH bond by oxidation with hydrogen peroxide. The resulting alcohol **8** has previously been transformed into equol (**9**) by a palladium-catalyzed intramolecular C–O bond-forming reaction and demethylation of the methoxy moieties.^{21a}

In conclusion, we have demonstrated that the threecomponent carboboration of alkenes with a diboron compound and carbon electrophiles proceeds efficiently with the aid of a catalytic amount of a Cu–NHC complex in a straightforward approach to diverse multisubstituted borylalkanes. Moreover, the synthetic utility of the carboboration is shown by the formal total synthesis of biologically significant equal. Further studies on catalytic three-component borylation reactions using other electrophiles are in progress.

All manipulations of O₂- and moisture-sensitive materials were conducted with standard Schlenk techniques under a purified argon atmosphere. NMR spectra were taken on a Varian 400-MR (¹H, 400 MHz; ¹³C, 100 MHz) spectrometer or a Varian System 500 (¹H, 500 MHz; ¹³C, 125 MHz) spectrometer using residual CHCl₃ (¹H, δ = 7.26 ppm) or CDCl₃ (¹³C, δ = 77.0 ppm) as an internal standard. HRMS were obtained with a Thermo Fisher Scientific LTQ Orbitrap XL. Preparative recycling gel permeation chromatography was performed with Jai LC-908 or Jai LC-9201 equipped with Jai GEL-

© Georg Thieme Verlag Stuttgart · New York

Scheme 2 Formal total synthesis of equol. *Reagents and conditions*: (a) 4-methoxystyrene (1 equiv), **2** (1.3 equiv), 2-bromo-4-methoxybenzyl bromide (3 equiv), KOt-Bu (1.5 equiv), SIMesCuCl (2 mol%), DMF, r.t., 13 h; (b) 32 wt% H_2O_2 (5 equiv), NaOH (5 equiv), THF, 0 °C, 0.5 h.

1H and 2H columns (CHCl₃). Column chromatography was carried out using Merck Kieselgel 60. Unless otherwise noted, commercially available reagents were used without purification. DMF was distilled from CaH₂. 2-Bromo-4-methoxybenzyl bromide (**3p**) was prepared according to a literature procedure.^{21a} IPrCuCl, IMesCuCl, and SIMesCuCl were prepared according to literature procedures.²²

Copper-Catalyzed Carboboration of Alkenes; General Procedure

A Schlenk tube equipped with a magnetic stirring bar was charged with SIMesCuCl (6.0 μ mol), alkene 0.30 mmol), bis(pinacolato)diboron (0.39 mmol), a carbon electrophile (0.90 mmol), 1 M KOt-Bu in THF (0.45 mmol), and DMF (0.55 mL). The mixture was stirred at r.t. for the period specified in Tables 2–4, and diluted with EtOAc before filtration through a Celite plug. The organic solution was washed with brine (2 ×) and dried (MgSO₄). Evaporation of the solvent followed by column chromatography (silica gel, hexane–EtOAc or hexane–CH₂Cl₂) or gel-permeation chromatography (CHCl₃) gave the product.

In the ¹³C NMR spectra, boron-bound carbons were not detected because of quadrupolar relaxation.

2-(2,3-Diphenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4aa)

Pale yellow oil; yield: 62.8 mg (0.195 mmol, 65%).

¹H NMR (CDCl₃): δ = 1.06 (s, 6 H), 1.08 (s, 6 H), 1.15–1.25 (m, 2 H), 2.84–2.93 (m, 2 H), 3.11–3.18 (m, 1 H), 7.05 (d, *J* = 7.0 Hz, 2 H), 7.12–7.24 (m, 8 H).

¹³C NMR (CDCl₃): δ = 24.53, 24.65, 43.57, 46.17, 82.89, 125.68, 125.84, 127.50, 127.90, 127.94, 129.31, 140.69, 146.41.

HRMS: $m/z [M + Na]^+$ calcd for $C_{21}H_{27}O_2BNa$: 345.19963; found: 345.19992.

2-[2-(4-Methoxyphenyl)-3-phenylpropyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4ba)

Pale yellow oil; yield: 49.7 mg (0.141 mmol, 47%).

¹H NMR (CDCl₃): δ = 106 (s, 6 H), 1.07 (s, 6 H), 1.24–1.37 (m, 2 H), 2.83 (d, *J* = 7.4 Hz, 2 H), 3.04–3.12 (m, 1 H), 3.76 (s, 3 H), 6.76 (d, *J* = 8.5 Hz, 2 H), 7.02 (d, *J* = 7.7 Hz, 2 H), 7.06 (d, *J* = 8.5 Hz, 2 H), 7.13 (t, *J* = 7.1 Hz, 1 H), 7.19 (t, *J* = 7.5 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 24.57, 24.71, 42.74, 46.38, 55.20, 82.89, 113.28, 125.63, 128.36, 129.34, 138.60, 140.80, 157.66.

HRMS: $m/z [M + Na]^+$ calcd for $C_{22}H_{29}O_3BNa$: 357.21020; found: 375.21027.

2-[2-(4-Chlorophenyl)-3-phenylpropyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4ca)

Pale yellow oil; yield: 12.8 mg (0.036 mmol, 12%).

¹H NMR (CDCl₃): δ = 1.06 (s, 6 H), 1.09 (s, 6 H), 1.13 (dd, *J* = 16.0, 9.5 Hz, 1 H), 1.21 (dd, *J* = 15.7, 6.5 Hz, 1 H), 2.81 (dd, *J* = 13.1, 8.1 Hz, 1 H), 2.86 (dd, *J* = 13.8, 7.4 Hz, 1 H), 3.11 (tdd, *J* = 7.7, 7.7, 7.7 Hz, 1 H), 6.99 (d, *J* = 7.7 Hz, 2 H), 7.05 (d, *J* = 8.0 Hz, 2 H), 7.12–7.21 (m, 5 H).

¹³C NMR (CDCl₃): δ = 24.56, 24.70, 43.03, 46.01, 83.03, 125.83, 127.99, 128.02, 128.90, 129.26, 131.38, 140.24, 144.85.

HRMS: $m/z [M + Na]^+$ calcd for $C_{21}H_{26}O_2BCINa$: 356.17144; found: 356.17219.

2-[1-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propan-2-yl]pyridine (4da)

Pale yellow oil; yield: 50.4 mg (0.156 mmol, 52%).

¹H NMR (CDCl₃): $\delta = 0.86-0.92$ (m, 1 H), 1.05–1.09 (m, 1 H), 1.16 (s, 6 H), 1.93 (s, 6 H), 2.83 (dd, J = 13.3, 8.2 Hz, 1 H), 3.14 (dd, J = 13.5, 6.8 Hz, 1 H), 3.45 (m, J = 7.5 Hz, 1 H), 7.15–7.20 (m, 4 H), 7.22–7.26 (m, 3 H), 7.68 (ddd, J = 7.7, 7.7, 1.7 Hz, 1 H), 8.59 (ddd, J = 5.1, 1.4, 1.1 Hz, 1 H).

¹³C NMR (CDCl₃): δ = 25.33, 25.59, 43.18, 44.47, 80.85, 121.99, 122.52, 125.91, 128.15, 129.20, 138.42, 140.36, 144.78, 165.51.

HRMS: $m/z \ [M + H]^+$ calcd for $C_{20}H_{27}O_2NB$: 324.21294; found: 324.21558.

2,2'-(3-Phenylpropane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (4ea)

Pale yellow oil; yield: 75.9 mg (0.204 mmol, 68%).

¹H NMR (CDCl₃): $\delta = 0.82$ (d, J = 7.9, 2 H), 1.16 (s, 6 H), 1.19 (s, 6 H), 1.22 (s, 12 H), 1.46 (m, J = 7.9 Hz, 1 H), 2.60 (dd, J = 13.4, 8.5 Hz, 1 H), 2.79 (dd, J = 13.7, 7.4 Hz, 1 H), 7.13 (t, J = 7.0 Hz, 1 H), 7.18–7.24 (m, 4 H).

¹³C NMR (CDCl₃): δ = 24.74, 24.77, 24.82, 24.89, 39.48, 82.86, 82.93, 125.45, 127.91, 129.09, 142.31.

HRMS: $m/z [M + Na]^+$ calcd for $C_{21}H_{34}O_4B_2Na$: 395.25354; found: 395.25458.

Dimethyl(phenyl)[1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl]silane (4fa)

Pale yellow oil; yield: 97.0 mg (0.255 mmol, 85%).

¹H NMR (CDCl₃): δ = 0.23 (s, 3 H), 0.23 (s, 3 H), 0.75 (dd, *J* = 16.3, 7.4 Hz, 1 H), 0.89 (dd, *J* = 16.2, 6.4 Hz, 1H), 1.14 (s, 6 H), 1.16 (s, 6 H), 1.52–1.57 (m, 1 H), 2.49 (dd, *J* = 13.8, 9.8 Hz, 1 H), 2.76 (dd, *J* = 13.9, 5.7 Hz, 1 H), 7.12–7.16 (m, 3 H), 7.21–7.24 (m, 2 H), 7.33–7.35 (m, 3 H), 7.52–7.54 (m, 2 H).

 $^{13}\mathrm{C}$ NMR (CDCl₃): $\delta = -4.27, -4.21, 22.10, 24.79, 24.96, 38.45, 82.79, 82.87, 125.53, 127.57, 127.98, 128.68, 129.10, 134.10, 138.60, 142.42.$

HRMS: m/z [M + Na]⁺ calcd for C₂₃H₃₃O₂BNaSi: 403.22351; found: 403.22391.

Trimethyl[1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl]propan-2-yl]silane (4ga)

Pale yellow oil; yield: 78.3 mg (0.246 mmol, 82%).

¹H NMR (CDCl₃): $\delta = -0.07$ (s, 9 H), 0.73 (dd, J = 16.5, 4.5 Hz, 1 H), 0.83 (dd, J = 16.5, 6.6 Hz, 1 H), 1.18 (s, 6 H), 1.19 (s, 6 H), 1.24–1.27 (m, 1 H), 2.51 (dd, J = 14.0, 9.6 Hz, 1 H), 2.74 (dd, J = 13.8, 6.2 Hz, 1 H), 7.15 (tt, J = 6.9, 1.3 Hz, 1 H), 7.19–7.27 (m, 4 H).

¹³C NMR (CDCl₃): δ = -2.71, 22.68, 24.73, 24.84, 25.02, 38.67, 39.65, 82.86, 125.51, 128.01, 129.11, 142.72.

HRMS: m/z [M + Na]⁺ calcd for C₁₈H₃₁O₂BNaSi: 341.20786; found: 341.20831.

4,4,5,5-Tetramethyl-2-(1-phenylnonan-3-yl)-1,3,2-dioxaborolane (4ha')

Pale yellow oil; yield: 44.6 mg (0.135 mmol, 45%).

¹H NMR (CDCl₃): δ = 0.87 (t, *J* = 6.9 Hz, 3 H), 1.00–1.08 (m, 1 H), 1.23–1.31 (m, 20 H), 1.34–1.48 (m, 3 H), 1.59–1.68 (m, 1 H), 1.69–1.79 (m, 1 H), 2.59 (dt, *J* = 10.1, 6.4 Hz, 2 H), 7.16 (tt, *J* = 7.1, 2.3 Hz, 1 H), 7.18 (d, *J* = 7.1 Hz, 2 H), 7.26 (t, *J* = 7.3 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 14.11, 22.62, 24.80, 24.86, 29.15, 29.59, 31.26, 31.82, 33.55, 35.68, 82.89, 125.50, 128.19, 128.38, 143.12.

HRMS: m/z [M + H]⁺ calcd for C₂₁H₃₆O₂B: 331.28029; found: 331.28006.

2-(2-Cyclohexyl-3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4ia) and 2-(1-Cyclohexyl-3-phenylpropyl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (4ia') Pale yellow oil: yield: 37 4 mg (0 114 mmol 38%)

Pale yellow oil; yield: 37.4 mg (0.114 mmol, 38%).

¹H NMR (CDCl₃): $\delta = 0.69$ (dd, J = 15.5, 7.7 Hz, 0.2 H), 0.78 (dd, J = 15.6, 6.5 Hz, 0.2 H), 0.91–1.24 (m, 10.4 H), 1.28 (s, 12 H), 1.37–1.45 (m, 1.3 H), 1.62–1.64 (m, 8.3 H), 1.67–1.71 (m, 4.1 H), 1.72–1.78 (m, 2.6 H), 1.81–1.86 (m, 0.3 H), 2.42 (dd, J = 13.2, 8.3 Hz, 0.2 H), 2.49 (ddd, J = 13.4, 10.7, 6.1 Hz, 1 H), 2.63 (ddd, J = 13.7, 11.1, 5.2 Hz, 1 H), 2.68 (dd, J = 13.4, 6.6 Hz, 0.2 H), 7.16 (tt, J = 7.5, 1.3 Hz, 1.1 H), 7.18 (d, J = 7.1 Hz, 2.5 H), 7.26 (t, J = 7.6 Hz, 2.1 H).

 ^{13}C NMR (CDCl₃): δ = 24.79, 24.83, 24.86, 25.10, 26.74, 26.77, 26.78, 26.85, 28.92, 30.33, 31.05, 32.42, 32.80, 36.06, 39.66, 39.92,

41.46, 41.89, 82.79, 82.91, 125.40, 125.49, 128.02, 128.18, 128.34, 129.33, 142.24, 143.19.

HRMS: m/z [M + H]⁺ calcd for C₂₁H₃₄O₂B: 329.26464; found: 329.26447.

4,4,5,5-Tetramethyl-2-(2-methyl-2,3-diphenylpropyl)-1,3,2-dioxaborolane (4ja)

Pale yellow oil; yield: 34.3 mg (0.102 mmol, 34%).

¹H NMR (CDCl₃): $\delta = 1.12$ (s, 6 H), 1.06 (s, 6 H), 1.11 (d, J = 15.4 Hz, 1 H), 1.42 (s, 3 H), 1.45 (d, J = 15.0 Hz, 1 H), 2.94 (q, J = 12.4 Hz, 2 H), 6.80 (dd, J = 6.3, 3.2 Hz, 2 H), 7.10–7.11 (m, 3 H), 7.14 (tt, J = 7.0, 1.5 Hz, 1 H), 7.23–7.29 (m, 4 H).

¹³C NMR (CDCl₃): δ = 24.46, 24.70, 26.37, 40.38, 52.21, 82.67, 125.40, 125.72, 126.54, 127.30, 127.61, 130.60, 138.95, 148.84.

HRMS: $m/z [M + Na]^+$ calcd for $C_{22}H_{29}O_2BNa$: 359.21528; found: 359.21536.

Methyl 2-Benzyl-2-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoate (4ka)

Pale yellow oil; yield: 38.2 mg (0.12 mmol, 40%).

¹H NMR (CDCl₃): $\delta = 0.87$ (d, J = 15.4 Hz, 1 H), 1.19 (d, J = 15.5 Hz, 1 H), 1.22 (s, 6 H), 1.23 (s, 6 H), 1.24 (s, 3 H), 2.91 (s, 2 H), 3.63 (s, 3 H), 7.11 (d, J = 7.6 Hz, 2 H), 7.19 (tt, J = 7.1, 2.0 Hz, 1 H), 7.22–7.25 (m, 2 H).

¹³C NMR (CDCl₃): δ = 24.41, 24.72, 24.84, 45.26, 46.89, 51.51, 82.96, 126.30, 127.84, 130.34, 138.87, 178.04.

HRMS: $m/z [M + Na]^+$ calcd for $C_{18}H_{27}O_4BNa$: 341.18946; found: 341.19022.

4,4,5,5-Tetramethyl-2-(2,2,3-triphenylpropyl)-1,3,2-dioxaborolane (4la)

Pale yellow solid; yield: 41.8 mg (0.105 mmol, 35%); mp 139.7–141.0 °C.

¹H NMR (CDCl₃): $\delta = 1.02$ (s, 12 H), 1.54 (s, 2 H), 3.63 (s, 2 H), 6.61 (dd, J = 7.9, 1.5 Hz, 2 H), 7.04 (tt, J = 7.2, 1.3 Hz, 2 H), 7.09 (tt, J = 7.2, 1.7 Hz, 1 H), 7.13–7.16 (m, 6 H), 7.21 (t, J = 7.4 Hz, 4 H).

¹³C NMR (CDCl₃): δ = 24.64, 45.13, 48.37, 82.76, 125.49, 125.67, 127.04, 127.51, 128.08, 131.03, 138.65, 149.89.

HRMS: $m/z [M + Na]^+$ calcd for $C_{27}H_{31}O_2BNa$: 421.23093; found: 421.23099.

4,4,5,5-Tetramethyl-2-(1,2,3-triphenylpropyl)-1,3,2-dioxaborolane (4ma, 4ma')

Pale yellow solid; yield: 47.8 mg (0.12 mmol, 40%); mp 74.4-76.5 °C.

¹H NMR (CDCl₃): $\delta = 0.83$ (s, 6 H), 0.84 (s, 6 H), 1.25 (s, 1.3 H), 1.28 (s, 1.3 H), 2.50 (dd, J = 13.4, 11.2 Hz, 1 H), 2.78 (d, J = 12.1 Hz, 1 H), 2.82 (d, J = 12.7 Hz, 0.3 H), 2.87 (dd, J = 13.4, 11.3 Hz, 0.3 H), 2.89 (dd, J = 13.3, 3.2 Hz, 1 H), 3.16 (dd, J = 13.1, 3.1 Hz, 0.3 H), 3.32 (td, J = 11.4, 3.0 Hz, 1 H), 3.44 (td, J = 11.3, 3.4 Hz, 0.4 H), 6.68 (dd, J = 7.4, 1.6 Hz, 2 H), 6.82 (dd, J = 7.9, 1.4 Hz, 0.6 H), 6.91–7.11 (m, 10.3 H), 7.17 (t, J = 8.0 Hz, 2.1 H), 7.22 (tt, J =7.2, 1.0 Hz, 1.3 H), 7.36 (tt, J = 7.7, 1.1 Hz, 2.2 H), 7.45 (dd, J = 8.2, 0.9 Hz, 2.2 H).

¹³C NMR (CDCl₃): δ = 23.99, 24.31, 24.60, 24.75, 41.82, 43.85, 50.64, 50.71, 83.06, 83.57, 124.99, 125.32, 125.49, 125.60, 125.64, 126.05, 127.45, 127.57, 127.76, 127.80, 128.34, 128.49, 128.65, 129.06, 129.11, 129.19, 129.27, 140.50, 140.57, 141.22, 144.04.

HRMS: m/z [M + H]⁺ calcd for C₂₇H₃₂O₂B: 399.24899; found: 399.24899.

2-(3-Benzylbicyclo[2.2.1]heptan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4na, 4na')

Pale yellow solid; yield: 56.2 mg (0.18 mmol, 60%); mp 78.7-79.7 °C.

© Georg Thieme Verlag Stuttgart · New York

¹H NMR (CDCl₃): $\delta = 1.02-1.09$ (m, 2 H), 1.10 (s, 4.2 H), 1.10 (s, 4.2 H), 1.14–1.20 (m, 1.9 H), 1.23 (s, 6 H), 1.24 (s, 6 H), 1.33–1.57 (m, 5 H), 1.68 (d, J = 9.5 Hz, 1.7 H), 1.92 (d, J = 3.9 Hz, 1 H), 2.01 (ddd, J = 12.6, 9.1, 3.4 Hz, 1 H), 2.08 (t, J = 2.08 Hz, 0.7 H), 2.16–2.21 (m, 1.3 H), 2.27 (d, J = 2.9 Hz, 1 H), 2.33 (dd, J = 13.7, 11.6 Hz, 1 H), 2.58 (dd, J = 13.2, 7.9 Hz, 0.7 H), 2.65 (dd, J = 13.4, 7.3 Hz, 0.7 H), 2.77 (dd, J = 13.5, 4.5 Hz, 1 H), 7.13 (t, J = 7.1 Hz, 1 H), 7.17 (d, J = 7.2 Hz, 3.6 H), 7.23 (t, J = 7.5 Hz, 1.4 H), 7.27 (t, J = 7.3 Hz, 2 H).

 13 C NMR (CDCl₃): δ = 22.14, 24.54, 24.58, 24.84, 25.01, 29.91, 31.55, 32.93, 34.89, 38.84, 39.11, 39.38, 39.70, 40.31, 40.66, 45.32, 46.75, 82.63, 82.87, 125.36, 125.49, 128.07, 128.09, 128.86, 129.01, 142.40, 142.55.

HRMS: m/z [M + H]⁺ calcd for C₂₀H₃₀O₂B: 313.23334; found: 313.23334.

2-(1-Benzyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (40a)

Pale yellow solid; yield: 78.4 mg (0.225 mmol, 75%); mp 71.4-73.5 °C.

¹H NMR (CDCl₃): δ = 1.31 (s, 12 H), 1.53 (m, *J* = 4.0 Hz, 1 H), 1.70–2.02 (m, 2 H), 2.68 (dd, *J* = 12.8, 10.1 Hz, 1 H), 2.83 (m, *J* = 8.7 Hz, 1 H), 2.90 (t, *J* = 4.6 Hz, 1 H), 2.96 (dd, *J* = 12.9, 3.5 Hz, 1 H), 3.21 (dt, *J* = 10.2, 3.7 Hz, 1 H), 6.24 (d, *J* = 7.6 Hz, 1 H), 6.79 (td, *J* = 7.3, 1.1 Hz, 1 H), 7.03–7.08 (m, 4 H), 7.19 (t, *J* = 7.2, 1.8 Hz, 1 H), 7.24 (t, *J* = 7.3 Hz, 2 H).

 13 C NMR (CDCl₃): δ = 19.71, 24.80, 25.16, 29.02, 42.24, 42.33, 83.22, 124.07, 125.70, 127.93, 129.14, 129.17, 129.77, 135.94, 140.62, 141.46.

HRMS: m/z [M + H]⁺ calcd for C₂₃H₃₀O₂B: 349.23334; found: 349.23343.

[1-(4-Isopropylphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl]dimethyl(phenyl)silane (4fb) Pale yellow oil; yield: 114.1 mg (0.27 mmol, 90%).

¹H NMR (CDCl₃): $\delta = 0.22$ (s, 3 H), 0.22 (s, 3 H), 0.73 (dd, J = 16.2, 7.7 Hz, 1 H), 0.89 (dd, J = 16.3, 5.7 Hz, 1 H), 1.12 (s, 6 H), 1.13 (s, 6 H), 1.22 (d, J = 6.8 Hz, 6 H), 1.50–1.56 (m, 1 H), 2.44 (dd, J = 13.8, 9.9 Hz, 1 H), 2.73 (dd, J = 14.2, 5.8, 1 H), 2.84 (m, J = 6.9Hz, 1 H), 7.07 (s, 4 H), 7.31–7.33 (m, 3 H), 7.44–7.52 (m, 2 H).

¹³C NMR (CDCl₃): $\delta = -4.38$, -4.26, 21.97, 24.07, 24.79, 24.94, 33.65, 36.45, 38.02, 82.82, 125.99, 127.51, 128.61, 128.96, 134.08, 138.68, 139.61, 145.97.

HRMS: m/z [M + Na]⁺ calcd for C₂₆H₃₉O₂BNaSi: 445.27046; found: 445.27017.

Dimethyl(phenyl)[1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(4-tolyl)propan-2-yl]silane (4fc)

Pále yellow oil; yield: 104.1 mg (0.264 mmol, 88%).

¹H NMR (CDCl₃): δ = 0.22 (s, 3 H), 0.22 (s, 3 H), 0.73 (dd, *J* = 16.0, 7.3 Hz, 1 H), 0.86 (dd, *J* = 16.0, 6.4 Hz, 1 H), 1.13 (s, 6 H), 1.15 (s, 6 H), 1.48–1.54 (m, 1 H), 2.29 (s, 3 H), 2.44 (dd, *J* = 13.8, 9.8 Hz, 1 H), 2.71 (dd, *J* = 14.1, 6.1 Hz, 1 H), 7.23 (s, 4 H), 7.32–7.34 (m, 3 H), 7.51–7.52 (m, 2 H).

 13 C NMR (CDCl₃): δ = -4.24, -4.18, 20.98, 22.09, 24.79, 24.96, 37.97, 82.85, 127.54, 128.63, 128.67, 128.96, 134.12, 134.86, 138.69, 139.22.

HRMS: m/z [M + Na]⁺ calcd for C₂₄H₃₅O₂BNaSi: 417.23916; found: 417.23886.

[1-(4-Chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl]dimethyl(phenyl)silane (4fd) Pale yellow oil; yield: 105.8 mg (0.255 mmol, 85%).

¹H NMR (CDCl₃): δ = 0.23 (s, 3 H), 0.24 (s, 3 H), 0.70 (dd, *J* = 16.4, 7.2 Hz, 1 H), 0.87 (dd, *J* = 16.4, 6.0 Hz, 1 H), 1.14 (s, 6 H), 1.15 (s, 6 H), 1.44–1.50 (m, 1 H), 2.42 (dd, *J* = 13.8, 10.1 Hz, 1 H), 2.70 (dd, *J* = 16.4, 6.0 Hz, 1 H), 1.44–1.50 (m, 1 H), 1.44–1.50 (m, 1 H), 1.44–1.50 (m, 1 H), 2.42 (dd, *J* = 13.8, 10.1 Hz, 1 H), 1.44–1.50 (dd, *J* = 16.4, 6.0 Hz, 1 H), 1.44–1.50 (dd, *J* = 16.4, 6.0 Hz, 1 H), 1.44–1.50 (m, 1

J = 14.0, 5.6 Hz, 1 H), 7.05 (d, J = 8.4 Hz, 2 H), 7.16 (d, J = 8.3 Hz, 2 H), 7.33-7.34 (m, 3 H), 7.49-7.51 (m, 2 H).

¹³C NMR (CDCl₃): $\delta = -4.49, -4.08, 22.16, 24.80, 24.94, 37.80,$ 82.95, 127.62, 128.03, 128.76, 130.42, 131.19, 134.04, 138.32, 140.89.

HRMS: m/z [M + Na]⁺ calcd for C₂₃H₃₂O₂BClNaSi: 437.18454; found: 437.18442.

[1-(4-Methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl]dimethyl(phenyl)silane (4fe) Pale yellow oil; yield: 110.8 mg (0.27 mmol, 90%).

¹H NMR (CDCl₃): $\delta = 0.21$ (s, 3 H), 0.21 (s, 3 H), 0.73 (dd, J = 16.2, 7.4 Hz, 1 H), 0.86 (dd, J = 16.4, 6.2 Hz, 1 H), 1.14 (s, 6 H), 1.15 (s, 6 H), 1.45-1.51 (m, 1 H), 2.42 (dd, J = 13.8, 9.7 Hz, 1 H), 2.69 (dd, *J* = 13.8, 5.7 Hz, 1 H), 3.77 (s, 3 H), 6.76 (d, 8.6 Hz, 2 H), 7.05 (d, J = 8.6 Hz, 2 H), 7.32–7.34 (m, 3 H), 7.50–7.52 (m, 2 H).

¹³C NMR (CDCl₃): $\delta = -4.28, -4.15, 22.31, 24.80, 24.98, 37.55,$ 55.20, 82.86, 113.44, 127.54, 128.63, 129.93, 134.10, 134.43, 138.68, 157.60.

HRMS: m/z [M + Na]⁺ calcd for C₂₄H₃₅O₃BNaSi: 433.23407; found: 433.23407.

Dimethyl(phenyl)[1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-3-(2-tolyl)propan-2-yl]silane (4ff)

Pale yellow oil; yield: 106.5 mg (0.27 mmol, 90%).

¹H NMR (CDCl₃): $\delta = 0.26$ (s, 3 H), 0.28 (s, 3 H), 0.75 (dd, J = 16.4, 6.8, Hz, 1 H), 0.88 (dd, J = 16.6, 6.4 Hz, 1 H), 1.10 (s, 6 H), 1.12 (s, 6 H), 1.51–1.56 (m, 1 H), 2.20 (s, 3 H), 2.43 (dd, *J* = 13.9, 10.7 Hz, 1 H), 2.76 (dd, J = 13.9, 5.0 Hz, 1 H), 7.05–7.06 (m, 3 H), 7.08–7.10 (m, 1 H), 7.33–7.34 (m, 3 H), 7.54–7.55 (m, 2 H).

¹³C NMR (CDCl₃): $\delta = -4.44, -4.25, 19.42, 20.10, 24.75, 24.83,$ 24.93, 35.78, 82.82, 125.37, 125.64, 127.56, 128.71, 129.87, 130.10, 134.10, 136.56, 138.63, 140.22.

HRMS: m/z [M + Na]⁺ calcd for C₂₄H₃₅O₂BNaSi: 417.23916; found: 417.23914.

[1-(2-Chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-**2-yl)propan-2-yl]dimethyl(phenyl)silane (4fg)** Pale yellow oil; yield: 90.9 mg (0.219 mmol, 73%).

¹H NMR (CDCl₃): $\delta = 0.28$ (s, 3 H), 0.30 (s, 3 H), 0.73 (dd, J = 16.4, 6.8 Hz, 1 H), 0.88 (dd, J = 16.6, 6.5 Hz, 1 H), 1.11 (s, 6 H), 1.13 (s, 6 H), 1.66 (tdd, *J* = 6.4, 4.7, 11.0 Hz, 1 H), 2.53 (dd, *J* = 13.8, 10.7 Hz, 1 H), 2.93 (dd, J = 13.9, 5.0 Hz, 1 H), 7.07 (td, J = 7.4, 1.9 Hz, 1 H), 7.10 (td, J = 7.3, 1.6 Hz, 1 H), 7.18 (dd, J = 7.4, 1.9 Hz, 1 H), 7.26 (dd, 7.6, 1.6 Hz, 1 H), 7.32-7.34 (m, 3 H), 7.54-7.56 (m, 2 H).

 ^{13}C NMR (CDCl₃): δ = -4.37, -4.27, 20.02, 24.82, 24.93, 35.95, 82.85, 126.19, 126.97, 127.54, 128.72, 129.39, 131.26, 134.13, 134.38, 138.43, 139.56.

HRMS: m/z [M + Na]⁺ calcd for C₂₃H₃₂O₂BClNaSi: 437.18454; found: 437.18430.

Dimethyl(phenyl)[1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-3-(2,4,6-triisopropylphenyl)propan-2-yl]silane (4fh) and Dimethyl(phenyl)[1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-3-(2,4,6-triisopropylphenyl)propyl]silane (4fh') Pale yellow oil; yield: 69.9 mg (0.138 mmol, 46%).

¹H NMR (CDCl₃): $\delta = 0.30$ (s, 0.4 H), 0.32 (s, 0.4 H), 0.34 (s, 3 H), 0.35 (s, 3 H), 0.72 (dd, J = 16.7, 6.6 Hz, 1 H), 0.82 (dd, J = 16.7, 7.1 Hz, 1 H), 1.02 (s, 6 H), 1.07 (s, 6 H), 1.11 (d, J = 6.8 Hz, 12 H), 1.15 (d, J = 5.2 Hz, 2.2 H), 1.21 (d, J = 6.9 Hz, 6 H), 1.23–1.27 (m, 2.2 H), 1.42–1.49 (m, 1 H), 2.43 (dd, J = 13.8, 9.7 Hz, 0.4 H), 2.56 (dd, J = 14.4, 12.1 Hz, 1 H), 2.65 (dd, J = 14.4, 4.4 Hz, 1 H), 2.81 (sept, J = 6.9 Hz, 1.2 H), 2.98 (sept, J = 6.8 Hz, 2 H), 3.10 (sept, J = 6.9Hz, 0.4 H), 6.88 (s, 2 H), 6.92 (s, 0.3 H), 7.31–7.34 (m, 0.7 H), 7.36– 7.38 (m, 3 H), 7.50-7.53 (m, 0.4 H), 7.58-7.60 (m, 2 H).

¹³C NMR (CDCl₃): $\delta = -5.08, -4.27, -4.15, -4.01, 21.70, 22.31,$ 23.76, 24.04, 24.07, 24.41, 24.55, 24.62, 24.83, 24.96, 25.12, 28.39, 28.70, 29.06, 33.90, 37.55, 82.69, 82.77, 113.39, 120.64, 120.71, 127.55, 128.64, 128.73, 129.94, 132.92, 133.66, 134.07, 138.86, 145.67, 146.42, 147.32.

HRMS: m/z [M + Na]⁺ calcd for C₃₂H₅₁O₂BNaSi: 529.36436; found: 529.36395.

[1-Mesityl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl]dimethyl(phenyl)silane (4fi) and [3-Mesityl-1-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)propyl]dimethyl(phenyl)silane (4fi')

Pale yellow oil; yield: 73.5 mg (0.174 mmol, 58%).

¹H NMR (CDCl₃): $\delta = 0.30$ (s, 0.2 H), 0.31 (s, 0.2 H), 0.33 (s, 3 H), 0.34 (s, 3 H), 0.68 (dd, J = 16.6, 6.9 Hz, 1 H), 0.81 (dd, J = 16.2, 7.5 Hz, 1 H), 1.05 (s, 6 H), 1.06 (s, 6 H), 1.54-1.60 (m, 1 H), 2.16 (s, 6 H), 2.18 (s, 0.5 H), 2.20 (s, 3 H), 2.22 (s, 0.2 H), 2.51 (dd, *J* = 14.0, 12.4 Hz, 1 H), 2.63 (dd, J = 14.2, 4.6 Hz, 1 H), 6.74 (s, 2 H), 6.78 (s, 0.2 H), 7.30–7.32 (m, 0.3 H), 7.32–7.35 (m, 3 H), 7.50–7.52 (m, 0.2 H), 7.56–7.58 (m, 2 H).

¹³C NMR (CDCl₃): $\delta = -4.69, -4.08, 19.53, 19.57, 20.44, 20.71,$ 24.78, 24.87, 24.91, 30.84, 82.71, 127.54, 128.63, 128.70, 128.84, 133.72, 134.12, 134.47, 135.52, 136.95, 138.71.

HRMS: m/z [M + Na]⁺ calcd for C₂₆H₃₉O₂BNaSi: 445.27046; found: 445.27042.

Dimethyl[1-(naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-di-

oxaborolan-2-yl)propan-2-yl](phenyl)silane (4fj) Pale yellow solid; yield: 93.0 mg (0.216 mmol, 72%); mp 87.9-89.2 °C.

¹H NMR (CDCl₃): $\delta = 0.25$ (s, 3 H), 0.26 (s, 3 H), 0.82 (dd, J = 16.7, 7.4 Hz, 1 H), 0.94 (dd, J = 16.5, 6.1 Hz, 1 H), 1.06 (s, 6 H), 1.12 (s, 6 H), 1.68–1.74 (m, 1 H), 2.90 (dd, J = 26.5, 16.1 Hz, 1 H), 3.20 (dd, J = 14.0, 5.7 Hz, 1 H), 7.24 (d, J = 7.3 Hz, 1 H), 7.30 (t, J = 7.7 Hz, 1 H), 7.33–7.36 (m, 3 H), 7.37–7.43 (m, 2 H), 7.55 (dd, *J* = 7.1, 2.6 Hz, 2 H), 7.64 (d, J = 8.6 Hz, 1 H), 7.78 (d, J = 8.3 Hz, 1 H), 7.91 (d, J = 8.3 Hz, 1 H).

¹³C NMR (CDCl₃): $\delta = -4.47, -4.17, 21.49, 24.82, 24.89, 35.97,$ 82.85, 124.41, 125.12, 125.14, 125.32, 126.48, 127.00, 127.59, 128.50, 128.76, 132.32, 133.95, 134.14, 138.22, 138.65.

HRMS: m/z [M + Na]⁺ calcd for C₂₇H₃₅O₂BNaSi: 453.23916; found: 453.23880.

Dimethyl(phenyl)[1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2**yl)hexan-2-yl]silane (4fk)** Pale yellow oil; yield: 72.7 mg (0.21 mmol, 70%).

¹H NMR (CDCl₂): $\delta = 0.26$ (s, 6 H), 0.69 (dd, J = 16.1, 8.7 Hz, 1 H), 0.82 (t, J = 7.0 Hz, 3 H), 0.89 (dd, J = 15.9, 5.4 Hz, 1 H), 1.07–1.13 (m, 1 H), 1.16–1.31 (m, 17 H), 1.43–1.48 (m, 1 H), 7.31–7.36 (m, 3 H), 7.51 (dd, J = 6.3, 2.9 Hz, 2 H).

¹³C NMR (CDCl₃): $\delta = -4.42, -4.04, 14.02, 20.00, 22.98, 24.76,$ 24.97, 31.36, 32.15, 82.88, 127.49, 128.54, 134.05, 139.17.

HRMS: m/z [M + Na]⁺ calcd for C₂₀H₃₅O₂BNaSi: 369.23916; found: 369.23938.

Dimethyl(phenyl)[1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propan-2-yl]silane (4fl)

Pale yellow oil; yield: 45.6 mg (0.15 mmol, 50%).

¹H NMR (CDCl₃): $\delta = 0.24$ (s, 6 H), 0.57 (dd, J = 15.8, 11.4 Hz, 1 H), 0.94 (dd, J = 15.8, 3.9 Hz, 1 H), 0.95 (d, J = 7.4 Hz, 3 H), 1.07– 1.16 (m, 1 H), 1.22 (s, 6 H), 1.23 (s, 6 H), 7.31–7.32 (m, 1 H), 7.33 (d, J = 2.6 Hz, 2 H), 7.50 (dd, J = 6.8, 2.8 Hz, 2 H).

¹³C NMR (CDCl₃): $\delta = -5.45, -5.11, 14.60, 16.90, 24.68, 25.04,$ 82.94, 127.52, 128.66, 134.07, 138.48.

HRMS: m/z [M + Na]⁺ calcd for C₁₇H₂₉O₂BNaSi: 327.19221; found: 327.19223.

[1-Cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl]dimethyl(phenyl)silane (4fm) Pale yellow oil; yield: 87.8 mg (0.255 mmol, 85%).

¹H NMR (CDCl₃): $\delta = -0.10$ (m, J = 4.6 Hz, 1 H), -0.01 (m, 4.6 Hz, 1 H), 0.26 (s, 3 H), 0.27 (s, 3 H), 0.30-0.38 (m, 2 H), 0.59-0.67 (m, 1 H), 0.83 (dd, J = 16.2, 8.8 Hz, 1 H), 0.94 (dd, J = 16.1, 5.3 Hz, 1 H), 1.10-1.12 (m, 1 H), 1.21 (s, 6 H), 1.21 (s, 6 H), 1.26-1.31 (m, 1 H), 1.36 (td, J = 6.3, 13.2 Hz, 1 H), 7.31-7.33 (m, 3 H), 7.52 (dd, J = 6.5, 2.9 Hz, 2 H).

 ^{13}C NMR (CDCl₃): $\delta\!=\!-4.41,-3.92,4.83,5.52,10.69,20.92,24.78,25.01,37.72,82.86,127.48,128.54,134.04,139.15.$

HRMS: m/z [M + Na]⁺ calcd for C₂₀H₃₃O₂BNaSi: 367.22351; found: 367.22372.

[7-Bromo-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptan-2-yl]dimethyl(phenyl)silane (4fn)

Pale yellow oil; yield: 92.3 mg (0.21 mmol, 70%).

¹H NMR (CDCl₃): $\delta = 0.26$ (s, 6 H), 0.69 (dd, J = 16.2, 8.7 Hz, 1 H), 0.90 (dd, J = 16.1, 5.5 Hz, 1 H), 1.07–1.12 (m, 1 H), 1.16–1.26 (m, 14 H), 1.28–1.37 (m, 3 H), 1.41–1.47 (m, 1 H), 1.76 (m, J = 7.1 Hz, 2 H), 3.33 (t, J = 6.9 Hz, 2 H), 7.31–7.34 (m, 3 H), 7.51 (dd, J = 6.6, 2.7 Hz, 2 H).

¹³C NMR (CDCl₃): $\delta = -4.60, -3.96, 19.97, 24.77, 24.99, 28.13, 28.40, 32.25, 32.68, 33.99, 82.93, 127.54, 128.63, 134.00, 138.99.$

HRMS: m/z [M + Na]⁺ calcd for C₂₁H₃₆O₂BBrNaSi: 461.16532; found: 461.16519.

Ethyl 5-(Dimethylphenylsilyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate (4fo)

Pale yellow oil; yield: 44.9 mg (0.111 mmol, 37%).

¹H NMR (CDCl₃): $\delta = 0.26$ (s, 6 H), 0.69 (dd, J = 16.2, 8.5 Hz, 1 H), 0.90 (dd, J = 16.3, 5.3 Hz, 1 H), 1.07–1.13 (m, 1 H), 1.18–1.25 (m, 16 H), 1.42–1.55 (m, 2 H), 1.62–1.72 (m, 1 H), 2.17 (ddd, J = 15.2, 8.7, 6.5 Hz, 1 H), 2.23 (ddd, J = 15.2, 8.7, 6.5 Hz, 1 H), 4.07 (q, J = 6.8 Hz, 2 H), 7.31–7.34 (m, 3 H), 7.5 (dd, J = 6.4, 3.1 Hz, 2 H).

¹³C NMR (CDCl₃): $\delta = -4.63$, 4.10, 14.23, 19.69, 24.47, 24.78, 24.95, 32.02, 34.61, 60.06, 82.97, 127.57, 128.67, 134.03, 138.76, 173.73.

HRMS: m/z [M + Na]⁺ calcd for C₂₂H₃₇O₄BNaSi: 427.24464; found: 427.24432.

2-[3-(2-Bromo-4-methoxyphenyl)-2-(4-methoxyphenyl)propyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4bp) Pale yellow oil; yield: 147.6 mg (0.32 mmol, 32%).

¹H NMR (CDCl₃): $\delta = 1.02$ (s, 6 H), 1.05 (s, 6 H), 1.17 (d, J = 8.1 Hz, 2 H), 2.87 (dd, J = 13.5, 7.4 Hz, 1 H), 2.90 (dd, J = 13.4, 7.4 Hz, 2 H), 3.15 (quint, J = 7.7 Hz, 1 H), 3.74 (s, 3 H), 3.76 (s, 3 H), 6.66 (dd, J = 8.6, 2.7 Hz, 1 H), 6.76 (d, J = 8.6 Hz, 2 H), 6.84 (d, J = 8.5 Hz, 1 H), 7.05 (d, J = 2.6 Hz, 1 H), 7.09 (d, J = 8.6 Hz, 1 H).

 13 C NMR (CDCl₃): δ = 24.49, 24.76, 40.94, 45.40, 55.22, 55.42, 82.89, 113.07, 113.33, 117.60, 124.90, 128.38, 131.85, 132.14, 138.51, 157.75, 158.15.

HRMS: m/z [M + Na]⁺ calcd for C₂₃H₃₀O₄BBrNa: 483.13127; found: 483.13126.

3-(2-Bromo-4-methoxyphenyl)-2-(4-methoxyphenyl)propan-1ol (8)

Pale yellow oil; yield: 62.0 mg (0.176 mmol, 84%)

¹H NMR (CDCl₃): $\delta = 1.30$ (t, J = 6.3 Hz, 1 H), 2.82–2.90 (m, 1 H), 3.10 (dd, J = 14.4, 7.3 Hz, 1 H), 3.13 (dd, J = 14.0, 7.1 Hz, 1 H), 3.75 (s, 3 H), 3.76–3.81 (m, 1 H), 3.79 (s, 3 H), 6.67 (dd, J = 8.5, 2.7 Hz, 1 H), 6.85 (d, J = 8.7 Hz, 2 H), 6.87 (d, J = 8.5 Hz, 1 H), 7.07 (d, J = 2.7 Hz, 1 H), 7.14 (d, J = 8.7 Hz, 2 H). ¹³C NMR (CDCl₃): δ = 38.12, 47.66, 55.21, 55.44, 66.21, 113.29, 114.03, 117.82, 124.70, 129.02, 131.15, 11.56, 133.50, 158.36, 158.44.

HRMS: $m/z [M + Na]^+$ calcd for $C_{17}H_{19}O_3BrNa$: 373.04098; found: 373.04126.

Supporting Information for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/10.1055/s-00000084.

References

- (1) *Boronic Acids*; Hall, D. G., Ed.; Wiley-VCH: Weinheim, **2011**.
- (2) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
 (b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11.
- (3) (a) Petasis, N. A.; Goodman, A.; Zavialov, I. A. *Tetrahedron* 1997, *53*, 16463. (b) Koolmeister, T.; Södergren, M.; Scobie, M. *Tetrahedron Lett.* 2002, *43*, 5965.
- (4) For examples, see: (a) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821. (b) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2001, 625, 47. (c) Ito, H.; Ito, S.; Sasaki, Y. Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856. (d) Ito, H.; Sasaki, Y.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 15774. (e) Lee, J.-E.; Yun, J. Angew. Chem. Int. Ed. 2008, 47, 145. (f) Ito, H.; Kosaka, Y.; Nonoyama, K.; Sasaki, Y.; Sawamura, M. Angew. Chem. Int. Ed. 2008, 47, 7424. (g) Lee, J.-E.; Kwon, J.; Yun, J. Chem. Commun. 2008, 733. (h) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160. (i) Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 18234. (j) Lillo, V.; Prieto, A.; Bonet, A.; Díaz-Requejo, M. M.; Ramírez, J.; Pérez, P. J.; Fernández, E. Organometallics 2009, 28, 659. (k) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226. (l) Ito, H.; Toyoda, T.; Sawamura, M. J. Am. Chem. Soc. 2010, 132, 5990. (m) Zhong, C.; Kunii, S.; Kosaka, Y.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 11440. (n) Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem. Int. Ed. 2011, 50, 2778. (o) Jang, H.; Zhugralin, A. R.; Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7859. (p) Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew. Chem. Int. Ed. 2012, 51, 12763. (q) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Angew. Chem. Int. Ed. 2013, 52, 12400. (r) Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635. (s) Yun, J. Asian J. Org. Chem. 2013, 2, 1016.
- (5) (a) Yoshida, H.; Kawashima, S.; Takemoto, Y.; Okada, K.; Ohshita, J.; Takaki, K. *Angew. Chem. Int. Ed.* **2012**, *51*, 235.
 (b) Takemoto, Y.; Yoshida, H.; Takaki, K. *Chem. Eur. J.* **2012**, *18*, 14841.
- (6) (a) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196. (b) Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem. Int. Ed. 2007, 46, 6710.
- (7) For catalytic carboboration via direct activation of a B–C bond, see: (a) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358. (b) Suginome, M.; Yamamoto, A.; Murakami, M. Angew. Chem. Int. Ed. 2005, 44, 2380. (c) Suginome, M.; Yamamoto, A.; Murakami, M. J. Organomet. Chem. 2005, 690, 5300. (d) Suginome, M.; Shirakura, M.; Yamamoto, A. J. Am. Chem. Soc. 2006, 128, 14438. (e) Suginome, M.; Yamamoto, A.; Sasaki, T.; Murakami, M. Organometallics 2006, 25, 2911.

- (8) For three-component carboboration with a boron electrophile and a carbon nucleophile, see: (a) Yamamoto, A.; Suginome, M. J. Am. Chem. Soc. 2005, 127, 15706.
 (b) Daini, M.; Yamamoto, A.; Suginome, M. J. Am. Chem. Soc. 2008, 130, 2918. (c) Daini, M.; Suginome, M. Chem. Commun. 2008, 5224. (d) Daini, M.; Yamamoto, A.; Suginome, M. Asian J. Org. Chem. 2013, 2, 968.
- (9) For carboboration of other modes, see: (a) Mikhaikov, B. M.; Bubnov, Y. N. *Tetrahedron Lett.* 1971, *12*, 2127.
 (b) Bubnov, Y. N.; Nesmeyanova, O. A.; Rudashevskaya, T. Y.; Mikhaikov, B. M.; Kazansky, B. A. *Tetrahedron Lett.* 1971, *12*, 2153. (c) Wrackmeyer, B.; Nöth, H. *J. Organomet. Chem.* 1976, *108*, C21. (d) Okuno, Y.; Yamashita, M.; Nozaki, K. *Angew. Chem. Int. Ed.* 2011, *50*, 920.
- (10) For copper-catalyzed carboboration of alkynes, see:
 (a) Alfaro, R.; Parra, A.; Alemeán, J. G.; Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2012, 134, 15165. (b) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc. 2012, 134, 14314. (c) Zhou, Y.; You, W.; Smith, K. B.; Brown, M. K. Angew. Chem. Int. Ed. 2014, 53, 3475.
- (11) For our previous work on copper-catalyzed carboboration of alkynes, see: Yoshida, H.; Kageyuki, I.; Ken, T. Org. Lett. 2013, 15, 952.
- (12) (a) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics 2006, 25, 2405. (b) Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8, 4887. (c) Sakaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem. Int. Ed. 2011, 50, 2778. (d) Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Eur. J. 2013, 19, 7125.
- (13) For Pd-catalyzed carboboration of alkenes, see: Daini, M.; Suginome, M. J. Am. Chem. Soc. 2011, 133, 4758.
- (14) Copper(II) acetate would be reduced to a copper(I) complex in situ, see: Hammond, B.; Jardine, F. H.; Vohra, A. G. *J. Inorg. Nucl. Chem.* **1971**, *33*, 1017.

- (15) A major byproduct was benzylboronic acid pinacol ester.
- (16) The stereochemistry of the major products could not be elucidated.
- (17) For a review on radical clock reactions, see: Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13, 317.
- (18) For hydroboration of alkenes via a β-borylalkyl copper species, see: (a) Lee, J.-E.; Yun, J. *Angew. Chem. Int. Ed.* **2007**, *47*, 145. (b) Corberán, R.; Mszar, N. W.; Hoveyda, A. H. *Angew. Chem. Int. Ed.* **2011**, *50*, 7079.
- (19) Another catalytic pathway, which involves direct reaction of6 with a carbon electrophile, may also be possible, see ref.10a.
- (20) (a) Chang, Y. C.; Nair, M. G.; Nitiss, J. L. J. Nat. Prod. 1995, 58, 1901. (b) Setchell, K. D. R.; Brown, N. M.; Lydeking-Olse, E. J. Nutr. 2002, 132, 3577. (c) Ingram, D.; Sanders, K.; Kolybaba, M.; Lopez, D. Lancet 1997, 350, 990. (d) Lamartiniere, C. A. Am. J. Clin. Nutr. 2000, 71, 1705. (e) Adlercreutz, H.; Honjo, H.; Higashi, A. Am. J. Clin. Nutr. 1991, 54, 1093. (f) Muthyala, R. S.; Ju, Y. H.; Sheng, S.; Williams, L. D.; Doerge, D. R.; Katzenellenbogen, B. S.; Helferich, W. G.; Katzenellenbogen, J. A. Bioorg. Med. Chem. 2004, 12, 1559.
- (21) For the previous reports on total synthesis of equol, see:
 (a) Heemstra, J. M.; Kerrigan, S. A.; Doerge, D. R.; Helferich, W. G.; Boulanger, W. A. Org. Lett. 2006, 8, 5441.
 (b) Gharpure, S. J.; Sathiyanarayanan, A. M.; Jonnalagadda, P. Tetrahedron Lett. 2008, 49, 2974.
- (22) (a) Díes-González, S.; Kaur, H.; Zinn, F. K.; Stevens, E. D.; Nolan, S. P. J. Org. Chem. 2005, 70, 4784. (b) Chun, J.; Lee, H. S.; Jung, I. G.; Lee, S. W.; Kim, H. J.; Son, S. U. Organometallics 2010, 29, 1518.