Tetrahedron 67 (2011) 1320-1333

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Total synthesis of benzo[c]phenanthridine alkaloids based on a microwave-assisted electrocyclic reaction of the aza 6π -electron system and structural revision of broussonpapyrine

Yuhsuke Ishihara, Shuhei Azuma, Tominari Choshi*, Kakujirou Kohno, Kanako Ono, Hiroyuki Tsutsumi, Takashi Ishizu, Satoshi Hibino*

Graduate School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan

ARTICLE INFO

Article history: Received 8 October 2010 Received in revised form 17 November 2010 Accepted 17 November 2010 Available online 24 November 2010

ABSTRACT

Total syntheses of the des-*N*-methyl (nor) type of benzo[*c*]phenanthridine alkaloids **1a**–**f** and **19** and benzo [*c*]phenanthridine alkaloids, chelerythrine (**2d**), and broussonpapyrine (**2f**) were achieved. The key step was the construction of tetracyclic 10,11-dihydrobenzo[*c*]phenanthridines using a microwave-assisted electrocyclic reaction of the 2-cycloalkenylbenzaldoxime methyl ether **4** as an aza 6π -electron system, which was derived in two steps from a Suzuki–Miyaura cross-coupling reaction of 2-bromobenzaldehyde **6** with 2-(3,4-dihydro-6,7-methylenedioxynaphthyl)boronic acid pinacol ester **7**. In addition, the exact structure of broussonpapyrine (**2f**) (2,3,9,10-tetraoxygenated type) was determined to be chelerythrine (**2d**).

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Benzo[*c*]phenanthridine alkaloids are a family of tetracyclic aromatic compounds, isolated mainly from the Rutaceae, Papaveraceae, and Fumariaceae plants.¹ The benzo[*c*]phenanthridines are an interesting structure having the isoquinoline part, many of which show a wide range of pharmacological properties including anti-tumor activity.^{2,3} Among the benzo[*c*]phenanthridines, nitidine (**2a**) and fagaronine exhibit potential antileukemic activity through the inhibition of topoisomerases,^{2–4} while sanguinarine (**2e**) shows antibacterial and antifungal activities.^{4d,e} The 7-hydroxy-8-methoxy-5methyl-2,3-methylenedioxybenzo[*c*]phenanthridinium hydrogen sulfate (NK109) (**2c**), as a topoisomerase II inhibitor, was the promising compounds. However, the activity of NK109 was not exhibited on the clinical trial.⁵ NK314, exhibiting significant anti-tumor activity against drug-resistant human tumor cell lines, is a novel synthetic benzo[*c*]phenanthridine fused with pyrrolidine ring at the N5-C6 positions that has entered clinical trials as an anti-tumor agent.⁶

Synthetic studies started in 1937,⁷ and since then, they have attracted much attention from the synthetic organic chemists during over the past seventy years.^{1,8–10,13,20} Many synthetic approaches to the benzo[*c*]phenanthridine nucleus have been reported, and their routes involve the construction of either B or C ring in

the final or semifinal stage. Synthetic methodologies until 1999 were clarified and summarized in an excellent review.⁸ Despite the numerous reports on benzo[c]phenanthridine alkaloids, to date, highly efficient synthesis remains a challenge.

We are developing the synthesis of the bioactive nitrogencontaining fused-heteroaromatic compounds including natural products based on a thermal electrocyclic reaction either a 6π - or an aza 6π -electron system involving an aromatic or hetero-aromatic double bond in principle.¹¹ Recently, we reported the total synthesis of furoisoquinoline,^{12a} phenanthridine,^{12b} β carboline,^{12c} azaanthraquinone,^{12d} and benzo[c]phenanthridine¹³ alkaloids based on a microwave (MW)-assisted electrocyclic reaction of the aza 6π -electron system. We here describes the full detailed synthesis of benzo[c]phenanthridines 1a-f, and 2f as depicted in Fig. 1. The aim of the synthetic plan is to design a synthesis of 11,12-dihydrobenzo[c]phenanthridine framework **3**, which would be derived from a 2-cycloalkenylbenzaldoxime methyl ether **4** through a new bond formation between the C4b and N5-positions in the tetracyclic benzo[c]phenanthridine by a microwave-assisted electrocyclic reaction as shown in Scheme 1. An appropriate substituted 2-cycloalkenylbenzaldoxime methyl ether 4 and its precursor 5 would be provided by the Suzuki-Miyaura coupling reaction¹⁴ between 2-bromobenzaldehyde $\mathbf{6}$ and 3,4-dihydro-6,7-methylenedioxynaphthylboronic acid pinacol ester (7). This design would be applicable to the preparation of 2,3,8,9-, 2,3,7,8-, and 2,3,9,10-, three types of tetraoxygenated benzo[*c*]phenanthridines **1a**–**f** and **2f** (Scheme 1).

^{*} Corresponding authors. E-mail address: choshi@fupharm.fukuyama-u.ac.jp (T. Choshi).

^{0040-4020/\$ —} see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.11.066

- **1a** : R¹=R⁴=H, R²=R³=OMe (nornitidine)
- **1b** : R¹=R⁴=H, R²+R³=OCH₂O (noravicine)
- 1c : R¹=OH, R²=OMe, R³=R⁴=H (isodecarine)
- 1d : R¹=R²=OMe, R³=R⁴=H (norchelerythrine)
- 1e : R¹+R²=OCH₂O, R³=R⁴=H (norsanguinarine)
- 1f: R¹=R²=H, R³=OH, R⁴=OMe (zanthoxyline)
- **1g** : R¹=R²=H, R³=R⁴=OMe
- (O-methylzanthoxyline) **1h** : R¹=OMe, R²=OH, R³=R⁴=H (decarine)

- 2a : R¹=R⁴=H, R²=R³=OMe (nitidine)
- **2b** : $R^1 = R^4 = H$, $R^2 + R^3 = OCH_2O$ (avicine)
- 2c : R¹=OH, R²=OMe, R³=R⁴=H (NK109)
- 2d : R¹=R²=OMe, R³=R⁴=H (chelervthrine)
- **2e** : R¹+R²=OCH₂O, R³=R⁴=H (sanguinarine)
- 2f : R¹=R²=H, R³=R⁴=OMe (broussonpapyrine)

O-triflate **10**, which was performed to the Stille reaction with allyl tributyltin in the presence of PdCl₂(PPh₃)₂ and LiCl to give the diallylbenzene **11**. Olefin metathesis of diallylbenzene **11** with the Grubbs's 1 catalyst afforded the 1,4-dihydronaphthalene **12**, which was subjected to hydroboration followed by oxidation to yield 2-hydroxytetrahydronaphthalene **13**. The alcohol **13** was subsequently oxidized by pyridinium chlorochromate (PCC) in CH₂Cl₂ to give the known β-tetralone **8**.¹⁶ The unstable β-tetralone was immediately treated with *N*-phenylbis(trifluoromethanesulfonamide) (Tf₂NPh) and LDA to produce the triflate **14**, which was converted to the necessary pinacol borate **7** with bis(pinacolato)diborone and PdCl₂(dppf).^{14c} An alternative synthesis of the 6,7-methylenedioxy-β-tetralone (**8**) was achieved in 58% overall yield in a five-step sequence. The pinacol borate **7** was obtained by additional two steps through the triflate **14** (72%).

At first, 2,3,8,9-tetraoxygenated benzo[*c*]phenanthridines, nornitidine (**1a**)^{1,17} and noravicine (**1b**)^{1,17} were chosen as target compounds (Scheme 3). The Suzuki–Miyaura reaction of 2-bromo-4,5-dimethoxybenzaldehyde (**6a**)¹⁸ and 2-bromo-4,5-methylenedioxybenzaldehyde (**6b**)¹⁸ with the pinacol borate **7** smoothly proceeded in the presence of PdCl₂(PPh₃)₂ to yield the 2-cyclo-

2. Result and discussions

To obtain a necessary pinacol borate **7**, we initially attempted an alternative synthesis of 6,7-methylenedioxy- β -tetralone (**8**) (Scheme 2). Treatment of 2-allyl-4,5-methylenedioxyphenol (**9**)¹⁵ with trifluoromethanesulfonic anhydride (Tf₂O) and pyridine afforded the

alkenylbenzaldehydes **5a** (98%) and **5b** (78%) (Table 1: Runs 1 and 2). Treatment of the resulting **5a** and **5b** with hydroxylamine methyl ether gave the oxime methyl ethers **4a** (95%) and **4b** (98%), which were performed to an MW-assisted electrocyclic reaction at 180 °C in 1,2-dichlorobenzene to produce the 10,11-dihydrobenzo[*c*]phenanthridines **3a**¹⁹ (84%) and **3b**^{17b,19} (94%), respectively (Table 2:

Scheme 2.

Table 1Suzuki-Miyaura reactions between 6a-g and 7

Run	Starting mater	ial	Pd Catalyst	Time (h)	Product		
	Compd.	R			Compd.	Yield (%)	
1	6a	$R^1 = R^4 = H, R^2 = R^3 = OMe$	$PdCl_2(PPh_3)_2$	0.5	5a	98	
2	6b	$R^1 = R^4 = H, R^2 + R^3 = OCH_2O$	$PdCl_2(PPh_3)_2$	0.5	5b	78	
3	6c	R^1 =OAc, R^2 =OMe, R^3 = R^4 =H	$PdCl_2(PPh_3)_2$	1	5c	96	
4	6d	$R^1 = R^2 = OMe, R^3 = R^4 = H$	PdCl ₂ (dppf)	1	5d	75	
5	6e	$R^1 + R^2 = OCH_2O, R^3 = R^4 = H$	PdCl ₂ (dppf)	0.5	5e	97	
6	6f	$R^1 = R^2 = H, R^3 = R^4 = OMe$	$PdCl_2(PPh_3)_2$	0.5	5f	72	
7	6g	$R^1 = R^2 = H$, $R^3 = OAc$, $R^4 = OMe$	PdCl ₂ (dppf)	1	5g	54	

Runs 2 and 4). In the case of conventional conditions without MW, the yields of **3a** and **3b** were 45% and 57% (Table 2: Runs 1 and 3). Finally, the dihydrobenzo[*c*]phenanthridines **3a** and **3b** were oxidized by refluxing with 10% Pd–C in 1,2-dichlorobenzene to give nornitidine (**1a**: 97%)¹⁷ and noravicine (**1b**: 74%).¹⁷ The overall yields of **1a** and **1b** were 76% and 53% in a four-step sequence after the Suzuki–Miyaura reaction.

Next, 2,3,7,8-tetraoxygenated benzo[c]phenanthridines, isodecarine (**1c**).^{1,10d,20} norchelerythrine (**1d**),^{1,21} and norsanguinarine (1e)^{1,22} were synthesized as follows (Scheme 3). Namely, the Suzuki– Miyaura reaction of 2-acetoxy-6-bromo-3-methoxybenzaldehyde (6c),²³ 6-bromo-2,3-dimethoxybenzaldehyde (6d),²³ and 6-bromo-2,3-methylenedioxybenzaldehyde (6e)²⁴ with the pinacol borate 7 in the presence of PdCl₂(PPh₃)₂ or PdCl₂(dppf) afforded the 2-cycloalkenylbenzaldehydes 5c (96%), 5d (75%), and 5e (97%), respectively (Table 1: Runs 3, 4, and 5). The deacetylated compound 5c was obtained in the cross-coupling reaction of 6c with 7. Three 2-cycloalkenylbenzaldehydes 5c, 5d, and 5e were converted to the

Table 2

Thermal electrocyclic reaction of aza 6π -electron systems

Run	Starting material (S.M.)		Temp (°C)	Time (h)	MW	Product	
	Compd.	R				Compd.	Yield (%)
1	4 a	$R^1 = R^4 = H, R^2 = R^3 = OMe$	180	12	_	3a	45
2	4a	$R^1 = R^4 = H, R^2 = R^3 = OMe$	180	2.5	+	3a	84
3	4b	$R^1 = R^4 = H, R^2 + R^3 = OCH_2O$	180	12	_	3b	57
4	4b	$R^1 = R^4 = H, R^2 + R^3 = OCH_2O$	180	2	+	3b	94
5	15	R^1 =OAc, R^2 =OMe, R^3 = R^4 =H	180	3	_	3c	49
6	15	R^1 =OAc, R^2 =OMe, R^3 = R^4 =H	180	1	+	3c	77
7	4d	$R^1 = R^2 = OMe$, $R^3 = R^4 = H$	180	3	_	3d	49
8	4d	$R^1 = R^2 = OMe, R^3 = R^4 = H$	180	1	+	3d	84
9	4 e	$R^1 + R^2 = OCH2O, R^3 = R^4 = H$	180	7	_	3e	37
10	4 e	$R^1 + R^2 = OCH2O, R^3 = R^4 = H$	180	4	+	3e	95
11	4f	$R^1 = R^2 = H, R^3 = R^4 = OMe$	180	7	_	3f	S.M. Recover
12	4 f	$R^1 = R^2 = H, R^3 = R^4 = OMe$	180	4	+	3f	80
13	4g	$R^1 = R^2 = H$, $R^3 = OH$, $R^4 = OMe$	180	6	_	3g	S.M. Recover
14	4g	$R^1 = R^2 = H$, $R^3 = OH$, $R^4 = OMe$	200	4	+	3g	75
15	16	$R^1 = R^2 = H$, $R^3 = OAc$, $R^4 = OMe$	180	7	_	17	24
16	16	$R^1 = R^2 = H$, $R^3 = OAc$, $R^4 = OMe$	200	5	+	17	67

corresponding oxime ethers **4c** (95%), **4d** (92%), and **4e** (64%). Acetylation of the oxime ether **4c** with Ac₂O in the presence of 4-*N*,*N*dimethyaminopyridine (DMAP) and Et₃N in CH₂Cl₂ afforded the *O*-acetyl oxime ether **15** (94%), and then three oximes **15**, **4d**, and **4e** were subjected to an MW-assisted electrocyclic reaction at 180 °C to give the desired 11,12-dihydrobenzo[*c*]phenanthridines **3c** (77%), **3d** (84%), and **3e** (95%), respectively (Table 2: Runs 6, 8, and 10). In the conditions of electrocyclic reaction of **15**, **4d**, and **4e** without MW, good results were not obtained (Table 2: Runs 5, 7, and 9). Oxidation of **3c**, **3d**, and **3e** in a similar way provided the *O*-acetylisodecarine (**18**: 93%), norchelerythrine (**1d**: 91%),^{21,22c} and norsanginarine (**1e**: 60%),²² respectively. *O*-Acetylisodecarine **18** was hydrolyzed with KHCO₃ in an aqueous MeOH to produce isodecarine (**1c**: 74%).^{10d,20} The overall yields of **1c**, **1d**, and **1e** were 45% (six-steps), 53%, and 35% (four-steps), respectively.

Furthermore, we attempted a synthesis of 2,3,9,10-tetraoxygenated benzo[c]phenanthridine, norbroussonpapyrine (19), the precursor of broussonpapyrine (2f)²⁵ and zanthoxyline (1f)²⁶ (Scheme 3). The Suzuki-Miyaura reaction of 2-bromo-3,4-dimethoxybenzaldehyde $(\mathbf{6f})^{27}$ and 4-acetoxy-2-bromo-3-methoxy benzaldehyde $(\mathbf{6g})^{28}$ with the pinacol borate **7** gave the 2-cycloalkenvlbenzaldehvde 5f (72%) and the deacetvlated 2-cvcloalkenvlbenzaldehvde **5g** (54%). Subsequent treatment of **5f** and **5g** with hydroxylamine methyl ether yielded the oxime ethers 4f (90%) and 4g (95%). Acetylation of 4g with Ac₂O in the presence of DMAP afforded the acetylated 16 (Q.Y.). The oximes 4f, 4g, and 16 were performed to an MW-assisted electrocyclic reaction at 200 °C (external) to give the desired tetracyclic dihydrobenzo[c]phenanthridines 3f (80%), 3g (75%), and acetylated 17 (67%), respectively (Table 2: Runs 12, 14, and 16). Under conventional conditions of Runs 11, 13, and 15 (Table 2) without MW, these reactions produced low yield or resulted in recovery of the starting material. Finally, dihydrobenzo[c]phenanthridines 3f, 3g, and 17 were converted to norbroussonpapyrine (19) (80%), zanthoxyline (1f_a) (95%), and O-acetylzanthoxyline (20) (95%), respectively, in a similar manner. Hydrolysis of 20 with an aqueous NaHCO₃ in MeOH afforded **1f**_a (Q.Y.). The overall yields of **19** and **1f**_a were 41% and 35% in four steps. The route of the acetylated 20 through the acetylated 17 provided 31% overall yield in six steps. Based on this result, it was found that there is no necessity for protecting the phenolic group in this ring closure (Table 2: Run 14). O-Methylation of the synthetic zanthoxyline $(\mathbf{1f}_{2})$ with dimethyl sulfate and 10% NaOH afforded O-methylzanthoxyline (1g_a) (77%). Thus, the synthesis of 2,3,9,10-tetraoxygenated benzo[c]phenanthridines 19 and 1fa were also established. Our synthetic norbroussonpapyrine (19) and synthetic O-methylzanthoxyline $(1g_a)$ should be consistent with O-methylzanthoxyline (1g) reported by Morel group,²⁶ but the NMR spectral data of **19** and/or **1g**_a was not identical with those of **1g** (Tables 3 and 4). Although, ¹H NMR spectral data of the reported O-methylzanthoxyline (1g) was nearly the same as those of synthetic norchelerythrine (1d), ¹³C NMR spectral data of 1g and 1d was extremely superimposed. Therefore, the reported O-methylzanthoxyline (1g) was estimated to be norchelerythrine (1d) (Tables 3 and 4). It was recently reported by Abe group²⁹ that the correct structure of the reported zanthoxyline (**1f**) by Morel group²⁶ is 8-hydroxy-7-methoxy-2,3-methylenedioxybenzo[c]phenanthridine (decarine) (1h), but not 9-hydroxy-10-methoxy-2,3-methylenedioxybenz[c]phenanthridine $(\mathbf{1f_b})^{29}$ or 7-hydroxy-8-methoxy-2,3-methylenedioxybenzo[c]phenanthridine (isodecarine) (1c). Our synthetic 9-hydroxy-10-methoxy-2,3-methylenedioxybenzo[c]phenanthridine $(1f_a)$ was consistent with the reported $1f_b$ by Abe group²⁹ on the comparison of the NMR spectral data (Tables 5 and 6).

Conversion of norbroussonpapyrine (19) to broussonpapyrine $(2f_a \text{ and } 2f_b)$ was achieved by applying the procedures of the Ishikawa³⁰ and Simanek.^{10d} Namely, treatment of **19** with formic acid followed by reduction with NaBH₄ gave the N-methylated 5,6-dihydrobenzo[c]phenanthridine 21, which was oxidized by Jones reagent followed by treatment with diluted hydrochloric acid to yield broussonpapyrine chloride $(2f_a)$. N-Methylation of 19 with methyl trifluoromethanesulfonate afforded broussonpapyrine trifluoromethanesulfonate $(2f_b)$ (Scheme 4). The NMR spectral data of synthetic 2f (Cl), however, were not identical with those of the reported broussonpapyrine $(2f)^{25}$ (Tables 7 and 8). For a structure analysis of the reported broussonpapyrine (2f), our synthetic norchelerythrine (1d) was converted to chelerythrine (**2d**) through the dihydro-compound in the same way³⁰ (Scheme 4). The NMR spectral data of our synthetic chelerythrine (2d) was more closely related to the data of reported broussonpapyrine (2f), besides the synthetic 2d was consistent with chelerythrine

Table 3

Comparison of ¹H NMR spectral data^a [δ (ppm), ($\Delta \delta$)^b]

1g : <i>O</i> -Methylzanthoxyline reported by Morel ^c , ²⁶		1ga : <i>O</i> -Methylzanthoxyline (synthetic compound) ^d		19 : Norbroussonpapyrine (synthetic compound) ^d		1d : Norchelerythrine (synthetic compound) ^d	
4.02, s	(9-OCH ₃)	4.00, s	(-0.02)	4.00, s	(-0.02)	4.06, s	(0.04)
4.06, s	(10-OCH ₃)	4.09, s	(0.03)	4.09, s	(0.03)	4.13, s	(0.07)
6.05, s	(-0-CH ₂ -0-)	6.13, s	(0.08)	6.12, s	(0.07)	6.13, s	(0.08)
7.12, s	(C-1)	7.27, s	(0.15)	7.26, s	(0.14)	7.27, s	(0.15)
7.27, d	(C-8)	7.43, d	(0.16)	7.43, d	(0.16)	7.60, d	(0.33)
7.59, d	(C-12)	7.86, d	(0.27)	7.86, d	(0.27)	7.85, d	(0.26)
8.24, d	(C-7)	7.89, d	(-0.35)	7.89, d	(-0.35)	8.36, d	(0.12)
8.24, d	(C-11)	9.33, d	(1.09)	9.33, d	(1.09)	8.37, d	(0.13)
8.65, s	(C-4)	8.75, s	(0.10)	8.75, s	(0.10)	8.72, s	(0.07)
9.67, s	(C-6)	9.24, s	(-0.43)	9.25, s	(-0.42)	9.75, s	(0.08)

NMR spectral data were measured in CDCl₂.

^b Values in parentheses refer to the difference in chemical shift between the synthetic data and the reported data.

^c 400 MHz ¹H NMR.

d 300 MHz 1H NMR.

Table 4

Comparison of ¹³C NMR spectral data^a [δ (ppm), ($\Delta\delta$)^b]

1g : <i>O</i> -Methylzanthoxyline reported by Morel ^{c,26}		1g _a : <i>O</i> -Methy (synthetic co	1g _a : <i>O</i> -Methylzanthoxyline (synthetic compound) ^d		19 : Norbroussonpapyrine (synthetic compound) ^d		1d : Norchelerythrine (synthetic compound) ^d	
57.0	(9-OCH ₃)	56.5	(-0.5)	56.5	(-0.5)	56.8	(-0.2)	
61.8	(10-OCH ₃)	60.1	(-1.7)	60.1	(-1.7)	61.9	(0.1)	
101.3	$(-0-CH_2-0-)$	101.3	(0)	101.3	(0)	101.3	(0)	
102.3	(C-4)	102.6	(0.3)	102.5	(0.2)	102.2	(-0.1)	
104.3	(C-1)	103.8	(-0.5)	103.9	(-0.4)	104.4	(0.1)	
118.2	(C-7)	113.5	(-4.7)	113.5	(-4.7)	118.2	(0)	
118.2	(C-11)	119.6	(1.4)	119.6	(1.4)	118.3	(0.1)	
119.2	(C-8)	122.9	(3.7)	122.9	(3.7)	118.7	(-0.5)	
120.0	(C-10b)	123.1	(3.1)	123.1	(3.1)	120.0	(0)	
121.9	(C-10a)	125.9	(4.0)	126.0	(4.1)	121.9	(0)	
127.0	(C-12)	126.4	(-0.6)	126.4	(-0.6)	127.1	(0.1)	
128.3	(C-6a)	127.4	(-0.9)	127.4	(-0.9)	128.1	(-0.2)	
129.3	(C-4a)	128.8	(-0.5)	128.7	(-0.6)	129.2	(-0.1)	
129.8	(C-12a)	130.1	(0.3)	130.1	(0.3)	129.7	(-0.1)	
140.2	(C-4b)	141.7	(1.5)	141.5	(1.3)	140.0	(-0.2)	
145.6	(C-10)	145.5	(-0.1)	145.5	(-0.1)	145.2	(-0.4)	
146.5	(C-6)	148.1	(1.6)	148.1	(1.6)	146.6	(0.1)	
148.4	(C-2)	148.5	(0.1)	148.5	(0.1)	148.3	(-0.1)	
148.5	(C-3)	151.6	(3.1)	151.5	(3.0)	148.5	(0)	
149.4	(C-9)	154.4	(5.0)	154.5	(5.1)	149.4	(0)	

^a NMR spectral data were measured in CDCl₃.

^b Values in parentheses refer to the difference in chemical shift between the synthetic data and the reported data.
 ^c 100 MHz ¹³C NMR.

d 75 MHz ¹³C NMR.

(2d) provided by Ishikawa in all respect (Tables 7 and 8). The structure of synthetic 2fb (CF₃SO₃) was also confirmed by X-ray single crystallographic analysis (Fig. 2). Consequently, it was found that the exact structure of the reported broussonpapyrine (2f) is 7,8-dimethoxy-N-methyl-2,3-methylendioxybenzo[c]phenanthridinium (chelerythrine) (2d). Moreover, the first syntheses of 9,10-dimethoxy-2,3-methylenedioxybenzo[c]phenanthridine (**19**) and 9,10-dimethoxy-*N*-methyl-2,3-methylenedioxybenzo[*c*] phenanthridinium chloride $(2f_a)$ (and trifluoromethanesulfonate **2f**_b) were achieved.

3. Conclusion

A versatile synthesis of benzo[*c*]phenanthridines and benzo[*c*] phenanthridine alkaloids was achieved by the constructing the tetracyclic 10,11-dihydrobenzo[c]phenanthridine framework 3a-g and 17 based on the Suzuki-Miyaura reaction between 2-bromobenzaldehydes 6 and 2-(3,4-dihydro-6,7-methylenedioxynaphthyl) boronic acid pinacol ester (7), followed by the bond formation between C4b and N5 at the position of the tetracyclic ring using an MW-assisted thermal electrocyclic reaction of the 6π -electron system as a key step. Subsequent dehydrogenation of **3a**-g and **17** with 10% Pd–C afforded eight benzo[c]phenanthridines 1a–b, 18, 1d–e, 19, 20, and 1fa. O-Acetyl derivatives 18 and 20 were converted to isodecarine **1c** and 9-hydroxy-10-methoxybenzo[c]phenanthridine $(\text{zanthoxyline})(\mathbf{1f}_{a})$ by hydrolysis. The synthetic zanthoxyline $(\mathbf{1f}_{a})$ was converted to O-methylzanthoxyline (1g_a), which was closely superimposed with synthetic norbroussonpapyrine (19). Our synthetic zanthoxyline (1f_a) was consistent with 9-hydroxy-10methoxybenzo[c]phenanthridine (zanthoxyline) (1fb) by Abe

Table 5

Comparison of ¹H NMR spectral data^a [δ (ppm), ($\Delta\delta$)^b]

1f : Zanthoxyline reported by Morel ^{c,26}		1f _a : Zanthoxyline (synthetic compound) ^d		1f _b : Zanthoxyline reported by Abe ²⁹		1h : Decarine reported by Abe ²⁹		1c : Isodecarine (synthetic compound) ^d	
4.09, s	(10-0CH ₃)	3.88, s	(-0.21)	3.88, s	(-0.21)	4.01, s	(-0.08)	3.98, s	(-0.11)
6.09, s	$(-0-CH_2-0-)$	6.21, s	(0.12)	6.21, s	(0.12)	6.20, s	(0.11)	6.20, s	(0.11)
7.46, s	(C-1)	7.48, s	(0.02)	7.48, s	(0.02)	7.50, s	(0.04)	7.48, s	(0.02)
7.61, d	(C-8)	7.42, d	(-0.19)	7.43, d	(-0.18)	7.57, d	(-0.04)	7.70, d	(0.09)
7.92, d	(C-12)	7.93, d	(0.01)	7.94, d	(0.02)	7.95, d	(0.03)	7.93, d	(0.01)
8.42, d	(C-7)	7.93, d	(-0.49)	7.94, d	(-0.48)	8.46, d	(0.04)	8.23, d	(-0.19)
8.46, d	(C-11)	9.26, d	(0.80)	9.21, d	(0.81)	8.50, d	(0.04)	8.49, d	(0.03)
8.57, s	(C-4)	8.58, s	(0.01)	8.58, s	(0.01)	8.53, s	(-0.04)	8.51, s	(-0.06)
9.61, s	(C-6)	9.21, s	(-0.40)	9.27, s	(-0.34)	9.57, s	(-0.04)	9.65, s	(0.04)

^a NMR spectral data were measured in DMSO- d_6 .

^b Values in parentheses refer to the difference in chemical shift between the synthetic data and the reported data.

 $^{c}\,$ 400 MHz $^{\bar{1}}\text{H}$ NMR.

^d 300 MHz ¹H NMR.

Table 6			
Comparison	of ¹³ C NMR spectral data ^a	$[\delta (ppm), (\Delta \delta)^{b}]$	

1f : Zanthoxyline reported by Morel ^{c,26}		1f a: Zantho (synthetic	1f_a: Zanthoxyline (synthetic compound) ^d		1f_b: Zanthoxyline reported by Abe ²⁹		1h : Decarine reported by Abe ²⁹		1c : Isodecarine (synthetic compound) ^d	
61.9	(10-OCH ₃)	59.5	(-2.4)	59.7	(-2.2)	61.4	(-0.5)	56.9	(-5.0)	
102.0	$(-0-CH_2-0-)$	101.6	(-0.4)	101.7	(-0.3)	100.9	(-1.1)	101.1	(-0.9)	
102.4	(C-4)	101.6	(-0.8)	101.7	(-0.7)	102.0	(-0.4)	101.6	(-0.8)	
105.1	(C-1)	104.0	(-1.1)	104.2	(-0.9)	105.0	(-0.1)	104.5	(-0.6)	
118.9	(C-7)	119.0	(0.1)	119.1	(0.2)	118.7	(-0.2)	118.7	(-0.2)	
119.0	(C-11)	119.1	(0.1)	119.3	(0.3)	119.2	(0.2)	118.9	(-0.1)	
121.8	(C-10a)	122.1	(0.3)	122.1	(0.3)	121.4	(-0.4)	119.8	(-2.0)	
125.6	(C-8)	126.2	(0.6)	126.4	(0.8)	125.6	(0)	127.0	(1.4)	
127.4	(C-6a)	126.4	(-1.0)	126.6	(-0.8)	127.2	(-0.2)	127.1	(-0.3)	
128.1	(C-12)	126.8	(-1.3)	127.0	(-1.1)	128.2	(0.1)	128.3	(0.2)	
129.9	(C-12a)	129.7	(-0.2)	129.9	(0)	129.7	(-0.2)	129.4	(-0.5)	
143.2	(C-10)	142.9	(-0.3)	143.1	(-0.1)	142.7	(-0.5)	142.8	(-0.4)	
145.5	(C-6)	147.9	(2.4)	148.1	(2.6)	145.1	(-0.4)	144.3	(-1.2)	
148.1	(C-9)	148.4	(0.3)	148.5	(0.4)	148.1	(0)	146.7	(-1.4)	
148.7	(C-2)	151.9	(3.2)	151.9	(3.2)	148.5	(-0.2)	148.0	(-0.7)	
148.9	(C-3)	153.1	(4.2)	153.4	(4.5)	148.8	(-0.1)	148.1	(-0.8)	

^a NMR spectral data were measured in DMSO-*d*₆.

^b Values in parentheses refer to the difference in chemical shift between the synthetic data and the reported data.

^c 100 MHz ¹³C NMR.

 $^{\rm d}\,$ 75 MHz $^{13}{\rm C}$ NMR.

group²⁹ in all respects. In addition, 9,10-dimethoxy-*N*-methyl-2, 3-methylenedioxybenzo[*c*]phenanthridinium chloride (brousson-papyrine) (**2f**_a) was synthesized from 9,10-dimethoxy-2,3-methylenedioxybenzo[*c*]phenanthridine (norbroussonpapyrine) (**19**). Based on the comparison of NMR spectral data, it was found that the exact structure of the reported broussonpapyrine (**2f**) by Qin group²⁵ is the known chelerythrine (**2d**). Although, 9,10-dimethoxy-*N*-methyl-2,3-methylenedioxybenzo[*c*]phenanthridinium chloride (**2f**_a) and 9-hydroxy-10-methoxy-2,3-methylenedioxybenzo[*c*] phenanthridine (**1f**_a) were unnatural compounds, our synthetic methodology was confirmed to be applicable for the synthesis of the 2,3,9,10-tetraoxygenated type of benzo[*c*]phenanthridine.

4. Experimental section

4.1. General

Melting points were determined on a Yanagimoto micro-melting point apparatus MP-500D and are uncorrected. Infrared spectra were recorded with ATR method on a Shimadzu FTIR-8000 spectrometer. Nuclear magnetic resonance spectra were taken with a JEOL JNM AL-300 and JNM-ECA500 instruments using tetramethylsilane as an internal standard. Mass spectra were measured by Shimadzu QP-5050, JEOL JMS-700, and Waters LCT spectrometers by direct inlet system, respectively. The reaction of microwave (MW) irradiation was carried out by Discover of CEM Co. Ltd. with 2450 MHz. Anhydrous THF, CH₂Cl₂, and DMF were used commercially available solvents (Cica reagents) for organic synthesis. 1,2-Dichlorobenzene, using for an MW-assisted electrocyclic reaction, was degassed before use. Silica gel (Merck Art 7744, 60–100 mesh) was used for column chromatography.

4.1.1. 1-Allyloxy-3,4-methylenedioxy-6-trifluoromethanesulfonyloxybenzene **10**. A solution of Tf₂O (4 mL, 24 mmol) was added to an ice-cooled solution of phenol **9**¹⁵ (4 g, 20 mmol) and pyridine (2.1 mL, 30 mmol) in CH₂Cl₂ (200 mL) under an N₂ atmosphere. After being stirred at rt for 12 h, the mixture was quenched with water. The mixture was extracted with CH₂Cl₂. The CH₂Cl₂ layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column

Scheme 4.

Table 7

Comparison of ¹H NMR spectral data^a [δ (ppm), ($\Delta \delta$)^b]

2f : broussonpapyrine

2d : chelerythrine

2f : Broussonpapyrine reported by Qin ^c , ²⁵		2f _a : Brousson (Cl:synthetic o	2f _a : Broussonpapyrine (Cl:synthetic compound) ^d		rine npound) ^d	2d : Chelerythrine (provided by Ishikawa) ^c	
4.15, s	(9-0CH ₃)	4.22, s	(0.07)	4.14, s	(-0.01)	4.14, s	(-0.01)
4.25, s	(10-OCH ₃)	4.00, s	(-0.25)	4.28, s	(0.03)	4.29, s	(0.04)
5.00, s	(N-CH ₃)	4.84, s	(-0.16)	4.99, s	(-0.01)	4.99, s	(-0.01)
6.28, s	$(-0-CH_2-0-)$	6.26, s	(-0.02)	6.27, s	(0.01)	6.27, s	(-0.01)
7.58, s	(C-1)	7.54, s	(-0.04)	7.55, s	(-0.03)	7.54, s	(-0.04)
8.16, s	(C-4)	8.11, s	(-0.05)	8.18, s	(0.02)	8.17, s	(0.01)
8.20, d	(C-12)	8.17, d	(-0.03)	8.20, d	(0)	8.18, d	(-0.02)
8.21, d	(C-7)	8.37, d	(0.16)	8.20, d	(-0.01)	8.20, d	(-0.01)
8.64, d	(C-11)	9.48, d	(0.84)	8.64, d	(0)	8.62, d	(-0.02)
8.68, d	(C-8)	7.95, d	(-0.73)	8.67, d	(-0.01)	8.65, d	(-0.03)
9.98, s	(C-6)	9.78, s	(-0.20)	9.97, s	(-0.01)	9.96, s	(-0.02)

^a NMR spectral data were measured in CD₃OD.

^b Values in parentheses refer to the difference in chemical shift between the synthetic data and the reported data.

^c 500 MHz ¹H NMR.

^d 300 MHz ¹H NMR.

chromatography (silica gel, 50 g) using EtOAc—hexane (1:9 v/v) as an eluent to give the oily triflate **10** (6.5 g, 93%). ¹H NMR (300 MHz, CDCl₃) δ : 3.34—3.42 (2H, m), 5.07—5.21 (2H, m), 5.79—5.96 (1H, m), 6.00 (2H, s), 6.73 (1H, s), 6.74 (1H, s). MS (EI) *m/z*: 310 (M⁺). HRMS (EI) calcd for C₁₁H₉F₃O₅S 310.0123; found 310.0122.

4.1.2. 1,2-Diallyloxy-4,5-methylenedioxybenzene **11**. A solution of allyl tributyltin (21 mL, 80 mmol) was added to a mixture of the O-triflate **10** (17.5 g, 60 mmol), LiCl (3.6 g, 80 mmol), PdCl₂(PPh₃)₂ (0.5 g, 0.6 mmol), and dppf (0.3 g, 0.6 mmol) in DMF (100 mL) at rt under an argon atmosphere. The stirred mixture was heated for 2 h at 180 °C, which was cooled to rt. After being quenched with an aqueous solution of KF (30%), and then the mixture was stirred at rt for 2 h. The

mixture was filtered off through Celite pad and the filtrate was extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 100 g) using hexane as an eluent to give the oily diallylbenzene **11** (11.7 g, 100%). ¹H NMR (300 MHz, CDCl₃) δ : 3.29 (4H, d, *J*=5.9 Hz), 4.96–5.06 (4H, m), 5.84–5.98 (4H, m), 6.66 (2H, s). MS (EI) *m/z*: 202 (M⁺). HRMS (EI) calcd for C₁₃H₁₄O₂ 202.0994; found 202.0986.

4.1.3. 1,4-Dihydro-6,7-methylenedioxynaphthalene **12**. A stirred mixture of the diallylbenzene **11** (2 g, 9.17 mmol) and Grubbs first (400 mg, 0.49 mmol) in CH_2Cl_2 (40 mL) was heated at 50 °C for 1 h under N₂ atmosphere. After removal of solvent the residue was

Table 8	
Comparison of ¹³ C NMR spectral data ^a [δ	$(ppm), (\Delta \delta)^{b}$

2f : Broussonpapyrine reported by Qin ^c , ²⁵		2f a: Brousson (Cl:synthetic c	2f _a : Broussonpapyrine (Cl:synthetic compound) ^d		rine npound) ^d	2d : Chelerythrine (provided by Ishikawa) ^c	
52.94	(N-CH ₃)	51.98	(-0.96)	52.94	(0)	52.99	(0.05)
57.6	(9-OCH ₃)	57.8	(0.2)	57.6	(0)	57.6	(0)
62.8	(10-OCH ₃)	60.9	(-1.9)	62.9	(0.1)	62.9	(0.1)
104.3	$(-0-CH_2-0-)$	104.2	(-0.1)	104.4	(0.1)	104.4	(0.1)
105.1	(C-4)	105.1	(0)	105.2	(0.1)	105.1	(0)
107.1	(C-1)	106.3	(-0.8)	107.1	(0)	107.1	(0)
119.5	(C-11)	118.3	(-1.2)	119.6	(0.1)	119.5	(0)
119.9	(C-7)	120.7	(0.8)	120.0	(0.1)	119.9	(0)
120.9	(C-6a)	121.5	(0.6)	121.0	(0.1)	120.9	(0)
121.8	(C-4a)	123.3	(1.5)	121.9	(0.1)	121.8	(0)
127.1	(C-12a)	125.8	(-1.3)	127.2	(0.1)	127.1	(0)
127.5	(C-8)	129.5	(2.0)	127.4	(-0.1)	127.4	(-0.1)
130.1	(C-10a)	131.2	(1.1)	130.2	(0.1)	130.1	(0)
132.6	(C-12)	132.0	(-0.6)	132.7	(0.1)	132.6	(0)
133.5	(C-4b)	134.5	(1.0)	133.6	(0.1)	133.5	(0)
134.3	(C-10b)	134.9	(0.6)	134.4	(0.1)	134.3	(0)
147.5	(C-10)	146.3	(-1.2)	147.6	(0.1)	147.5	(0)
150.8	(C-3)	150.3	(-0.5)	150.8	(0)	150.8	(0)
151.0	(C-2)	151.2	(0.2)	151.0	(0)	151.0	(0)
151.8	(C-6)	155.8	(4.0)	151.9	(0.1)	151.8	(0)
152.1	(C-9)	162.4	(10.3)	152.2	(0.1)	152.1	(0)

^a NMR spectral data were measured in CD₃OD.

^b Values in parentheses refer to the difference in chemical shift between the synthetic data and the reported data.

^c 125 MHz ¹³C NMR.

^d 75 MHz ¹³C NMR.

Fig. 2. ORTEP drawing of synthetic 2f_b (trifluoromethanesulfonate).

purified by column chromatography using EtOAc—hexane (1:9 v/v) as an eluent to give the oily dihydronaphthalene **12** (1.8 g, 99%). ¹H NMR(300 MHz, CDCl₃) δ : 3.30 (4H, s), 5.80–5.82 (4H, m), 6.57 (2H, s). MS (EI) *m/z*: 174 (M⁺). HRMS (EI) calcd for C₁₁H₁₀O₂ 174.0681; found 174.0677.

4.1.4. 1,2,3,4-Tetrahydro-6,7-methylenedioxy-2-naphthol **13**. An icecooled solution of BH₃·THF (1.4 mL, 1.6 mmol) was added to a solution of the dihydronaphthalene **12** (560 mg, 3.2 mmol) in THF (25 mL) under N₂ atmosphere. After being stirred at the same temperature for 1 h, an aqueous 3 M NaOH (0.52 mL, 1.6 mmol) followed by an aqueous 30% H₂O₂ (0.52 mL, 4.6 mmol) were added to the mixture, and then the resulting mixture was stirred at the same temperature for 1 h. After quenched with water, the mixture was extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc-hexane (1:9 v/v) as an eluent to give the tetrahydronaphthol **13** (530 mg, 86%), mp 78–79 °C (EtOAc-hexane). ¹H NMR (300 MHz, CDCl₃) δ : 1.56–2.07 (2H, m), 2.62–3.03 (4H, m), 4.08–4.19 (1H, m), 5.88 (2H, s), 6.54 (1H, s), 6.56 (1H, s). MS (EI) m/z: 192 (M⁺). HRMS (EI) calcd for $C_{11}H_{12}O_3$ 192.0786; found 192.0813.

4.1.5. 6,7-Methylenedioxy- β -tetralone **8**. A mixture of the 2-naphthol **13** (430 mg, 2.24 mmol), PCC (2.4 g, 11.20 mmol), and Celite (2.4 g) was stirred at rt for 1.5 h under N₂ atmosphere. After diluted with Et₂O, the mixture was filtered off through Celite pad. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 50 g) using EtOAc–hexane (1:9 v/v) as an eluent to give the β -tetralone **8** (314 mg, 74%), mp 93–94 °C (EtOAc–hexane) (lit.^{16a} mp 91–92 °C and lit.^{16b} mp 97–98 °C). IR (ATR) ν : 1699 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.50–2.54 (2H, m), 2.94–2.99 (2H, m), 3.48 (2H, s), 5.93 (2H, s), 6.60 (1H, s), 6.71 (1H, s). MS (EI) *m/z*: 190 (M⁺). HRMS (EI) calcd for C₁₁H₁₀O₃ 190.0629; found 190.0624.

4.1.6. 3,4-Dihydro-6,7-methylenedioxy-2-trifluoromethanesulfonyloxynaphthalene **14**. A solution of β -tetralone **8** (360 mg, 1.89 mmol) in THF (5 mL) was added to a solution of LDA [prepared from *i*-Pr₂NH (0.36 mL, 2.84 mmol) and *n*-BuLi (2.6 M in hexane, 0.9 mL, 2.84 mmol)] at -78 °C under N₂ atmosphere. The mixture was stirred at the same temperature at 30 min, and then Tf₂NPh (675 mg, 1.89 mmol) in THF (5 mL) was added to the mixture. The reaction temperature was gradually raised up to rt for 4 h. The mixture was quenched with water, and then the mixture was extracted with Et₂O. The Et₂O layer was washed with water and brine, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc–hexane (1:19 v/v) as an eluent to give the oily triflate **14** (490 mg, 84%). ¹H NMR (300 MHz, CDCl₃) δ : 2.61–2.67 (2H, m), 2.93–2.99 (2H, m), 5.94 (2H, s), 6.35 (1H, s), 6.58 (1H, s), 6.64 (1H, s). MS (EI) *m*/*z*: 322 (M⁺). HRMS (EI) calcd for C₁₂H₉F₃O₅S 322.0123; found 322.0133.

4.1.7. 3,4-Dihydro-6,7-methylendioxynaphthylboronic acid pinacol ester **7**. A mixture of the triflate **14** (250 mg, 0.78 mmol), bis(pinacolato)diborone, AcOK, and PdCl₂(dppf) (7 mg, 0.008 mmol) in DMSO (20 mL) was stirred at 80 °C for 1 h. The reaction mixture was quenched with water, and then the mixture was extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc–hexane (1:19 v/v) as an eluent to give the naphthylboronic acid pinacol ester **7** (200 mg, 86%), mp 92–94 °C (EtOAc–hexane). ¹H NMR (300 MHz, CDCl₃) δ : 1.30 (12H, s), 2.30–2.36 (2H, m), 2.63–2.68 (2H, m), 5.91 (2H, s), 6.62 (2H, s), 7.08 (1H, s). MS (EI) *m/z*: 300 (M⁺). HRMS (EI) calcd for C₁₇H₂₁BO₄ 300.1533; found 300.1534.

4.2. General procedure of Suzuki–Miyaura reaction between 2-bromobenzaldehyde 6 and 3,4-dihydro-6,7-methylenedioxynaphthylboronic acid pinacol ester 7

A mixture of bromobenzaldehyde **6**, the naphthylboronic acid pinacol ester **7**, K_2CO_3 , and $PdCl_2(PPh_3)_2$ in anhyd MeOH and DMF was stirred at 80 °C for 0.5–1 h under N_2 atmosphere. The reaction mixture was quenched with water, and then the mixture was extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by column chromatography using EtOAc–hexane (1:19 v/v) as an eluent to give the naphthylbenzaldehyde **5**.

4.2.1. 2-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-4,5-dimethoxybenzaldehyde **5a**. 2-Bromo-4,5-dimethoxybenzaldehyde **(6a)**¹⁸ (50 mg, 0.20 mmol), naphthylboronic acid pinacol ester **7** (200 mg, 0.62 mmol), K₂CO₃ (83 mg, 0.6 mmol), and PdCl₂(PPh₃)₂ (7 mg, 0.01 mmol) in anhyd MeOH (8 mL) and DMF (2 mL) were used to give the 2-naphthylbenzaldehyde **5a** (68 mg, 98%), mp 145–147 °C (EtOAc–hexane). IR (ATR) *v*: 1660 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.64–2.70 (2H, m), 2.89–2.94 (2H, m), 3.96 (3H, s), 3.97 (3H, s), 5.94 (2H, s), 6.30 (1H, s), 6.63 (1H, s), 6.71 (1H, s), 6.81 (1H, s), 7.47 (1H, s), 10.09 (1H, s). MS (EI) *m/z*: 338 (M⁺). HRMS (EI) calcd for C₂₀H₁₈O₅ 338.1154; found 338.1158.

4.2.2. 2-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-4,5-methylenedioxybenzaldehyde **5b**. 2-Bromopiperonal (**6b**)¹⁸ (40 mg, 0.17 mmol), naphthylboronic acid pinacol ester **7** (80 mg, 0.26 mmol), K₂CO₃ (36 mg, 0.26 mmol), and PdCl₂(PPh₃)₂ (7 mg, 0.01 mmol) in anhyd MeOH (4 mL) and DMF (1 mL) were used to give the naphthylbenzaldehyde **5b** (44 mg, 78%), mp 182–184 °C (EtOAc-hexane). IR (ATR) *v*: 1670 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.60–2.65 (2H, m), 2.90 (2H, t, *J*=8.1 Hz), 5.94 (2H, s), 6.06 (2H, s), 6.26 (1H, s), 6.61 (1H, s), 6.70 (1H, s), 6.82 (1H, s), 7.41 (1H, s), 10.04 (1H, s). MS (EI) *m/z*: 322 (M⁺). HRMS (EI) calcd for C₁₉H₁₄O₅ 322.0841; found 322.0843.

4.2.3. 6-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-2-hydroxy-3methoxybenzaldehyde **5c**. 2-Acetoxy-6-bromo-3-methoxybenzaldehyde (**6c**)²³ (30 mg, 0.1 mmol), naphthylboronic acid pinacol ester **7** (45 mg, 0.15 mmol), K_2CO_3 (41 mg, 0.3 mmol), and $PdCl_2(PPh_3)_2$ (7 mg, 0.01 mmol) in anhyd MeOH (4 mL) and DMF (1 mL) were used to give the naphthylbenzaldehyde **5c** (31 mg, 96%), mp 180–181 °C (EtOAc-hexane). IR (ATR) *v*: 1635 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.61–2.66 (2H, m), 2.86–2.91 (2H, m), 3.93 (3H, s), 5.94 (2H, s), 6.27 (1H, s), 6.62 (1H, s), 6.70 (1H, s), 6.84 (1H, d, *J*=8.1 Hz), 7.09 (1H, d, *J*=8.1 Hz), 10.13 (1H, s), 12.08 (1H, s). MS (EI) *m/z*: 324 (M⁺). HRMS (EI) calcd for C₁₉H₁₆O₅ 324.0998; found 324.1025.

4.2.4. 6-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-2,3-dimethoxy benzaldehyde **5d**. 6-Bromo-2,3-dimethoxybenzaldehyde **(6d)**²³ (30 mg, 0.12 mmol), naphthylboronic acid pinacol ester **7** (55 mg, 0.18 mmol), K₂CO₃ (51 mg, 0.37 mmol), and PdCl₂(dppf) (7 mg, 0.01 mmol) in anhyd MeOH (6 mL) and DMF (2 mL) were used to give the naphthylbenzaldehyde **5d** (31 mg, 75%), mp 148–149 °C (EtOAc-hexane). IR (ATR) *v*: 1685 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.44–2.49 (2H, m), 2.88–2.93 (2H, m), 3.92 (3H, s), 3.96 (3H, s), 5.92 (2H, s), 6.22 (1H, s), 6.59 (1H, s), 6.67 (1H, s), 7.03 (1H, d, *J*=8.4 Hz), 7.10 (1H, d, *J*=8.4 Hz), 10.38 (1H, s). MS (EI) *m/z*: 338 (M⁺). HRMS (EI) calcd for C₂₀H₁₈O₅ 338.1154; found 338.1157.

4.2.5. 6-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-2,3-methylenedioxybenzaldehyde**5e**. 6-Bromo-2,3-methylenedioxybenzaldehyde**(6e)**²⁴ (20 mg, 0.09 mmol), naphthylboronic acid pinacol ester**7**(52 mg, 0.18 mmol), K₂CO₃ (36 mg, 0.26 mmol), and PdCl₂(dppf) (7 mg, 0.01 mol) in anhyd MeOH (4 mL) and DMF (1 mL) were used to give the naphthylbenzaldehyde**5e**(28 mg, 97%), mp 153–155 °C (EtOAc-hexane). IR (ATR)*v* $: 1679 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) <math>\delta$: 2.58–2.63 (2H, m), 2.86–2.92 (2H, m), 5.93 (2H, s), 6.16 (2H, s), 6.27 (1H, s), 6.61 (1H, s), 6.69 (1H, s), 6.87 (1H, d, *J*=8.1 Hz), 6.99 (1H, d, *J*=8.1 Hz), 10.13 (1H, s). MS (EI) *m/z*: 322 (M⁺). HRMS (EI) calcd for C₁₉H₁₄O₅ 322.0841; found 322.0843.

4.2.6. 2-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-3,4-dimethoxybenzaldehyde **5f**. 2-Bromo-3,4-dimethoxybenzaldehyde (**6f**)²⁷ (50 mg, 0.20 mmol), the naphthylboronic acid pinacol ester **7** (93 mg, 0.31 mmol), K₂CO₃ (87 mg, 0.62 mmol), PdCl₂(PPh₃)₂ (7 mg, 0.01 mmol) in anhyd MeOH (8 mL) and DMF (2 mL) were used to give the oily naphthylbenzaldehyde **5f** (50 mg, 72%). IR (ATR) *v*: 1676 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.89–2.94 (2H, m), 3.79 (3H, s), 3.96–3.98 (5H, m), 5.94 (2H, s), 6.28 (1H, s), 6.61 (1H, s), 6.72 (1H, s), 6.98 (1H, d, J=8.8 Hz), 7.79 (1H, d, J=8.8 Hz), 10.03 (1H, s). MS (EI) *m/z*: 338 (M⁺). HRMS (EI) calcd for C₂₀H₁₈O₅ 338.1154; found 338.1149.

4.2.7. 2-(3,4-Dihydro-6.7-methylenedioxy-2-naphthyl)-4-hydroxy-3methoxybenzaldehyde **5g**. 4-Acetoxy-2-bromo-3-methoxybenzaldehyde (**6g**)²⁸ (220 mg, 0.81 mmol), the naphthylboronic acid pinacol ester 7 (267 mg, 0.89 mmol), K₂CO₃ (336 mg, 2.43 mmol), PdCl₂(dppf) (24 mg, 0.03 mmol) in anhyd MeOH (12 mL) and DMF (3 mL) were used to give the naphthylbenzaldehyde **5g** (130 mg, 54%), mp 153–155 °C (EtOAc–hexane). IR (ATR) ν : 1666 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.64 (2H, br s), 2.91–2.96 (2H, m), 3.80 (3H, s), 5.95 (2H, s), 6.38 (2H, s), 6.62 (1H, s), 6.72 (1H, s), 7.15 (1H, d, *J*=8.4 Hz), 7.74 (1H, d, *J*=8.4 Hz), 10.01 (1H, s). MS (EI) *m/z*: 324 (M⁺). HRMS (EI) calcd for C₁₉H₁₆O₅ 324.0998; found 324.1127.

4.3. General procedure of benzaldehyde O-methyl oximes 4

A mixture of the naphthylbenzaldehydes **5**, MeONH₂·HCl, and AcONa in EtOH was stirred at 80 °C for 1 h. After removal of solvent followed by addition of water, the mixture was extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography using EtOAc—hexane (1:19 v/v) as an eluent to give the benzaldoxime *O*-methyl ethers **4**. 4.3.1. 2-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-4,5-dimethoxybenzaldehyde O-methyloxime **4a**. The naphthylbenzaldehyde **5a** (100 mg, 0.30 mmol), MeONH₂·HCl (37 mg, 0.44 mmol), and AcONa (37 mg, 0.44 mmol) in EtOH (10 mL) were used to give the oxime ether **4a** (103 mg, 95%), mp 119–120 °C (EtOAc–hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.52–2.57 (2H, m), 2.83–2.89 (2H, m), 3.90 (3H, s), 3.95 (3H, s), 5.93 (3H, s), 6.24 (1H, s), 6.61(1H, s), 6.68 (1H, s), 6.72 (1H, s), 7.39 (1H, s), 8.25 (1H, s). MS (EI) m/z: 367 (M⁺). HRMS (EI) calcd for C₂₁H₂₁NO₅ 367.1420; found 367.1433.

4.3.2. 2-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-4,5-methylenedioxybenzaldehyde O-methyloxime **4b**. The naphthylbenzaldehyde **5b** (42 mg, 0.13 mmol), MeONH₂·HCl (19 mg, 0.20 mmol), and AcONa (19 mg, 0.20 mmol) in EtOH (5 mL) were used to give the oxime ether **4b** (45 mg, 98%), mp 178–180 °C (EtOAc-hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.47–2.53 (2H, m), 2.82–2.87 (2H, m), 3.93 (3H, s), 5.92 (2H, s), 5.99 (2H, s), 6.21 (1H, s), 6.60 (1H, s), 6.67 (1H, s), 6.71 (1H, s), 7.36 (1H, s), 8.22 (1H, s). MS (EI) m/z: 351 (M⁺). HRMS (EI) calcd for C₂₀H₁₇NO₅ 351.1107; found 351.1126.

4.3.3. 6-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-2-hydroxy-3-methoxybenzaldehyde O-methyloxime**4c**. The naphthylbenzaldehyde**5c**(55 mg, 0.17 mmol), MeONH₂·HCl (21 mg, 0.25 mmol), and AcONa (21 mg, 0.25 mmol) in EtOH (10 mL) were used to give the oxime ether**4c** $(57 mg, 95%), mp 189–190 °C (EtOAc-hexane). ¹H NMR (300 MHz, CDCl₃) <math>\delta$: 2.49–2.55 (2H, m), 2.83–2.88 (2H, m), 3.92 (3H, s), 3.98 (3H, s), 5.93 (2H, s), 6.23 (1H, s), 6.60 (1H, s), 6.68 (1H, s), 6.76 (1H, d, *J*=8.3 Hz), 6.90 (1H, d, *J*=8.3 Hz), 8.44 (1H, s), 10.59 (1H, s). MS (EI) *m/z*: 353 (M⁺). HRMS (EI) calcd for C₂₀H₁₉NO₅ 353.1263; found 353.1273.

4.3.4. 6-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-2,3-dimethoxybenzaldehyde O-methyloxime **4d**. The naphthylbenzaldehyde **5d** (116 mg, 0.34 mmol), MeONH₂·HCl (50 mg, 0.60 mmol), and AcONa (49 mg, 0.60 mmol) in EtOH (5 mL) were used to give the oxime ether **4d** (115 mg, 92%), mp 73–75 °C (EtOAc–hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.44–2.50 (2H, m), 2.81–2.86 (2H, m) 3.84 (3H, s), 3.88 (3H, s), 3.92 (3H, s), 5.91 (2H, s), 6.32 (1H, s), 6.60 (1H, s), 6.66 (1H, s), 6.90 (1H, d, *J*=8.8 Hz), 7.01 (1H, d, *J*=8.8 Hz), 8.35 (1H, s). MS (EI) *m/z*: 367 (M⁺). HRMS (EI) calcd for C₂₁H₂₁NO₅ 367.1420; found 367.1436.

4.3.5. 6-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-2,3-methylenedioxybenzaldehyde O-methyloxime **4e**. The naphthylbenzaldehyde **5e** (130 mg, 0.40 mmol), MeONH₂·HCl (51 mg, 0.61 mmol), and AcONa (51 mg, 0.61 mmol) in EtOH (10 mL) were used to give the oxime ether **4e** (90 mg, 64%), mp 137–138 °C (EtOAc–hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.48–2.53 (2H, m), 2.82–2.87 (2H, m), 3.99 (3H, s), 5.92 (2H, s), 6.10 (2H, s), 6.26 (1H, s), 6.60 (1H, s), 6.67 (1H, s), 6.77 (1H, s, *J*=8.1 Hz), 6.81 (1H, d, *J*=8.1 Hz), 8.21 (1H, s). MS (EI) m/z: 351 (M⁺). HRMS (EI) calcd for C₂₁H₁₇NO₅ 351.1107; found 351.1089.

4.3.6. 2-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-3,4-dimethoxybenzaldehyde O-methyloxime **4f**. The naphthylbenzaldehyde **5f** (68 mg, 0.20 mmol), MeONH₂·HCl (24 mg, 0.30 mmol), AcONa (24 mg, 0.30 mmol) in EtOH (10 mL) were used to give the oily oxime ether **4f** (70 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ : 2.84–2.89 (2H, m), 3.76 (3H, s), 3.89–3.97 (8H, m), 5.92 (2H, s), 6.20 (1H, s), 6.60 (1H, s), 6.69 (1H, s), 6.88 (1H, d, *J*=8.8 Hz), 7.66 (1H, d, *J*=8.8 Hz), 8.16 (1H, s). MS (EI) *m/z*: 367 (M⁺). HRMS (EI) calcd for C₂₁H₂₁NO₅ 367.1120; found 367.1145.

4.3.7. 2-(3,4-Dihydro-6,7-methylenedioxy-2-naphthyl)-4-hydroxy-3-methoxybenzaldehyde O-methyloxime **4g**. The naphthylbenzaldehyde **5g** (194 mg, 0.60 mmol), MeONH₂·HCl (88 mg, 1.05 mmol), AcONa (86 mg, 1.05 mmol) in EtOH (10 mL) were used to give the oxime ether **4g** (203 mg, 95%), mp 152–153 °C (EtOAc–hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.53 (2H, br s), 2.86–2.91 (2H, m), 3.75 (3H, s), 3.92 (3H, s), 5.88 (1H, s), 5.94 (2H, s), 6.30 (1H, s), 6.62 (1H, s), 6.70 (1H, s), 6.92 (1H, d, *J*=8.6 Hz), 7.63 (1H, d, *J*=8.6 Hz), 8.15 (1H, s). MS (EI) *m/z*: 353 (M⁺). HRMS (EI) calcd for C₂₀H₁₉NO₅ 353.1263; found 353.1278.

4.3.8. 2-Acetoxy-6-(3,4-dihydro-6,7-methylenedioxy-2-naphthyl)-3methoxybenzaldehyde O-methyloxime **15**. A solution of the oxime ether **4c** (41 mg, 0.12 mmol) and Ac₂O (0.03 mL, 0.17 mmol) in the presence of DMAP (12 mg, 0.10 mmol) and Et₃N (0.03 mL, 0.17 mmol) in CH₂Cl₂ (5 mL) was stirred at 80 °C for 1 h. The reaction mixture was quenched with water, and then the mixture was extracted with CH₂Cl₂. The CH₂Cl₂ layer was washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc–hexane (1:9 v/ v) as an eluent to give the acetate (43 mg, 94%), mp 141–143 °C (EtOAc–hexane). IR (ATR) *v*: 1768 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.34 (3H, s), 2.48–2.53 (2H, m), 2.81–2.86 (2H, m), 3.85 (3H, s), 3.93 (3H, s), 5.92 (2H, s), 6.28 (1H, s), 6.60 (1H, s), 6.67 (1H, s), 6.97 (1H, d, *J*=8.6 Hz), 7.15 (1H, d, *J*=8.6 Hz), 8.10 (1H, s). MS (EI) *m/z*: 395 (M⁺). HRMS (EI) calcd for C₂₂H₂₁NO₆ 395.1369; found 395.1360.

4.3.9. 4-Acetoxy-2-(3,4-dihydro-6,7-methylenedioxy-2-naphthyl)-3methoxybenzaldehyde O-methyloxime **16**. A solution of the oxime ether **4g** (58 mg, 0.16 mmol) and Ac₂O (0.03 mL, 0.17 mmol) in the presence of DMAP (20 mg, 0.16 mmol) and Et₃N (0.03 mL, 0.17 mmol) in CH₂Cl₂ (5 mL) was stirred at 80 °C for 1 h. The reaction mixture was quenched with water, and then the mixture was extracted with CH₂Cl₂. The CH₂Cl₂ layer was washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc-hexane (1:9 v/v) as an eluent to give the oily acetate (60 mg, 100%). IR(ATR) v:1766 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.26 (3H, s), 2.44 (2H, br s), 2.76–2.81 (2H, m), 3.65 (3H, s), 3.85 (3H, s), 5.84 (2H, s), 6.18 (1H, s), 6.53 (1H, s), 6.61 (1H, s), 6.95 (1H, d, *J*=8.6 Hz), 7.61 (1H, d, *J*=8.6 Hz), 8.10 (1H, s). MS (EI) *m/z*: 395 (M⁺). HRMS (EI) calcd for C₂₂H₂₁NO₆ 395.1369; found 395.1352.

4.4. General procedure of thermal electrocyclic reaction with MW irradiation

An each mixture of the oxime ethers **4a–g**, **15**, and **16** in 1,2dichlorobenzene was stirred at 180–200 °C (external) under N₂ atmosphere under microwave irradiation. After removal of solvent, the residue was purified by column chromatography (silica gel) using EtOAc (1:19 v/v) as an eluent to give the corresponding 11,12dihydrobenzo[*c*]phenanthridines **3a–g**, and **17**, respectively (Table 2). All thermal electrocyclic reactions without MW irradiation were carried out by the same procedure except MW, and the results were also shown in Table 2.

4.4.1. 11,12-Dihydro-8,9-dimethoxy-2,3-methylenedioxybenzo[c]phenanthridine **3a**. The oxime ether **4a** (13 mg, 0.04 mmol) in 1,2-dichlorobenzene (1.5 mL) with MW was used to give the dihydrobenzo [c]phenanthridine **3a** (10 mg, 84%), mp 230–232 °C (EtOAc–hexane) (lit.¹⁹ mp 218–220 °C). ¹H NMR (300 MHz, CDCl₃) δ : 2.93–2.98 (2H, m), 3.17–3.23 (2H, m), 4.05 (3H, s), 4.06 (3H, s), 5.98 (2H, s), 6.75 (1H, s), 7.21 (2H, d, *J*=2.2 Hz), 7.90 (1H, s), 8.96 (1H, s). MS (EI) *m/z*: 335 (M⁺). HRMS (EI) calcd for C₂₀H₁₇NO₄ 335.1158; found 335.1161.

4.4.2. 11,12-Dihydro-2,3,8,9-bismethylenedioxybenzo[c]phenanthridine **3b**. The oxime ether **4b** (20 mg, 0.06 mmol) in 1,2-dichlorobenzene (1.5 mL) with MW was used to give the dihydrobenzo [c]phenanthridine **3b** (17 mg, 94%), mp 296–298 °C (EtOAc–hexane) (lit.^{17b} mp >300 °C and lit.¹⁹ mp 288 °C). ¹H NMR (300 MHz, CDCl₃) δ : 2.91–2.96 (2H, m), 3.12–3.17 (2H, m), 5.98 (2H, s), 6.10 (2H, s), 6.74 (1H, s), 7.19 (1H, s), 7.29 (1H, s), 7.88 (1H, s), 8.90 (1H, s). MS (EI) m/z: 319 (M⁺). HRMS (EI) calcd for C₁₉H₁₃NO₄ 319.0845; found 319.0861.

4.4.3. 7-Acetoxy-11,12-dihydro-8-methoxy-2,3-methylenedioxybenzo [*c*]phenanthridine **3c**. The oxime ether **15** (24 mg, 0.06 mmol) in 1,2-dichlorobenzene (1.5 mL) with MW was used to give the dihydrobenzo[*c*]phenanthridine **3c** (17 mg, 77%), mp 191–194 °C (EtOAc-hexane). IR (ATR) ν : 1768 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.48 (3H, s), 2.92–2.97 (2H, m), 3.22–3.28 (2H, m), 3.98 (3H, s), 5.98 (2H, s), 6.75 (1H, s), 7.54 (1H, d, *J*=9.2 Hz), 7.89 (1H, s), 7.94 (1H, d, *J*=9.2 Hz), 9.19 (1H, s). MS (EI) *m*/*z*: 363 (M⁺). HRMS (EI) calcd for C₂₁H₁₇NO₅ 363.1107; found 363.1103.

4.4.4. 11,12-Dihydro-7,8-dimethoxy-2,3-methylenedioxybenzo[c]phenanthridine **3d**. The oxime ether **4d** (41 mg, 0.11 mmol) in 1,2-dichlorobenzene (1.5 mL) with MW was used to give the dihydrobenzo [c]phenanthridine **3d** (30 mg, 84%), mp 172–174 °C (EtOAc–hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.91–2.97 (2H, m), 3.21–3.26 (2H, m), 4.02 (3H, s), 4.07 (3H, s), 5.98 (2H, s), 6.75 (1H, s), 7.50 (1H, d, *J*=9.5 Hz), 7.77 (1H, d, *J*=9.5 Hz), 7.93 (1H, s), 9.48 (1H, s). MS (EI) m/z: 335 (M⁺). HRMS (EI) calcd for C₂₀H₁₇NO₄ 335.1158; found 335.1155.

4.4.5. 11,12-Dihydro-2,3,7,8-bismethylendioxybenzo[c]phenanthridine **3e**. The oxime ether **4e** (21 mg, 0.06 mmol) in 1,2-dichlorobenzene (1 mL) with MW was used to give the dihydrobenzo [c]phenanthridine **3e** (20 mg, 95%), mp 237–238 °C (CHCl₃–hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.91–2.96 (2H, m), 3.21–3.25 (2H, m), 5.98 (2H, s), 6.24 (2H, s), 6.75 (1H, s), 7.38 (1H, d, *J*=8.8 Hz), 7.58 (1H, d, *J*=8.8 Hz), 7.90 (1H, s), 9.24 (1H, s). MS (EI) *m/z*: 319 (M⁺). HRMS (EI) calcd for C₁₉H₁₃NO₄ 319.0845; found 319.0861.

4.4.6. 11,12-Dihydro-9,10-dimethoxy-2,3-methylenedioxybenzo[c]phenanthridine **3f**. The oxime ether **4f** (44 mg, 0.12 mmol) in 1,2-dichlorobenzene (1.5 mL) with MW was used to give the dihydrobenzo [c]phenanthridine **3f** (32 mg, 80%), mp 161 °C (EtOAc-hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.83–2.89 (2H, m), 3.71–3.76 (2H, m), 3.86 (3H, s), 4.04 (3H, s), 5.98 (2H, s), 6.75 (1H, s), 7.33 (1H, d, *J*=8.8 Hz), 7.73 (1H, d, *J*=8.8 Hz), 7.87 (1H, s), 9.02 (1H, s). MS (EI) *m/z*: 335 (M⁺). HRMS (EI) calcd for C₂₀H₁₇NO₄ 335.1158; found 335.1144.

4.4.7. 11,12-Dihydro-9-hydroxy-10-methoxy-2,3-methylenedioxybenzo[c]phenanthridine **3g**. The oxime ether **4g** (180 mg, 0.51 mmol) in 1,2-dichlorobenzene (3 mL) with MW was used to give the dihydrobenzo[c]phenanthridine **3g** (123 mg, 75%), mp 230–232 °C (EtOAc-hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.83–2.88 (2H, m), 3.65–3.70 (2H, m), 3.79 (3H, s), 5.99 (2H, s), 6.51 (1H, s), 6.75 (1H, s), 7.27 (1H, d, *J*=8.8 Hz), 7.68 (1H, d, *J*=8.8 Hz), 7.88 (1H, s), 9.00 (1H, s). MS (EI) *m/z*: 321 (M⁺). HRMS (EI) calcd for C₁₉H₁₅NO4 321.1001; found 321.0997.

4.4.8. 9-Acetoxy-11,12-dihydro-10-methoxy-2,3-methylenedioxybenzo[c]phenanthridine **17**. The oxime ether **16** (34 mg, 0.09 mmol) in 1,2-dichlorobenzene (3 mL) with MW was used to give the dihydrobenzo[c]phenanthridine **17** (21 mg, 67%), mp 182–184 °C (EtOAc-hexane). IR (ATR) *v*: 1749 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.43 (3H, s), 2.83–2.88 (2H, m), 3.68–3.73 (2H, m), 3.83 (3H, s), 5.99 (2H, s), 6.75 (1H, s), 7.27 (1H, d, *J*=8.8 Hz), 7.73 (1H, d, *J*=8.8 Hz), 7.88 (1H, s), 9.09 (1H, s). MS (EI) *m/z*: 363 (M⁺). HRMS (EI) calcd for C₂₁H₁₇NO₅ 363.1107; found 363.1104.

4.5. General procedure of benzo[c]phenanthridines 1a,b, 18, 1c from 18, 1d,e, 19, and 20 from 11,12-dihydrobenzo[c] phenanthridines 3a–g, and 17

An each mixture of 11,12-dihydrobenzo[c]phenanthridines **3a**–**g**, and **17** in the presence of 10% Pd–C in 1,2-dichlorobenzene

was stirred at 180 °C for 5–7 h. After removal of solvent, the residue was purified by column chromatography using EtOAc–hexane (1:9 v/v) as an eluent to give the corresponding benzo[c]phenan-thridines **1a,b, 18, 1d,e, 19**, and **20**, respectively. Compound **1c** was obtained from **18** by hydrolysis.

4.5.1. 8,9-Dimethoxy-2,3-methylenedioxybenzo[c]phenanthridine (nornitidine) **1a**. The 11,12-dihydrobenzo[c]phenanthridine **3a** (30 mg, 0.03 mmol) and 10% Pd–C (30 mg) in 1,2-dichlorobenzene (5 mL) were used to give nornitidine (**1a**) (29 mg, 97%), mp 278–281 °C (EtOAc–hexane) (lit.^{17a} mp 281–282 °C and lit.^{17b} mp 281–282 °C). ¹H NMR (300 MHz, CDCl₃) δ : 4.10 (3H, s), 4.17 (3H, s), 6.14 (2H, s), 7.28 (1H, s), 7.41 (1H, s), 7.84 (1H, d, *J*=9.2 Hz), 7.91 (1H, s), 8.31 (1H, d, *J*=9.2 Hz), 8.72 (1H, s), 9.25 (1H, s). ¹³C NMR (75 MHz, DMSO-*d*₆) δ : 55.8, 56.2, 101.1, 101.5, 102.5, 104.6, 107.8, 119.3, 119.8, 122.0, 126.4, 128.3, 128.4, 129.4, 139.7, 148.0, 148.1, 149.8, 150.1, 153.2. MS (EI) *m/z*: 333 (M⁺). HRMS (EI) calcd for C₂₀H₁₅NO₄ 333.1001; found 333.1021.

4.5.2. 2,3,8,9-Bismethylenedioxybenzo[c]phenanthridine (noravicine) **1b**. The 11,12-dihydrobenzo[c]phenanthridine **3b** (16 mg, 0.05 mmol) and 10% Pd–C (16 mg) in 1,2-dichlorobenzene (5 mL) were used to give noravicine (**1b**) (12 mg, 75%), mp 312 °C (EtOAc–hexane) (lit.^{17a} mp 325 °C and lit.^{17b} mp >300 °C). ¹H NMR (300 MHz, DMSO-d₆) δ : 6.20 (2H, s), 6.27 (2H, s), 7.50 (1H, s), 7.67 (1H, s), 7.92 (1H, d, *J*=8.8 Hz), 8.31 (1H, s), 8.51 (1H, d, *J*=8.8 Hz), 8.52 (1H, s), 9.25 (1H, s). ¹³C NMR (75 MHz, DMSO-d₆) δ : 100.1, 101.1, 101.5, 102.2, 104.6, 104.9, 119.2, 120.3, 123.2, 123.3, 126.6, 128.2, 129.4, 130.3, 139.9, 147.9, 148.1, 150.1, 151.6. MS (EI) *m/z*: 317 (M⁺). HRMS (EI) calcd for C₁₉H₁₁NO₄ 317.0668; found 317.0674.

4.5.3. 7-Acetoxy-8-methoxy-2,3-methylenedioxybenzo[c]phenanthridine (O-acetylisodecarine) **18**. The 11,12-dihydrobenzo[c]phenanthridine **3c** (28 mg, 0.08 mmol) and 10% Pd–C (20 mg) in 1, 2-dichlorobenzene (5 mL) were used to give acetylisodecarine **18** (26 mg, 93%), mp 261–262 °C (CHCl₃–hexane). IR (ATR) ν : 1743 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.54 (3H, s), 4.03 (3H, s), 6.14 (2H, s), 7.28 (1H, s), 7.65 (1H, *J*=9.2 Hz), 7.88 (1H, d, *J*=9.2 Hz), 8.37 (1H, d, *J*=9.0 Hz), 8.54 (1H, d, *J*=9.0 Hz), 8.69 (1H, s), 9.46 (1H, s). MS (EI) *m/z*: 361 (M⁺). HRMS (EI) calcd for C₂₁H₁₅NO₅ 361.0950; found 361.0956.

4.5.4. 7-Hydroxy-8-methoxy-2,3-methylenedioxybenzo[c]phenanthridine (isodecarine) 1c. A mixture of the O-acetylisodecarine 18 (12 mg, 0.03 mmol) and NaHCO₃ (6 mg, 0.07 mmol) in MeOH (10 mL) and H₂O (2 mL) was stirred at 60 °C for 3 h. The mixture was diluted with water, and then the mixture was extracted with EtOAc. The EtOAc laver was washed with water and brine. dried over Na₂SO₄. and concentrated under reduced pressure. The residue was purified by general procedure described above to give isodecarine (1c) (8 mg, 74%), mp 239–241 °C (CHCl₃-hexane) (lit.²⁰ mp 225–227 °C and lit.^{10d} mp 265–268 °C). ¹H NMR (300 MHz, CDCl₃) δ: 4.08 (3H, s), 6.13 (2H, s), 6.24 (1H, br s), 7.27 (1H, s), 7.54 (1H, d, J=9.0 Hz), 7.85 (1H, d, J=8.8 Hz), 8.16 (1H, d, J=9.0 Hz), 8.35 (1H, d, J=8.8 Hz), 8.73 (1H, s), 9.79 (1H, s). ¹³C NMR (75 MHz, DMSO- d_6) δ : 56.9, 101.1, 101.6, 104.5, 113.3, 117.4, 118.7, 118.9, 119.8, 127.0, 127.1, 128.3, 129.4, 138.9, 142.8, 144.3, 146.7, 148.0, 148.1. MS (EI) *m*/*z*: 319 (M⁺). HRMS (EI) calcd for C₁₉H₁₃NO₄ 319.0845; found 319.0819.

4.5.5. 7,8-Dimethoxy-2,3-methylenedioxybenzo[c]phenanthridine (norchelerythrine) **1d.** The 11,12-dihydrobenzo[c]phenanthridine **3d** (30 mg, 0.09 mmol) and 10% Pd–C (30 mg) in 1,2-dichlorobenzene (5 mL) were used to give norchelerythrine (**1d**) (27 mg, 91%), mp 210–212 °C (CHCl₃–hexane) (lit.^{21a} mp 210–217 °C, lit.^{21b} mp 210–212 °C, and lit.^{17a,22a} mp 215–216 °C).¹H NMR (300 MHz, CDCl₃) δ : 4.06 (3H, s), 4.13 (3H, s), 6.13 (2H, s), 7.27 (1H, s), 7.60 (1H, d, *J*=9.0 Hz), 7.85 (1H, d, *J*=8.8 Hz), 8.36 (1H, d, *J*=9.0 Hz), 8.37 (1H, d, *J*=8.8 Hz), 8.72 (1H, s), 9.75 (1H, s). ¹³C NMR (75 MHz, CDCl₃) δ : 56.8, 61.9, 101.3, 102.2, 104.4, 118.2, 118.3, 118.7, 120.0, 121.9, 127.1, 128.1, 129.2, 129.7, 140.0, 145.2, 146.6, 148.3, 148.5, 149.4. MS (EI) *m/z*: 333 (M⁺). HRMS (EI) for C₂₀H₁₅NO₄ calcd for 333.1001; found 333.0999.

4.5.6. 2,3,7,8-Bismethylenedioxybenzo[c]phenanthridine (norsanguinarine) **1e**. The 11,12-dihydrobenzo[c]phenanthridine **3e** (25 mg, 0.08 mmol) and 10% Pd–C (10 mg) in 1,2-dichlorobenzene (5 mL) were used to give norsanguinarine (**1e**) (15 mg, 60%), mp 282–283 °C (CHCl₃–hexane) (lit.^{22a} mp 278–280 °C, lit.^{22b} mp 280–281 °C, and lit.^{22c} mp 285–287 °C). ¹H NMR (300 MHz, DMSO-*d*₆) δ : 6.21 (2H, s), 6.38 (2H, s), 7.52 (1H, s), 7.69 (1H, d, *J*=8.8 Hz), 7.99 (1H, d, *J*=8.8 Hz), 8.40 (1H, d, *J*=8.8 Hz), 8.50 (1H, s), 8.55 (1H, d, *J*=8.8 Hz), 9.40(1H, s). ¹³C NMR (75 MHz, CDCl₃) δ : 101.0, 101.6, 102.9, 104.5, 111.9, 114.3, 116.3, 118.9, 120.1, 127.2, 127.6. 128.4, 129.5, 138.8, 143.1, 144.6, 145.2, 148.1, 148.3. MS (EI) *m/z*: 317 (M⁺). HRMS (EI) calcd for C₁₉H₁₁NO₄ 317.0668; found 317.0674.

4.5.7. 9.10-Dimethoxy-2,3-methylenedioxybenzo[c]phenanthridine (norbroussonpapyrine) **19**. The 11,12-dihydrobenzo[c]phenanthridine **3f** (92 mg, 0.27 mmol) and 10% Pd–C (138 mg) in 1,2-dichlorobenzene (10 mL) were used to give norbroussonpapyrine (**19**) (72 mg, 80%), mp 206–208 °C (EtOAc–hexane). ¹H NMR (300 MHz, CDCl₃) δ : 4.00 (3H, s), 4.09 (3H, s), 6.12 (2H, s), 7.26 (1H, s), 7.43 (1H, d, *J*=8.8 Hz), 7.86 (1H, d, *J*=9.2 Hz), 7.89 (1H, d, *J*=8.8 Hz), 8.75 (1H, s), 9.25 (1H, s), 9.33 (1H, d, *J*=9.2 Hz). ¹³C NMR (75 MHz, CDCl₃) δ : 56.5, 60.1, 101.3, 102.5, 103.9, 113.5, 119.6, 122.9, 123.1, 126.0, 126.4, 127.4, 128.7, 130.1, 141.5, 145.5, 148.1, 148.5, 151.5, 154.5. MS (EI) *m/z*: 333 (M⁺). HRMS (EI) calcd for C₂₀H₁₅NO₄ 333.1001; found 333.0997.

4.5.8. 9-Acetoxy-10-methoxy-2,3-methylenedioxybenzo[c]phenanthridine (O-acetylzanthoxyline) **20**. The 11,12-dihydrobenzo[c]phenanthridine **17** (18 mg, 0.05 mmol) and 10% Pd–C (27 mg) in 1, 2-dichlorobenzene (3 mL) were used to give O-acetylzanthoxyline **20** (17 mg, 95%), mp 212–213 °C (EtOAc–hexane). IR (ATR) *v*: 1749 cm⁻¹ (C=O). ¹H NMR (300 MHz, CDCl₃) δ : 2.48 (3H, s), 3.97 (3H, s), 6.14 (2H, s), 7.28 (1H, s), 7.47 (1H, d, *J*=8.6 Hz), 7.88 (1H, d, *J*=9.2 Hz), 7.92 (1H, d, *J*=8.6 Hz), 8.76 (1H, s), 9.21 (1H, d, *J*=9.2 Hz), 9.33 (1H, s). MS (EI) *m*/*z*: 361 (M⁺). HRMS (EI) calcd for C₂₁H₁₅NO₅ 361.0950; found 361.0928.

4.5.9. 9-Hydroxy-10-methoxy-2,3-methylenedioxybenzo[c]phenanthridine (zanthoxyline) **1** f_a . The 11,12-dihydrobenzo[c]phenanthridine **3**g (18 mg, 0.05 mmol) and 10% Pd–C (27 mg) in 1,2-dichlorobenzene (2 mL) were used to give 9-hydroxy-10-methoxy-2,3-methylenedioxy-benzo[c]phenanthridine (zanthoxyline) (**1** f_a) (17 mg, 95%), mp 226–227 °C (EtOAc–hexane) (lit.²⁶ mp 220–222°°C). ¹H NMR (300 MHz, CDCl₃) δ : 3.93 (3H, s), 6.14 (2H, s), 7.28 (1H, d, *J*=8.6 Hz), 7.43 (1H, s), 7.86 (1H, d, *J*=8.6 Hz), 7.87 (1H, d, *J*=9.2 Hz), 8.75 (1H, s), 9.06 (1H, d, *J*=9.2 Hz), 9.24 (1H, s). ¹³C NMR (75 MHz, CDCl₃) δ : 60.8, 101.3, 102.6, 104.0, 117.1, 118.6, 122.0, 123.1, 126.6, 126.7, 126.8, 128.8, 130.2, 141.9, 142.1, 148.3, 148.7, 151.4, 151.5. MS (EI) *m/z*: 319 (M⁺). HRMS (EI) calcd for C₁₉H₁₃NO₄ 319.0845; found 319.0838.

4.5.10. Hydrolysis of 9-acetoxy-10-methoxy-2,3-methylenedioxybenzo[c]phenanthridine (O-acetylzanthoxyline) **20**. The 9-acetoxybenzo[c]phenanthridine **20** (17 mg, 0.05 mmol) was treated with an aqueous NaHCO₃ in MeOH (10 mL) at 60 °C for 3 h, and then the mixture was diluted with water. The mixture was extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 5 g) using EtOAc-hexane (1:9 v/v) as an eluent to give 9-hydroxy-10methoxy-2,3-methylenedioxybenzo[c]phenanthridine (zan-thoxyline) ($1f_a$) (16 mg, 100%), mp 226–227 °C (EtOAc–hexane). The NMR data were identical with those of above data (Section 4.5.9).

4.5.11. O-Methylation of 9-hydroxy-10-methoxy-2,3-methylenedioxybemzo[c]phenanthridine (zanthoxyline) $1f_a$ (O-methylzanthoxyline $1g_a$). A solution of zanthoxyline ($1f_a$) (20 mg, 0.062 mmol) in MeOH (5 mL) and an aqueous 10% NaOH (0.118 mL, 0.29 mmol) was stirred at rt for 1 h. Dimethyl sulfate (0.024 mL, 0.26 mmol) was added to the solution. After being stirred at rt for 12 h, the mixture was quenched with water and extracted with 10% MeOH–CHCl₃. The CHCl₃ layer was washed with water and brine, dried over K₂CO₃, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 5 g) using EtOAc–hexane (1:9 v/ v) to give the *O*-methylzanthoxyline ($1g_a$) (16 mg, 77%), mp 206–208 °C, which was consistent with the synthetic norbroussonpapyrine (**19**) in all respects.

4.5.12. 5,6-Dihydro-9,10-dimethoxy-N-methyl-2,3-methylenedioxybenzo[c]phenanthridine 21 from 9,10-dimethoxy-2,3-methylenedioxy*benzo*[*c*]*phenanthridine* (*norbroussonpapyrine*) **19**. Norbroussonpapyrine (19) (15 mg, 0.05 mmol) in HCO₂H (2 mL) was stirred for 12 h at rt, and then NaBH₄ (168 mg, 4.4 mmol) was added portionwise to the solution at rt. After being stirred at rt for 30 min, the mixture was adjusted to weakly alkaline with an aqueous 10% NaOH and extracted with CHCl₃. The CHCl₃ layer was washed with water and brine, dried over K₂CO₃, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 5 g) using EtOAc-hexane (1:19, v/v) as an eluent to give the 5,6-dihydro-Nmethylbenzo[c]phenanthridine 21 (8 mg, 54%), mp 168-170 °C (EtOAc-hexane). ¹H NMR (300 MHz, CDCl₃) δ : 2.59 (3H, s), 3.73 (3H, s), 3.93(3H, s), 4.06(2H, s), 6.05(2H, s), 6.90(1H, d, J=8.1 Hz), 6.99(1H, d, J=8.1 Hz), 7.13 (1H, s), 7.50 (1H, d, J=8.8 Hz), 7.70 (1H, s), 8.44 (1H, d, J=8.8 Hz). MS (EI) m/z: 349 (M⁺). HRMS (EI) calcd for C₂₁H₁₉NO₄ 349.1314; found 349.1324.

4.5.13. 9,10-Dimethoxy-N-methyl-2,3-methylenedioxybenzo[c]phenanthridinium chloride (broussonpapyrine chloride) **2f**_a from **21**. The Jones reagent (0.042 mL) was added to a stirred solution of the resulting 5,6-dihydro-*N*-methylbenzo[*c*]phenanthridine **21** in acetone (2 mL) under ice-cooling. The mixture was stirred at the same temperature for 30 min, and basified with an aqueous 10% NaOH, which was extracted with CHCl₃. The CHCl₃ layer was washed with water and brine, dried over K₂CO₃, and concentrated under reduced pressure. The residue was dissolved in a small amount of CHCl₃, and then diluted HCl was added dropwise to the solution under ice-cooling. The resulting precipitates were collected by filtration (9 mg, 82%) to give broussonpapyrine chloride (**2f**_a), mp 152–153 °C (CHCl₃–MeOH) (lit.²⁵ mp 201–205 °C). ¹H NMR and ¹³C NMR spectra of synthetic **2f**_a were shown in Tables 7 and 8. TOFMS (ESI) calcd for C₂₁H₁₈NO₄ 348.1236; found 348.1220 (M⁺).

4.5.14. 9,10-Dimethoxy-2,3-methylenedioxybenzo[c]phenanthridinium trifluoromethanesulfonate (broussonpapyrine trifluoromethanesulfonate) **2f**_b from 9,10-dimethoxy-2,3-methylenedioxybenzo[c]phenanthridine (norbroussonpapyrine) **19**. A mixture of norbroussonpapyrine (**19**) (20 mg, 0.06 mmol) and methyl trifluoromethanesulfonate (39 mg, 0.24 mmol) in dry toluene (4 mL) was stirred in a sealed tube at 90 °C for 0.5 h. After being cooled to rt, the precipitated solid was filtered off, washed with heated toluene, which was recrystallized from CHCl₃–MeOH to give **2f**_b (24 mg, 81%), mp 216–218 °C (CHCl₃–MeOH). ¹H NMR (300 MHz, CD₃OD) δ : 3.99 (3H, s), 4.21 (3H, s), 4.83 (3H, s), 6.26 (2H, s), 7.52 (1H, s), 7.94 (1H, d, J=9.2 Hz), 8.09 (1H, s), 8.14 (1H, d, J=9.2 Hz), 8.36 (1H, d, *J*=8.8 Hz), 9.44 (1H, d, *J*=8.8 Hz), 9.75 (1H, s). ¹³C NMR (75 MHz, CD₃OD) δ : 52.0, 57.8, 60.9, 104.2, 105.0, 106.2, 118.2, 120.7, 121.4, 123.2, 125.7, 129.4, 131.1, 132.0, 134.4, 134.8, 146.3, 150.3, 151.2, 155.8, 162.4. ¹⁹F NMR (500 MHz, CD₃OD) δ : -78.4 (s). TOFMS (ESI) calcd for C₂₁H₁₈NO₄ 348.1236; found 348.1226 (M⁺).

4.5.15. X-ray crystal structure determination for **2f**_b. A single crystal of **2f**_b, which was crystallized from CHCl₃–MeOH, was determined by a Rigaku RAXIS RAPID II. The structure was solved by direct methods using SIR2004 and expanded using Fourier techniques. All calculations were performed using the Crystal Structure crystallographic software package except for refinement, which was performed using SHELXL-97. The crystal data of **2f**_b have been deposited in CCDC with number 776,353. Crystal data of **2f**_b: $2C_{21}H_{18}NO_4 \cdot 2CF_3SO_3 \cdot CHCl_3$; orthorhombic, space group *P*na2₁, *a*=14.3231(3) Å, *b*=17.7869(3) Å, *c*=18.3620(3) Å, *V*=4677.95 (15) Å³; *Z*=4; *D*_c=1.582 g cm⁻³; *R*=0.0967, *R*_w=0.3161, GOF=1.191. The ORTEP drawing is illustrated in Fig. 2.

4.5.16. 7,8-Dimethoxy-N-methyl-2,3-methylenedioxybenzo[c]phenanthridinium chloride (chelerythrine chloride) 2d from 7,8-dime*thoxy-2,3-methylenedioxybenzo[c]phenanthridine (norchelerythrine)* 1d. A solution of norchelerythrine (1d) (10 mg, 0.03 mmol) in HCO₂H (2 mL) was stirred for 12 h, and then NaBH₄ (111 mg, 2.93 mmol) was added to the solution at rt. After being stirred at rt for 30 min, the mixture was adjusted to weakly alkaline with an aqueous 10% NaOH and extracted with CHCl₃. The CHCl₃ layer was washed with water and brine, dried over K₂CO₃, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 5 g) using EtOAc-hexane (1:19, v/v) as an eluent to give the 5,6-dihydrochelerythrine (7 mg, 67%), mp 221–224 °C (lit.³⁰ mp 220–224 °C), which was used to the oxidation step. The Jones reagent (0.063 mL) was added to a stirred solution of the resulting 5,6-dihydrochelerythrine in acetone (10 mL) under ice-cooling. The mixture was stirred at the same temperature for 30 min, and basified with an aqueous NaOH, which was extracted with CHCl₃. The CHCl₃ layer was washed with water and brine, dried over K₂CO₃, and concentrated under reduced pressure. The residue was dissolved in a small amount of CHCl₃, and then 10% HCl was added dropwise to the solution under ice-cooling. The resulting precipitates were collected by filtration to give chelerythrine chloride 2d (7 mg, 91%), mp 194–195 °C (MeOH–acetone) (lit.^{30a} mp 192–193 °C and lit.^{30b} mp 203–206 °C). ¹H NMR and ¹³C NMR spectra of synthetic **2d** were shown in Tables 7 and 8.

Acknowledgements

We thank Professor Tsutom Ishikawa, Graduate School of Pharmaceutical Sciences, Chiba University, for providing an authentic sample of chelerythrine. We also thank Dr. Takeshi Kuwada and Dr. Hideki Shinonaga, Taisho Pharmaceutical Co. Ltd. (Medicinal Research Laboratory) for the technical assistance of NMR spectral measurements. Furthermore, we thank Associate Professor Yasuo Shida, Tokyo Pharmaceutical University (Analytical Center) for the measurement of TOFMS. This work was partly supported by a Grant-in Aid for Scientific Research (C) of the Japan Society for the Promotion of Science (JSPS).

Supplementary data

Supplementary data associated with this article can be found in online version at doi:10.1016/j.tet.2010.11.066. These data include MOL files and InChIKeys of the most important compounds described in this article.

References and notes

- (a) Ishii, H.; Ishikawa, T. Yakugaku Zasshi 1981, 101, 663–687; (b) Krane, B. D.; Fagbule, M. O.; Shamma, M. J. Nat. Prod. 1984, 47, 1–43; (c) Simanek, V. In The Alkaloids; Brossi, A., Ed.; Academic: New York, NY, 1985; Vol. 26, pp 185–240; (d) Suffness, M.; Cordell, G. A. In The Alkaloids; Brossi, A., Ed.; Academic: New York, NY, 1985; Vol. 25, pp 178–189; (e) Ninomiya, I.; Naito, T. Recent Dev. Chem. Nat. Carbon Compd. 1984, 10, 9–90; (f) Dostal, J.; Potacek, M. Collect. Czech. Chem. Commun. 1990, 55, 2840–2873; (g) Hanaoka, M. In The Alkaloids; Brossi, A., Ed.; Academic: New York, NY, 1988; Vol. 33, pp 141–233; (h) MacKey, S. P.; Meth-Cohn, O.; Waigh, R. D. Adv. Heterocycl. Chem. 1996, 67, 345–389.
- (a) Larsen, A. K.; Grondard, L.; Couprie, J.; Desoize, B.; Comoe, L.; Jardillier, J. C.; Riou, J. F. Biochem. Pharmacol. **1993**, *46*, 1403–1412; (b) Wang, L. K.; Johnson, R. K.; Hecht, C. M. Chem. Res. Toxicol. **1993**, *6*, 813–818; (c) Barret, Y.; Sauvaire, Y. Phytother. Res. **1992**, *6*, 59–63; (d) Fleury, F.; Sukhanova, A.; Ianoul, A.; Devy, J.; Kudelina, I.; Duval, O.; Alix, A. J. P.; Jardillier, J. C.; Naviev, I. J. Biol. Chem. **2000**, *275*, 3501–3509.
- 3. Ishikawa, T. Med. Res. Rev. 2001, 21, 61-72.
- (a) Caballero-George, C.; Vanderheyden, P. M. L.; Apers, S.; Van den Heuvel, H.; Solis, P. N.; Gupta, M. P.; Claeys, M.; Pieters, L.; Vauquelin, G.; Vlietinck, A. J. Planta Med. 2002, 68, 770–775; (b) Gonzaga, W. A.; Weber, A. D.; Giacomelli, S. R.; Dalcol, I. I.; Hoelzel, S. C. S.; Morel, A. F. Planta Med. 2003, 69, 371–374; (c) Li, D.; Zhao, S. G.; Sim, S. P.; Li, T. K.; Liu, A.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. 2003, 11, 521–528; (d) Hwang, J. K.; Baek, N. I.; Park, J. H. Int. J. Antimicrob. Agents 2004, 23, 377–381; (e) Eun, J. P.; Koh, G. Y. Biochem. Biophys. Res. Commun. 2004, 317, 618–624; (f) Clark, R. L.; Deane, F. M.; Anthony, N. G.; Johnston, B. F.; Mc-Carthy, F. O.; MaCkey, S. P. Bioorg. Med. Chem. 2007, 15, 4741–4752.
- (a) Nakanishi, T.; Suzuki, M. J. Nat. Prod. 1998, 61, 1263–1267; (b) Nakanishi, T.; Suzuki, M.; Saimoto, A.; Kabasawa, T.J. Nat. Prod. 1999, 62, 864–867; (c) Nakanishi, T.; Suzuki, M. Org. Lett. 1999, 1, 985–988; (d) Nakanishi, T.; Masuda, A.; Suwa, M.; Akiyama, Y.; Hoshino-Abe, N.; Suzuki, M. Bioorg. Med. Chem. Lett. 2000, 10, 2321–2323; (e) Ramani, P.; Fontana, G. Tetrahedron Lett. 2008, 49, 5262–5264.
- 6. (a) Onda, T.; Toyada, E.; Miyazaki, O.; Seno, C.; Kagaya, S.; Okamoto, K.; Nishikawa, K. *Cancer Lett.* **2007**, *259*, 99–110; (b) Guo, L.; Liu, X.; Nishikawa, K.; Plunkett, W. *Mol. Cancer Ther.* **2007**, *6*, 1501–1508; (c) Toyoda, E.; Kagaya, S.; Cowell, I. G.; Kurosawa, A.; Kamoshita, K.; Nishikawa, K.; Ilizumi, S.; Koyama, H.; Austin, C. A.; Adachi, N. J. Biol. Chem. **2008**, *283*, 23711–23722.
- 7. Richardson, T.; Robinson, R.; Seijo, E. J. Chem. Soc. 1937, 835-841.
- Ishikawa, T.; Ishii, H. *Heterocycles* 1999, 50, 627–639 and related references before 1999 cited therein.
- (a) Harayama, T.; Akiyama, T.; Akamatsu, H.; Kawano, K.; Abe, H.; Takeuchi, Y. Synthesis 2001, 444–450; (b) Harayama, T.; Akamatsu, H.; Okamura, K.; Miyagoe, T.; Akiyama, T.; Abe, H.; Takeuchi, Y. J. Chem. Soc., Perkin Trans. 1 2001, 523–528; (c) Harayama, T.; Akiyama, Y.; Shibaike, H.; Akamatsu, A.; Hori, A.; Abe, H.; Takeuchi, Y. Synthesis 2002, 237–241; (d) Harayama, T.; Sato, T.; Nakano, Y.; Abe, H.; Takeuchi, Y. Heterocycles 2003, 59, 293–301; (e) Harayama, T. Heterocycles 2005, 65, 697–713; (f) Harayama, T. Yakugaku Zasshi 2006, 126, 543–564 and their related references cited therein.
- (a) Le, T. N.; Gang, S. G.; Cho, W. J. Tetrahedron Lett. 2004, 45, 2763–2766; (b) Le, T. N.; Cho, W.-J. Chem. Pharm. Bull. 2006, 54, 476–480; (c) Le, T. N.; Van, H. T. M.; Lee, S.-H.; Choi, H. J.; Lee, K. Y.; Kang, B. Y.; Cho, W.-J. Acta Pharm. Res. 2008, 31, 6–9; (d) Styskala, J.; Canker, P.; Soural, M.; Hlavac, I.; Hradil, P.; Vicar, J.; Simanek, V. Heterocycles 2007, 73, 769–775; (e) Cui, X.-G.; Zhao, Q.-J.; Chen, Q.-L.; Xu, L.; Song, Y.; Jin, Y.-S.; Xu, D.-F. Helv. Chim. Acta 2008, 155–158; (f) Bernardo, P. H.; Wan, K.-F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.; Mok, H. Y. K.; Yu, V.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699–6710; (g) Enomoto, T.; Girad, A.-L.; Yasui, Y.; Takemoto, Y. J. Org. Chem. 2009, 74, 9158–9164; (h) Korivi, R. P.; Cheng, C.-H. Chem.—Eur. J. 2010, 16, 282–287; (i) Fuchino, H.; Kawano, M.; Mori-Yasumoto, K.; Sekita, S.; Satake, M.; Ishikawa, T.; Kikuchi, F.; Kawahara, N. Chem. Pharm. Bull. 2010, 58, 1047–1050.
- (a) Hibino, S.; Sugino, E. In Advances in Nitrogen Heterocycles; Moody, C. J., Ed.; JAI: Greenwich, CT, 1995; Vol. 5, pp 205–227; (b) Kawasaki, T.; Sakamoto, M. J. Indian Chem. Soc. 1994, 71, 443–457; (c) Choshi, T. Yakugaku Zasshi 2001, 121, 487–495; (d) Knölker, H. J. Chem. Rev. 2002, 102, 4303–4428; (e) Knölker, H. J.; Reddy, K. R. In The Alkaloids; Cordell, G. A., Ed.; Academic: Amsterdam, 2008; Vol. 65, pp 1–430; (f) Choshi, T.; Hibino, S. Heterocycles 2009, 77, 85–97; (g) Hieda, Y.; Choshi, T.; Kishida, S.; Fujioka, H.; Hibino, S. Tetrahedron Lett. 2010, 51, 3593–3596 and related references cited therein.
- (a) Kumemura, T.; Choshi, T.; Hirata, A.; Sera, M.; Takahashi, Y.; Nobuhiro, J.; Hibino, S. Chem. Pharm. Bull. 2005, 53, 393; (b) Kumemura, T.; Choshi, T.; Yukawa, J.; Hirose, A.; Nobuhiro, J.; Hibino, S. Heterocycles 2005, 66, 87–90; (c) Omura, K.; Choshi, T.; Watanabe, S.; Satoh, Y.; Nobuhiro, J.; Hibino, S. Chem. Pharm. Bull. 2008, 56, 237–238; (d) Choshi, T.; Kumemura, T.; Nobuhiro, J.; Hibino, S. Tetrahedron Lett. 2008, 49, 1725–1728.
- Kohno, K.; Azuma, S.; Choshi, T.; Nobuhiro, J.; Hibino, S. Tetrahedron Lett. 2009, 50, 590–592.
- (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11–58; (c) Takahashi, K.; Takagi, J.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 126–127.
- 15. Van, T. N.; Debenedetti, S.; De Kimpe, N. Tetrahedron Lett. 2003, 44, 4199-4201.
- (a) Makhey, D.; Li, D.; Zhao, B.; Sim, S.-P.; Li, T.-K.; Liu, A.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. 2003, 11, 1809–1820; (b) Nichols, D. E.; Brewstar, W. K.; Johnson, M. P.; Oberlender, R.; Riggs, R. M. J. Med. Chem. 1990, 33, 703–710.
- (a) Geen, G. R.; Mann, I. S.; Mullane, M. V.; McKillop, A. *Tetrahedron* **1998**, *54*, 9875–9894; (b) Ishii, H.; Harada, K.-J.; Ishida, T.; Deushi, T.; Masuda, T.; Sakamoto, M.; Ichikawa, Y.-I.; Takahashi, T.; Ishikawa, M.; Ishikawa, T. *Chem. Pharm. Bull.* **1984**, *32*, 2971–2983.

- 18. Flanagan, S. R.; Harrovwen, D. C. Tetrahedron 2002, 58, 5979-6001.
- Beugelmans, R.; Chastanet, J.; Ginsburg, H.; Quintero-Cortes, L.; Rousel, G. J. Org. Chem. 1985, 50, 4933–4938.
- 20. Chen, J. J.; Fang, H. Y.; Duh, Y.; Chen, I. S. Planta Med. 2005, 71, 470-475.
- (a) Ishii, H.; Hosoya, K.; Ishikawa, T.; Haginiwa, J. Yakugaku Zasshi **1974**, *94*, 309–321; (b) Kessar, S. V.; Gupta, Y. P.; Balakrishnan, P.; Sawal, K. K.; Mohammad, T.; Dutt, M. J. Org. Chem. **1988**, *53*, 1708–1713.
- JOS-321; (D) Ressalt, S. V.; Gupta, Y. P.; Balakrishiali, P.; Sawal, K. K.; Mohammad, T.; Dutt, M. J. Org. Chem. **1988**, 53, 1708–1713.
 (a) Furuya, T.; Ikuta, A.; Syono, K. Phytochemistry **1972**, *11*, 3041–3044; (b) Sainsbury, M.; Dyke, S. F.; Moon, B. J. J. Chem. Soc. C **1970**, 1797–1800; (c) Haisova, K.; Slavik, J.; Dolejs, L. Collect. Czech. Chem. Commun. **1973**, *38*, 3312–3320.
- Smil, D. V.; Laurent, A.; Spassova, N. S.; Fallis, A. G. Tetrahedron Lett. 2003, 44, 5129–5132.

- 24. Lear, Y.; Durst, T. Can. J. Chem. 1997, 75, 817-824.
- Pang, S.-Q.; Wang, G.-Q.; Huang, B.-K.; Zhang, Q.-Y.; Qin, L.-P. Chem. Nat. Compds. 2007, 43, 100–102.
- DeMoura, N. F.; Ribeiro, H. B.; Machado, E. C. S.; Ethur, E. M.; Zanatta, N.; Morel, A. D. Phytochemistry 1997, 46, 1443–1446.
- 27. Rice, J. E.; Lavoie, E. J.; Hofmann, D. J. Org. Chem. **1983**, 48, 2360–2383.
- 28. Banerjee, M.; Mukhopadhyay, R.; Achari, B.; Banerjee, A. K. J. Org. Chem. **2006**, 71, 2787–2796.
- Abe, H.; Kobayashi, N.; Takeuchi, Y.; Harayama, T. *Heterocycles* 2010, 80, 873–877.
- (a) Ishii, H.; Ishikawa, T.; Ichikawa, Y.; Sakamoto, M.; Ishikawa, M.; Takahashi, T. Chem. Pharm. Bull. 1984, 32, 2984–2994; (b) Ishii, H.; Ishikawa, T.; Haginiwa, J. Yakugaku Zasshi 1977, 97, 890–900.