ARTICLE IN PRESS

Bioorganic & Medicinal Chemistry xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

3-Carboxamido-5-aryl-isoxazoles as new CB₂ agonists for the treatment of colitis

Aurélien Tourteau^a, Virginie Andrzejak^a, Mathilde Body-Malapel^b, Lucas Lemaire^a, Amélie Lemoine^a, Roxane Mansouri^a, Madjid Djouina^b, Nicolas Renault^c, Jamal El Bakali^a, Pierre Desreumaux^b, Giulio G. Muccioli^d, Didier M. Lambert^e, Philippe Chavatte^c, Benoît Rigo^f, Natascha Leleu-Chavain^a, Régis Millet^{a,*}

^a Université Lille Nord de France, EA4481, Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 Rue du Pr. Laguesse, BP83, F-59006 Lille, France ^b Université Lille Nord de France, U995 INSERM, Digestive Inflammatory Diseases, Pathophysiology and Development of Therapeutic Targets, IFR114, Amphis J&K, Boulevard du Pr. Leclercq, F-59045 Lille Cedex, France

^c Université Lille Nord de France, EA4481, Faculté des Sciences Pharmaceutiques et Biologiques, IFR114, 3 Rue du Pr. Laguesse, BP83, F-59006 Lille, France

^d Bioanalysis and Pharmacology of Bioactive Lipids Lab, Louvain Drug Research Institute, Université Catholique de Louvain, 72 Avenue E. Mounier, B1.72.01, B-1200 Bruxelles, Belgium ^e Unité de Chimie Pharmaceutique et de Radiopharmacie, Louvain Drug Research Institute, Ecole de Pharmacie, Faculté de Médecine, Université Catholique de Louvain, 73 Avenue F. Mounier IICL-CMFA (7340), B-1200 Bruxelles, Belgium

^f UCLille, HEI, EA4481, Laboratoire de Pharmacochimie, 13 Rue de Toul, F-59046 Lille, France

ARTICLE INFO

Article history: Received 26 March 2013 Revised 28 May 2013 Accepted 6 June 2013 Available online xxxx

Keywords: CB₂ Cannabinoid Isoxazoles IBD

ABSTRACT

Recent investigations showed that anandamide, the main endogenous ligand of CB₁ and CB₂ cannabinoid receptors, possesses analgesic, antidepressant and anti-inflammatory effects. In the perspective to treat inflammatory bowel disease (IBD), our approach was to develop new selective CB₂ receptor agonists without psychotropic side effects associated to CB₁ receptors. In this purpose, a new series of 3-carbox-amido-5-aryl-isoxazoles, never described previously as CB₂ receptor agonists, was designed, synthesized and evaluated for their biological activity. The pharmacological results have identified great selective CB₂ agonists with in vivo anti-inflammatory activity in a DSS-induced acute colitis mouse model.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The endocannabinoid system is an ubiquitous lipid signaling system with important regulatory functions. This system includes endogenous ligands, named endocannabinoids (ECs), two G-protein-coupled receptors (CB₁ and CB₂) that bind these ECs and several enzymes responsible for the synthesis and the degradation of these ECs.^{1–3}

ECs, whose main representatives are anandamide (AEA) and 2arichidonoylglycerol (2-AG), are polyunsaturated fatty acid ester and amide derivatives. AEA and 2-AG, synthesized by *N*-acyl-phosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL), respectively, are known to modulate several physiological responses, including depression, pain sensation and inflammation.⁴ Immediately released from cells after their biosynthesis, ECs act on their receptors only locally.⁴ However, AEA and 2-AG are rapidly eliminated by cellular uptake through a ECs bind to both cannabinoid receptors CB₁ and CB₂. Cloning and localization of these G-protein-coupled receptors were major steps in the understanding of their physiological properties. The CB₁ receptor is mostly located in the brain and vessels.⁹ On the contrary, the CB₂ receptor is mainly expressed in immune cells,¹⁰ and has demonstrated immunomodulatory activities.¹¹

It has been established that the endocannabinoid system plays an autoprotecting role in numerous diseases like pain,¹² chronic inflammation disorders¹³ or cancer.¹⁴ Thereby, modulation of this system through the activation of cannabinoid receptors consists in a promising therapeutic strategy.

Following this interesting approach, we decided to design molecules which target this endocannabinoid system and especially cannabinoid receptors. Because some CB₁ ligands cause psychotropic side effects due to the main localization of CB₁ receptors in the brain,¹⁵ there is a fundamental need to develop selective CB₂ agonists without psychoactivity due to CB₁.

0968-0896/\$ - see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmc.2013.06.010

^{*} Corresponding author. Tel.: +33 3 20 96 49 06; fax: +33 3 20 96 43 74. *E-mail address:* regis.millet@univ-lille2.fr (R. Millet).

facilitated transport mechanism and principally hydrolyzed by the fatty acid amid hydrolase (FAAH) and the monoacylglycerol lipase (MAGL), respectively.^{5–8}

ARTICLE IN PRESS

Figure 1. Structures of representatives CB₂ selective ligands.

Since the last decades, several selective CB₂ agonists have been described: aminoalkylindoles,¹⁶ quinolones,¹⁷ oxadiazoles¹⁸ or diazepanes,¹⁹ for example. Some of these selective CB₂ agonists have shown very interesting pharmacological properties like anti-inflammatory (JWH-133, GW-842,166X),²⁰ analgesic (AM1241)²¹ or anticancer (JWH-133)²² activities (Fig. 1). In our laboratory, we focused our research work on the therapeutic niche of inflammatory bowel disease (IBD).

Crohn's disease and ulcerative colitis are the main forms of IBD and cause, respectively, partial or complete inflammation of the gastrointestinal tract induced by an excessive immune response. Indeed, neutrophiles infiltration in the intestinal mucosal lesions with cell necrosis and ulceration of the epithelium were observed in patients suffering from IBD.²³

The endocannabinoid system has been identified in the gastrointestinal tract and plays an important role in intestinal motility and inflammation.^{24,25} More specifically, an overexpression of cannabinoid receptors has been observed in patients suffering from IBD and in animal models of these diseases.^{24,26} Several in vivo and in vitro studies have highlighted the beneficial role of CB₂ in intestinal inflammation.^{20,27-29} Furthermore, Di Sabatino et al. showed that the AEA level was reduced in IBD inflamed mucosa of patients, as a consequence of both, its defective synthesis and its increased degradation.³⁰

Based on the structure of SR144,528,³¹ a specific CB₂ ligand (Fig. 1), we decided to design and synthesize new selective CB₂ agonists around the 3-carboxamido-5-aryl-isoxazole scaffold for the treatment of IBD. The aim of this work was to develop bioisosters of SR144,528 targeting the CB₂ receptor. For this purpose, we introduced pharmacophoric features, which have been previously identified in our group as crucial for CB₂ affinity and selectivity, that is, an alkyl chain and a bulky aliphatic group.^{17,32} Following this strategy, a series of 27 new molecules was synthesized and tested for their biological activity.

2. Results and discussion

2.1. Chemistry

The targeted 3-carboxamido-5-aryl-isoxazoles 44-70 were obtained in four steps from diverse ketones, as described in Scheme 1. The non-commercial O-alkyl aromatic ketones were synthesized by an alkylation of the phenol function of the corresponding hydroxyacetophenone (compounds 1-10, 59-95%). The ethyl 2.4-dioxobutanoates 11-21 were obtained by a Claisen condensation of the corresponding ketones with diethyl oxalate in presence of sodium ethoxide, as described by Marvel and Dreger,³³ in variable yields (23–93%). It was demonstrated that these ethyl 2.4-dioxobutanoates 11-21 are in their enol form due to the formation of an internal hydrogen bond.³⁴ The obtained intermediates **11–21** were cyclized into ethyl isoxazole-3-carboxvlates (compounds 22-32) by addition of hydroxylamine hydrochloride in ethanol at reflux (27-82%).35 The desired compounds 44-70 were finally obtained in moderate to good yields (13-77%), by saponification of the ethyl ester function of compounds 22-32 with sodium hydroxide in ethanol at room temperature followed by amidation under peptide coupling conditions (HOBt/HBTU/DIEA in chloroform at room temperature). Structures of original compounds 44-70 are summarized in Table 1.

Scheme 1. Synthesis of 3-carboxamido-5-aryl-isoxazoles 44–70. Reagents and conditions: (a) alkyl bromide, K₂CO₃, DMF, reflux, 16 h; (b) sodium ethoxide, EtOH, reflux, 2 h; (c) hydroxylamine hydrochloride, EtOH, reflux, 2 h; (d) NaOH, EtOH, rt, 24 h; (e) R-NH₂, HOBt, HBTU, DIEA, CHCl₃, rt, 24 h.

A. Tourteau et al./Bioorg. Med. Chem. xxx (2013) xxx-xxx

Table 1

Structures of the new synthesized compounds

N N

Compounds	R ¹	R ²
44	Phenyl	1-Adamantyl
45	Phenyl	2-Adamantyl
46	Phenyl	1-(Adamantyl)methyl
47	2-Methoxyphenyl	1-Adamantyl
48	2-Ethoxyphenyl	1-Adamantyl
49	2-Propoxyphenyl	1-Adamantyl
50	2-Butoxyphenyl	1-Adamantyl
51	2-Pentoxyphenyl	1-Adamantyl
52	2-Hexoxyphenyl	1-Adamantyl
53	2-Heptoxyphenyl	1-Adamantyl
54	2-Octoxyphenyl	1-Adamantyl
55	3-Pentoxyphenyl	1-Adamantyl
56	4-Pentoxyphenyl	1-Adamantyl
57	2-Pentoxyphenyl	2-Adamantyl
58	2-Pentoxyphenyl	3-Noradamantyl
59	2-Pentoxyphenyl	Cyclopropyl
60	2-Pentoxyphenyl	Cyclobutyl
61	2-Pentoxyphenyl	Cyclopentyl
62	2-Pentoxyphenyl	Cyclohexyl
63	2-Pentoxyphenyl	1-Piperidinyl
64	2-Pentoxyphenyl	Cycloheptyl
65	2-Pentoxyphenyl	Cyclooctyl
66	2-Pentoxyphenyl	Phenyl
67	2-Pentoxyphenyl	Benzyl
68	2-Pentoxyphenyl	2-(5-Methyl)-1,3,4-thiadiazolyl
69	2-Pentoxyphenyl	1-Naphtyl
70	2-Pentoxyphenyl	Diisobutyl

2.2. In vitro \mbox{CB}_1 and \mbox{CB}_2 receptor affinity and structure–activity relationships

The affinities for the human CB₁ and CB₂ receptors of the new synthesized compounds **44–70** were determined by a competitive radioligand displacement assay using [³H]-SR141716A and [³H]-CP55,940 as radioligands, respectively.³⁶ Membrane from Chinese Hamster Ovary (CHO) cells expressing respectively hCB₁ or hCB₂ were used in these experiments. All compounds were first screened at a concentration of 10 μ M for their affinity toward the cannabinoid receptors. Inhibition constant (K_i) values were determined for compounds exhibiting a specific displacement superior to 60% for hCB₂ and hCB₁. Selectivity indices (hCB₂ vs hCB₁) were calculated whenever possible.

As shown in Table 2, 15 compounds possess a nanomolar affinity for the hCB_2 receptor. Among these 15 CB₂ ligands, compound **58** showed the best affinity for the hCB_2 receptor with a K_i value of 9.0 nM.

First, we noted that compounds **44–46** with a non-substituted phenyl group at the C-5 position (\mathbb{R}^1) showed no affinity for *h*CB₂. On the other hand, when previously described CB₂ affinity and selectivity crucial pharmacophoric features, that is, an *n*-pen-tyl chain on the phenyl group and a 1-adamantyl group on the carboxamide function^{17,32,37} were introduced, compound **51** showed a good affinity for *h*CB₂ with a *K*_i value of 36.0 nM.

Thus, we decided to study the best position of the *O*-pentyl chain on the phenyl group by synthesizing position's isomers of compound **51**. Interestingly, neither compound **55** with an *O*-pentyl at the meta position nor compound **56** with an *O*-pentyl at the para position revealed any affinity for the hCB_2 receptor, contrary to compound **51** with an *O*-pentyl at the ortho position ($K_i = 36.0 - nM$). These results indicate that the best position for the *O*-alkyl chain on the phenyl group is the ortho position.

Table 2

Affinities (K_i values) of compounds **47–70** and reference compounds (WIN-55,212-2, CP55,940) towards hCB_2 and hCB_1 cannabinoid receptors,^a selectivity ratios hCB_2 versus hCB_1 , and cytotoxicity on HT29 cells^b

Compounds	Binding affinity K _i (nM)		Selectivity ratio hCB ₂ versus hCB ₁	Cytotoxicity (HT29) at	
	hCB ₂	hCB1		10 μM	
44	>1000				
45	>1000				
46	>1000				
47	70.1 ± 5.4	>3000	>42	ND	
48	>1000				
49	79.6 ± 5.8	>1000	>12	8%	
50	369 ± 62	>3000	>8	2%	
51	36.0 ± 3.4	>3000	>83	0%	
52	30.5 ± 6.4	>3000	>98	17%	
53	>1000				
54	>1000				
55	>1000				
56	>1000				
57	60.1 ± 6.2	>3000	>49	0%	
58	9.0 ± 0.6	>1000	>111	20%	
59	>1000				
60	412 ± 71	>1000	>2	46%	
61	60.9 ± 0.9	>1000	>16	13%	
62	22.8 ± 4.6	>3000	>131	37%	
63	600 ± 76				
64	60.8 ± 6.9	>3000	>49	34%	
65	73.5 ± 6.8	>3000	>40	17%	
66	>1000				
67	>3000				
68	>3000				
69	>1000	22.0.5.			
70	22.1 ± 3.9	33.0 ± 5.3			
WIN-	9.1±0.8	16.1±6.0			
55,212-					
∠ CP-55,940	15.4 ± 1.4	1.3 ± 0.4^{38}			

^a The K_i values were obtained from nonlinear analysis of competition curves using [³H]-SR141716A and [³H]-CP-55,940 as radioligands for hCB_1 and hCB_2 cannabinoid receptors, respectively, and are expressed as mean ± SEM of at least four experiments performed in duplicate.

^b The cytotoxicity values are expressed as the percentage of cellular proliferation inhibition of at least four experiments performed in duplicate.

Then, we decided to modulate the *O*-alkyl chain length on the phenyl group. Compounds **49–52** with a medium *O*-alkyl chain (between 3 to 6 carbons) at the ortho position showed good to moderate affinity for hCB_2 ($K_i = 30.5$ to 369 nM). However, no hCB_2 affinity was observed for compounds with a shorter (less than 3 carbons, compound **48**) or longer (more than 6 carbons, compounds **53–54**) *O*-alkyl chain, except for compound **47** with an *O*-methyl chain ($K_i = 70.1$ nM). Thus among the compounds bearing an ortho-substituted phenyl group, compounds **51** and **52** showed the best affinity for hCB_2 (**51**: $K_i = 36.0 \pm 3.4$ nM; **52**: $K_i = 30.5 \pm 6.4$ nM).

Pharmacomodulations of the substituent on the carboxamide function (\mathbb{R}^2) was also carried out. Compounds substituted by an aromatic moiety (**66–69**) demonstrated no affinity for hCB_2 , contrary to compounds **57–65** with an aliphatic substituent (except for the cyclopropyl group, compound **59**) on the carboxamide function which showed affinities ranging from 9.0 to 600 nM. To maintain the hCB_2 affinity, a bulky aliphatic substituent on the carboxamide function (\mathbb{R}^2) seems to be essential. Indeed, neither compounds bearing an aromatic, nor small aliphatic group (cyclopropyl) showed any hCB_2 affinity. The best substituents are cyclohexyl (**62**), *N-N*-diisobutyl (**70**) and adamantyl (**51**, **57–58**) groups.

In order to determine the selectivity ratio of our CB₂ ligands, 13 of these molecules ($K_i < 500 \text{ nM}$) were tested for their CB1 affinity. Amongst these CB2 ligands, only compound **70** presented a CB1 affinity with a 90% displacement at 10 μ M.

4

ARTICLE IN PRESS

A. Tourteau et al./Bioorg. Med. Chem. xxx (2013) xxx-xxx

2.3. CB₂ receptor functional activity

The functional activity of our best compounds (**49–52**, **57–58**, **60–62**, **64** and **65**) was determined using a guanosine-5'-O-($(3-[^{35}S]$ -GTP γ S) binding assay and *h*CB₂-CHO cells membranes, as previously described.³² This assay consists in a functional measurement of the interaction between the receptor and the G-protein, which constitutes the first step of the G-protein coupled receptor activation. In this assay, antagonists do not affect [35 S]-GTP γ S interaction whereas agonists and inverse agonists increase or decrease the binding, respectively. The functional activity of the reference cannabinoid agonist, WIN-55,212-2 (CB₁ and CB₂ agonist), was also determined. Maximum efficacy (E_{max}) and half-maximal effective concentration (EC₅₀) values of the new synthesized compounds and references are gathered in Table 3. This assay showed that our 12 selective CB₂ ligands are all agonists of the CB₂ receptor.

Starting from the SR144,528 structure, the replacement of the pyrazole by an isoxazole, inducing the suppression of the benzyl group resulted in the switch of the functional activity from inverse agonist to agonist. Moreover, we demonstrated once more that the introduction of an alkyl chain and a bulky aliphatic group on the central heterocycle are crucial pharmacophoric features for the design of selective CB₂ agonists.^{17,32}

2.4. Cell proliferation assay

Cytotoxicity of our 12 selective CB_2 agonists was determined (at 10 μ M) using a cell proliferation assay on human colorectal adenocarcinoma cells HT29. This test is based on a colorimetric method, which measures the activity of cellular enzymes that reduce the tetrazolium dye (MTS, uncolored) to its insoluble formazan giving a purple color. This assay measures cellular metabolic activity via NADPH-dependent cellular oxidoreductase enzymes and reflects, under defined conditions, the number of viable cells. No cytotoxicity was observed for our new selective CB₂ agonists (Table 2).

2.5. In vivo study

Considering their good affinity for hCB_2 , selectivity versus hCB_1 and agonist property, compounds 58 and 64 have been selected for the in vivo study. Specific Pathogen Free male 7 weeks old C57/Bl6 mice received 2.5% dextran sodium sulfate (DSS) in drinking water during 7 days. Concomitantly, they were dosed intraperitoneally with compounds **58** or **64** in hydroxypropyl β cyclodextrine (150 mM) at the dosage of 10 mg/kg body weight. Control mice were injected with vehicle only. Mice receiving vehicle developed progressive weight loss (Fig. 2A) and increased Disease Activity Index based on weight loss, stool consistency and rectal bleeding (Fig. 2B). There were no overt reactions following 7 days of daily IP treatment with the compounds **58** and **64**. At day 7, mice body weights relative to their day 0 weights were significantly higher in mice treated with 58 and 64 as compared to vehicle-treated mice (58: 92.8 ± 1.2% and 64: 91.8 ± 2.2% vs vehicle: 83.1 ± 2.2%, $p \leq 0.001$ for both). Accordingly, **58** and **64** reduced significantly the Disease Activity Index, from 15.6 ± 0.5 for vehicle controls to 8.3 ± 0.9 for **58** (*p* = 0.0004) and 10.6 ± 1.0 for **64** (*p* = 0.001). Another disease indicator measured was colon length because DSS typically results in shortening of the colon. Mice treated with 58 and **64** presented a colon length significantly higher than vehicle mice $(4.6 \pm 0.2 \text{ cm} \text{ for vehicle}, 5.6 \pm 0.2 \text{ cm} \text{ for } 58 \text{ } (p = 0.003),$ 5.4 ± 0.1 cm for 64 (p = 0.002), Fig. 2C). Furthermore, histology sections of colon from mice treated with vehicle, 58 and 64 were scored for histological damage (Fig. 3). The extent of colon inflammation was reduced in mice treated with **58** (2.3 ± 0.7 , p = 0.01, Fig. 3A and D) and 64 (4.0 ± 0.5, ns, Fig. 3A and C) relative to mice

Table 3

Half-maximal	effective (EC50)	and i	maximum	efficacy	$(E_{\rm max})$ of	of selected	compound	ls
and reference	hCB ₂ ligands ^a							

Compounds	$[^{35}S]$ -GTP γ S(hCB ₂)		
	EC ₅₀ (nM)	E_{\max}^{b} (%)	
47	2.56 ± 0.3	155 ± 11	
49	2.21 ± 0.3	144 ± 8	
50	2.88 ± 0.3	147 ± 10	
51	2.9 ± 0.3	151 ± 12	
52	3.4 ± 0.3	157 ± 10	
57	14.8 ± 3.8	270 ± 16	
58	4.8 ± 0.3	234 ± 13	
60	4.4 ± 0.4	184 ± 15	
61	2.1 ± 0.3	160 ± 11	
62	1.9 ± 0.3	161 ± 12	
64	11.1 ± 3.4	233 ± 14	
65	1.8 ± 0.3	167 ± 10	
WIN-55,212-2	2.04 ± 0.3	243 ± 14	

^a The results are expressed as mean ± SEM of at least four experiments performed in duplicate. ^b Basal constitutive activity of the receptor has been set at a value of 100%, $E_{\rm max}$

^b Basal constitutive activity of the receptor has been set at a value of 100%, E_{\max} values above 100% indicated that the compound behaves as an agonist, E_{\max} values under 100% indicated that the compound behaves as an inverse agonist, and E_{\max} values equal to 0% indicated that the compound behaves as an antagonist.

treated with vehicle (5.1 ± 0.4, Fig. 3A and B). Finally, colon levels of major inflammatory cytokines were quantified in mice by realtime PCR. Compounds **58** and **64** did not show any significant effect on TNF- α mRNA levels (Fig. 4A). Colon levels of IL-1 β were significantly reduced in **58** and **64** treated mice (vehicle: 105.1 ± 17.0, **58**: 19.9 ± 8.7, *p* = 0.0003, **64**: 13.2 ± 4.2, *p* < 0.0001, Fig. 4B). Similarly, **58** and **64** treated mice have colon Kc mRNA levels significantly lower as compared with control mice (vehicle: 68.9 ± 9.8, **58**: 11.5 ± 2.2, *p* < 0.0001, **64**: 12.3 ± 2.8, *p* < 0.0001, Fig. 4C). Taken together, these different parameters demonstrate that both **58** and **64** treatments inhibit the development of DSS-induced acute colitis in mice.

3. Conclusion

We have synthesized the first series of selective CB₂ receptor ligands based on a 3-carboxamido-5-aryl-isoxazoles scaffold. 12 selective CB₂ receptor agonists without any cytotoxicity were identified. Amongst these 12 compounds, compounds **58** and **64** have shown in vivo anti-inflammatory activities in a colitis mouse model, with a significantly reduction of the Disease Activity Index, and the IL-1 β and Kc mRNA colon levels. In conclusion, the 3-carboxamido-5-aryl-isoxazole scaffold was highlighted as a highly effective scaffold for the design of new CB₂ receptor agonists.

4. Experimental section

4.1. Chemistry

All commercial reagents and solvents were used without further purification. Analytical thin-layer chromatography was performed on pre-coated Polygram Sil G/UV254 plates (Macherey-Nagel[®]); the spots were located by UV (254 and 366 nm) and the compounds were extracted from the silica using cyclohexane/AcOEt (7:3, v/v). Silica gel 60 230–400 mesh purchased from Merck[®] was used for column chromatography. All melting points were determined with a Büchi 535[®] capillary apparatus and remain uncorrected. ¹H NMR spectra were obtained using a Brüker[®] 300 MHz spectrometer, chemical shifts (δ) are expressed in ppm relative to tetramethylsilane used as an internal standard, *J* values are in hertz, and the splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; m, multiplet. All compounds were

A. Tourteau et al. / Bioorg. Med. Chem. xxx (2013) xxx-xxx

Figure 2. Effects of **58** and **64** daily treatment (10 mg/kg, IP) on body weight (A), Disease Activity Index on day 7 (B) and colon length (C) during DSS-induced acute colitis. Values are expressed as a mean ± SEM, *n* = 10. ***p* <0.001.

Figure 3. Histological scoring of colons from DSS-treated mice administrated with vehicle, **58** and **64** (A). Values are expressed as a mean \pm SEM, n = 10. *p < 0.05. Representative MGG stained sections of distal colon of vehicle (B), **64** (C) and **58** (D) treated mice (original magnification $\times 5$).

analyzed by HPLC-MS on a HPLC combined with a Surveyor MSQ (Thermo Electron[®]) equipped with an APCI-source. The mass of **58** and **64** were obtained by HRMS with Q Exactive Benchtop LC–MS/MS (Thermo Scientific[®]). All tested compounds showed a

purity superior at 96% in APCI⁺ mode. Elemental analyses for target compounds were performed by the 'Service Central d'Analyses' at the CNRS, Vernaison (France) and the data were within $\pm 0.4\%$ of the theoretical values.

ARTICLE IN PRESS

A. Tourteau et al./Bioorg. Med. Chem. xxx (2013) xxx-xxx

Figure 4. Quantification by real-time PCR of colon TNF- α (A), IL1- β (B) and Kc (C) mRNA levels in mice with DDS-induced colitis treated with vehicle, 803 and 809. Values are expressed as a mean ± SEM, n = 10. ** $p \leq 0.001$.

4.1.1. General procedure for the preparation of 1-(2-alkyloxyphenyl)ethanones (1–10)

A solution of 2-hydroxyacetophenone, 3-hydroxyacetophenone or 4-hydroxyacetophenone (3.00 g, 22 mmol, 1 equiv), potassium carbonate (4.57 g, 33.1 mmol, 1.5 equiv) and the corresponding alkylbromide (24 mmol, 1.1 equiv) in 20 mL of DMF was stirred and refluxed for 16 h. After reaction, the DMF was evaporated and 30 mL of 2 N aqueous NaOH were added to the crude. Then, the solution was extracted with EtOAc (2×20 mL) and washed with water. The organic layers was dried over MgSO₄ and evaporated under reduce pressure. Crystallization in absolute EtOH gave the pure desired compounds, except for compounds **1**, **4** and **6–9** which were purified by TLC using the appropriate eluent (cyclohexane/EtOAc 7:3, v/v).

4.1.1.1. 1-(2-Methyloxyphenyl)ethanone (1). Yellow oil (93%). ¹H NMR (CDCl₃) δ 7.72 (d, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.01–6.95 (m, 2H), 3.90 (s, 3H), 2.60 (s, 3H). LC–MS (APCI⁺) *m*/*z* 151.2 (MH⁺).

4.1.1.2. 1-(2-Ethyloxyphenyl)ethanone (2). Yellow solid (82%); mp 28 °C. ¹H NMR (DMSO) δ 7.57–7.47 (m, 2H), 7.15 (d, *J* = 8.2 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 4.14 (q, *J* = 7.0 Hz, 2H), 2.58 (s, 3H), 1.39 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m*/*z* 165.1 (MH⁺).

4.1.1.3. 1-(2-Propyloxyphenyl)ethanone (3). White solid (84%); mp 28 °C. ¹H NMR (DMSO) δ 7.58–7.47 (m, 2H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 4.04 (t, *J* = 6.3 Hz, 2H), 2.57 (s, 3H), 1.78 (m, 2H), 1.01 (t, *J* = 7.3 Hz, 3H). LC–MS (APCI⁺) *m/z* 179.2 (MH⁺).

4.1.1.4. 1-(2-Butyloxyphenyl)ethanone (4). Brown oil (79%). ¹H NMR (DMSO) δ 7.57 (d, *J* = 6.4 Hz, 1H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.11 (d, *J* = 8.5 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 4.06 (t, *J* = 6.4 Hz, 2H), 2.82 (s, 3H), 1.74 (m, 2H), 1.45 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H). LC–MS (APCI⁺) *m/z* 193.1 (MH⁺). **4.1.1.5. 1-(2-Pentyloxyphenyl)ethanone (5).** White solid (95%); mp 30 °C. ¹H NMR (DMSO) δ 7.57 (d, *J* = 7.3 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 1H), 7.10 (d, *J* = 8.2 Hz, 1H), 6.97 (t, *J* = 7.3 Hz, 1H), 4.04 (t, *J* = 6.1 Hz, 2H), 2.55 (s, 3H), 1.75 (m, 2H), 1.44–1.23 (m, 4H), 0.87 (t, *J* = 7.0 Hz, 3H). LC–MS (APCl⁺) *m/z* 207.1 (MH⁺).

4.1.1.6. 1-(2-Hexyloxyphenyl)ethanone (6). Yellow oil (59%). ¹H NMR (DMSO) δ 7.52 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 8.5 Hz, 1H), 7.09 (d, *J* = 8.2 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, 1H), 4.03 (t, *J* = 6.4 Hz, 2H), 2.55 (s, 3H), 1.74 (m, 2H), 1.43–1.22 (m, 6H), 0.84 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 221.2 (MH⁺).

4.1.1.7. 1-(2-Heptyloxyphenyl)ethanone (7). Brown oil (94%). ¹H NMR (CDCl₃) δ 7.73 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 6.99–6.92 (m, 2H), 4.05 (t, *J* = 6.4 Hz, 2H), 2.63 (s, 3H), 1.85 (m, 2H), 1.53–1.42 (m, 2H), 1.41–1.25 (m, 6H), 0.89 (m, 3H). LC–MS (APCI⁺) *m/z* 235.3 (MH⁺).

4.1.1.8. 1-(2-Octyloxyphenyl)ethanone (8). Brown oil (69%). ¹H NMR (DMSO) δ 7.57 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.97 (t, *J* = 7.4 Hz, 1H), 4.05 (t, *J* = 6.3 Hz, 2H), 2.52 (s, 3H), 1.75 (m, 2H), 1.47–1.37 (m, 2H), 1.33–1.21 (m, 8H), 0.84 (m, 3H). LC–MS (APCI⁺) *m/z* 249.2 (MH⁺).

4.1.1.9. 1-(3-Pentyloxyphenyl)ethanone (9). Brown oil (90%). ¹H NMR (DMSO) δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.43–7.40 (m, 2H), 7.17 (d, *J* = 8.1 Hz, 1H), 3.99 (t, *J* = 6.4 Hz, 2H), 3.98 (s, 3H), 1.12 (m, 2H), 1.42–1.23 (m, 4H), 0.88 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 207.2 (MH⁺).

4.1.1.10. 1-(4-Pentyloxyphenyl)ethanone (10). White solid (92%); mp 32 °C. ¹H NMR (DMSO) δ 7.93 (d, *J* = 8.7 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 4.02 (t, *J* = 7.1 Hz, 2H), 2.52 (s, 3H), 1.81 (m, 2H), 1.50–1.38 (m, 4H), 0.94 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 207.2 (MH⁺).

4.1.2. General procedure for the preparation of ethyl 2-hydroxy-4-oxo-4-aryl-2-butenoates (11–21)

To a stirred solution of sodium ethanolate, freshly prepared by reacting Na (66 mmol, 2 equiv) with 50 mL absolute EtOH, the corresponding aryl ketone (33 mmol, 1 equiv) and diethyl oxalate (66 mmol, 2 equiv) diluted in 30 mL of absolute EtOH were added dropwise at 50 °C. The mixture was refluxed for 2 h. The solvent was evaporated under reduce pressure and the residue was dissolved in 1 N aqueous HCl (20 mL) and stirred for additional 1 h. Then, the solution was extracted with EtOAc (2×20 mL) and washed with distilled water (20 mL). The organic layers were dried over MgSO₄ and evaporated under reduce pressure. Finally, the residue was triturated in cyclohexane to give compounds **11–21**.

4.1.2.1. Ethyl 2-hydroxy-4-oxo-4-phenyl-2-butenoate (11). Orange solid (75%); mp 45 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 8.02 (d, *J* = 7.7 Hz, 2H), 7.67 (t, *J* = 7.9 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.08 (s, 1H), 3.98 (q, *J* = 6.4 Hz, 2H), 1.12 (t, *J* = 6.4 Hz, 3H). LC–MS (APCI⁺) *m/z* 221.1 (MH⁺).

4.1.2.2. Ethyl 2-hydroxy-4-(2-methoxyphenyl)-4-oxo-2-butenoate (12). Orange solid (74%); mp 29 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 7.98 (d, *J* = 6.4 Hz, 1H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.24– 7.08 (m, 3H), 4.28 (q, *J* = 7.3 Hz, 2H), 3.92 (s, 3H), 1.29 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 251.0 (MH⁺).

4.1.2.3. Ethyl 4-(2-ethoxyphenyl)-2-hydroxy-4-oxo-2-butenoate (13). Yellow solid (90%); mp 76 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 7.84 (d, *J* = 6.7 Hz, 1H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.40 (s, 1H), 7.19 (d, *J* = 8,5 Hz, 1H), 7.09 (t, *J* = 7.3 Hz, 1H), 4.32–4.16 (m, 4H), 1.42 (t, *J* = 7.0 Hz, 3H), 1.29 (t, *J* = 7.0 Hz, 3H). LC–MS (APCl⁺) *m/z* 265.0 (MH⁺).

4.1.2.4. Ethyl 2-hydroxy-4-oxo-4-(2-propoxyphenyl)-2-butenoate (14). Orange solid (59%); mp 67 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 7.84 (d, *J* = 6.7 Hz, 1H), 7.61 (t, *J* = 7.0 Hz, 1H), 7.38 (s, 1H), 7.20 (d, *J* = 8.5 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 4.27 (q, *J* = 7.0 Hz, 2H), 4.10 (t, *J* = 6.1 Hz, 2H), 1.82 (m, 2H), 1.28 (t, *J* = 7.3 Hz, 3H), 1.05 (t, *J* = 7.3 Hz, 3H). LC–MS (APCI⁺) *m/z* 279.2 (MH⁺).

4.1.2.5. Ethyl 4-(2-butoxyphenyl)-2-hydroxy-4-oxo-2-butenoate (15). Brown solid (33%); mp 86 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 7.91 (d, *J* = 6.1 Hz, 1H), 7.52–7.46 (m, 2H), 7.03–6.96 (m, 2H), 4.36 (q, *J* = 7.3 Hz, 2H), 4.09 (t, *J* = 6.1 Hz, 2H), 1.88 (m, 2H), 1.57 (m, 2H), 1.37 (t, *J* = 8.2 Hz, 3H), 1.03 (t, *J* = 6.2 Hz, 3H). LC–MS (APCI⁺)*m*/*z* 293.2 (MH⁺).

4.1.2.6. Ethyl 2-hydroxy-4-oxo-4-(2-pentoxyphenyl)-2-butenoate (16). Brown solid (62%); mp 106 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 7.84 (d, *J* = 7.6 Hz, 1H), 7.81 (t, *J* = 7.0 Hz, 1H), 7.61 (s, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 4.28 (q, *J* = 7.4 Hz, 2H), 4.13 (t, *J* = 6.4 Hz, 2H), 1.79 (m, 2H), 1.35 (m, 7H), 0.88 (t, *J* = 7.3 Hz, 3H). LC–MS (APCI⁺) *m/z* 307.3 (MH⁺).

4.1.2.7. Ethyl 4-(2-hexoxyphenyl)-2-hydroxy-4-oxo-2-butenoate (**17**). Brown solid (31%); mp 59 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 7.92 (d, *J* = 6.1 Hz, 1H), 7.52–7.47 (m, 2H), 7.06–6.96 (m, 2H), 4.37 (q, *J* = 7.4 Hz, 2H), 4.09 (t, *J* = 6.4 Hz, 2H), 1.90 (m, 2H), 1.44–1.34 (m, 9H), 0.90 (t, *J* = 6.7 Hz, 3H). LC–MS (APCI⁺) *m/z* 321.3 (MH⁺).

4.1.2.8. Ethyl 4-(2-heptoxyphenyl)-2-hydroxy-4-oxo-2-butenoate (18). Brown solid (90%); mp 40 °C. ¹H NMR (DMSO) δ 15.02 (s, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.34 (s, 1H), 7.20 (d, *J* = 8.5 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 4.28 (t, *J* = 7.1 Hz, 1H), 4.28 (t, J = 7.1 Hz, 1H), 4.28 (t, 2H), 4.12 (t, *J* = 6.2 Hz, 2H), 1.79 (m, 2H), 1.50–1.41 (m, 2H), 1.33– 1.21 (m, 9H), 0.84 (m, 3H). LC–MS (APCI⁺) *m/z* 335.2 (MH⁺).

4.1.2.9. Ethyl 2-hydroxy-4-(2-octoxyphenyl)-4-oxo-2-butenoate (**19**). Brown solid (93%); mp 64 °C. ¹H NMR (DMSO) δ 7.82 (d, J = 7.8 Hz, 1H), 7.60 (t, J = 7.9 Hz, 1H), 7.34 (s, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 4.28 (q, J = 7.0 Hz, 2H), 4.11 (t, J = 6.2 Hz, 2H), 1.79 (m, 2H), 1.50–1.41 (m, 2H), 1.31–1.22 (m, 11H), 0.83 (m, 3H). LC–MS (APCI⁺) m/z 349.2 (MH⁺).

4.1.2.10. Ethyl 2-hydroxy-4-oxo-4-(3-pentoxyphenyl)-2-butenoate (20). Yellow solid (31%); mp 46 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 7.63 (s, 1H), 7.46 (m, 2H), 7.25 (d, *J* = 7.9 Hz, 1H), 7.11 (s, 1H), 4.19 (q, *J* = 7.4 Hz, 2H), 4.04 (t, *J* = 6.1 Hz, 2H), 1.38 (m, 4H), 1.05 (m, 5H), 0.89 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 307.3 (MH⁺).

4.1.2.11. Ethyl 2-hydroxy-4-oxo-4-(4-pentoxyphenyl)-2-butenoate (21). Brown solid (23%); mp 38 °C. ¹H NMR (DMSO) δ 10.68 (s, 1H), 7.84 (d, *J* = 7.1 Hz, 2H), 7.81 (d, *J* = 7.0 Hz, 2H), 7.61 (s, 1H), 4.28 (q, *J* = 7.3 Hz, 2H), 4.13 (t, *J* = 6.4 Hz, 2H), 1.45–1.35 (m, 7H), 1.12 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H). LC–MS (APCl⁺) *m/z* 307.3 (MH⁺).

4.1.3. General procedure for the preparation of ethyl 5arylisoxazole-3-carboxylates (22–32)

A solution of compound **11–21** (1 equiv) and hydroxylamine hydrochloride (1 equiv) in absolute EtOH (50 mL) was stirred and refluxed for 2 h. After reaction, the solvent was removed and the residue was purified by flash chromatography (cyclohexane/EtOAc 8:2, v/v) followed by crystallization in absolute EtOH.

4.1.3.1. Ethyl 5-phenylisoxazole-3-carboxylate (22). White solid (82%); mp 60 °C. ¹H NMR (DMSO) δ 7.52–7.48 (m, 5H), 7.13 (s, 1H), 4.29 (q, *J* = 7.3 Hz, 2H), 1.30 (t, *J* = 7.2 Hz, 3H). LC–MS (APCI⁺) *m/z* 218.1 (MH⁺).

4.1.3.2. Ethyl **5-(2-methoxyphenyl)isoxazole-3-carboxylate (23).** White solid (74%); mp 63 °C. ¹H NMR (DMSO) δ 7.90 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.55 (td, *J* = 8.7, 1.4 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.16–7.11 (m, 2H), 4.38 (q, *J* = 7.0 Hz, 2H), 3.97 (s, 3H), 1.34 (t, *J* = 7.3 Hz, 3H). LC–MS (APCl⁺) *m/z* 248.0 (MH⁺).

4.1.3.3. Ethyl 5-(2-ethoxyphenyl)isoxazole-3-carboxylate (24). White solid (29%); mp 65 °C. ¹H NMR (DMSO) δ 7.92 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 8.5 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.16–7.11 (m, 2H), 4.43 (q, J = 7.2 Hz, 2H), 4.36 (q, J = 6.7 Hz, 2H), 1.44 (t, J = 6.4 Hz, 3H), 1.34 (t, J = 7.3 Hz, 3H). LC–MS (APCI⁺) m/zC 262.0 (MH⁺).

4.1.3.4. Ethyl **5-(2-propoxyphenyl)isoxazole-3-carboxylate (25).** White solid (65%); mp 66 °C. ¹H NMR (DMSO) δ 7.92 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.52 (td, *J* = 8.4, 1.4 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.14–7.09 (m, 2H), 4.38 (q, *J* = 7.0 Hz, 2H), 4.14 (t, *J* = 6.4 Hz, 2H), 1.83 (m, 2H), 1.33 (t, *J* = 7.3 Hz, 3H), 1.04 (t, *J* = 7.6 Hz, 3H). LC–MS (APCI⁺) *m/z* 276.1 (MH⁺).

4.1.3.5. Ethyl 5-(2-butoxyphenyl)isoxazole-3-carboxylate (**26**). White solid (54%); mp 69 °C. ¹H NMR (DMSO) δ 7.91 (d, *J* = 6.7 Hz, 1H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.13–7.11 (m, 2H), 4.38 (q, *J* = 7.0 Hz, 2H), 4.17 (t, *J* = 6.1 Hz, 2H), 1.81 (m, 2H), 1.49 (m, 2H), 1.33 (t, *J* = 7.3 Hz, 3H), 0.96 (t, *J* = 7.6 Hz, 3H). LC–MS (APCI⁺) *m/z* 290.2 (MH⁺).

4.1.3.6. Ethyl **5-(2-pentyloxyphenyl)isoxazole-3-carboxylate** (27). White solid (38%); mp 59 °C. ¹H NMR (DMSO) δ 7.91 (d, *J* = 6.7 Hz, 1H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 8.5 Hz, 1H), 7.13–7.11 (m, 2H), 4.38 (q, *J* = 7.3 Hz, 2H), 4.16 (t, *J* = 6.4 Hz, 2H),

A. Tourteau et al./Bioorg. Med. Chem. xxx (2013) xxx-xxx

1.83 (m, 2H), 1.49–1.31 (m, 7H), 0.92 (t, J = 7.0 Hz, 3H). LC–MS (APCI⁺) m/z 304.1 (MH⁺).

4.1.3.7. Ethyl 5-(2-hexyloxyphenyl)isoxazole-3-carboxylate (28). White solid (53%); mp 42 °C. ¹H NMR (DMSO) δ 7.91 (d, *J* = 6.4 Hz, 1H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.13–7.11 (m, 2H), 4.38 (q, *J* = 7.0 Hz, 2H), 4.17 (t, *J* = 6.1 Hz, 2H), 1.82 (m, 2H), 1.52–1.46 (m, 9H), 0.85 (t, *J* = 6.7 Hz, 3H). LC–MS (APCI⁺) *m/z* 318.3 (MH⁺).

4.1.3.8. Ethyl 5-(2-heptyloxyphenyl)isoxazole-3-carboxylate (29). White solid (34%); mp 35 °C. ¹H NMR (DMSO) δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.14–7.09 (m, 2H), 4.39 (q, *J* = 7.0 Hz, 2H), 4.17 (t, *J* = 6.2 Hz, 2H), 1.86–1.77 (m, 2H), 1.52–1.43 (m, 2H), 1.38–1.24 (m, 9H), 0.85 (t, *J* = 6.6 Hz, 3H). LC–MS (APCI⁺) *m/z* 332.2 (MH⁺).

4.1.3.9. Ethyl 5-(2-octyloxyphenyl)isoxazole-3-carboxylate (30). Beige solid (66%); mp 52 °C. ¹H NMR (DMSO) δ 7.88 (d, *J* = 7.7 Hz, 1H), 7.49 (m, 1H), 7.21 (m, 1H), 7.14–7.07 (m, 2H), 4.42–4.33 (m, 2H), 4.12 (m, 2H), 1.78 (m, 2H), 1.44 (m, 2H), 1.36–1.30 (m, 5H), 1.28–1.21 (m, 6H), 0.82 (m, 3H). LC–MS (APCI⁺) *m/z* 346.2 (MH⁺).

4.1.3.10. Ethyl 5-(3-pentyloxyphenyl)isoxazole-3-carboxylate (31). White solid (27%); mp 61 °C. ¹H NMR (DMSO) δ 7.58 (d, *J* = 6.6 Hz, 1H), 7.54–7.48 (m, 3H), 7.08 (d, *J* = 8.5 Hz, 1H), 4.39 (q, *J* = 7.2 Hz, 2H), 4.05 (t, *J* = 6.4 Hz, 2H), 1.72 (m, 2H), 1.47–1.35 (m, 7H), 0.89 (t, *J* = 7.0 Hz, 3H). LC–MS (APCl⁺)*m*/*z* 304.2 (MH⁺).

4.1.3.11. Ethyl 5-(4-pentyloxyphenyl)isoxazole-3-carboxylate (32). White solid (60%); mp 43 °C. ¹H NMR (DMSO) δ 7.73 (d, *J* = 8.9 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.79 (s, 1H), 4.47 (q, *J* = 7.3 Hz, 2H), 4.02 (t, *J* = 6.4 Hz, 2H), 1.82 (m, 2H), 1.52–1.45 (m, 7H), 0.95 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m*/*z* 304.2 (MH⁺).

4.1.4. General procedure for the preparation of 5-arylisoxazole-3-carboxylic acids (33–43)

To a stirred solution of ester **22–32** (1 equiv) in 95% EtOH (50 mL), was added sodium hydroxide in pellets (10 equiv). The mixture was stirred at room temperature for 24 h. EtOH was removed under reduced pressure and the residue was acidified (1 N HCl, pH 2) and extracted with EtOAc (2×20 mL). The organic layers were washed with water (20 mL) and brine (20 mL), dried over MgSO₄ and evaporated under reduced pressure to afford pure carboxylic acids **33–43**.

4.1.4.1. 5-Phenylisoxazole-3-carboxylic acid (33). White solid (79%); 164 °C. ¹H NMR (DMSO) δ 12.79 (s, 1H), 7.96–7.93 (m, 2H), 7.59–7.53 (m, 3H), 7.41 (s, 1H). LC–MS (APCI⁺) *m*/*z* 190.0 (MH⁺).

4.1.4.2. 5-(2-Methoxyphenyl)isoxazole-3-carboxylic acid **(34).** White solid (68%); mp 197 °C. ¹H NMR (DMSO) δ 12.79 (s, 1H), 7.91 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.55 (td, *J* = 8.5, 1.5 Hz, 1H), 7.23 (d, *J* = 8.2 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.06 (s, 1H), 3.96 (s, 3H). LC–MS (APCI⁺)m/z 220.0 (MH⁺).

4.1.4.3. 5-(2-Ethoxyphenyl)isoxazole-3-carboxylic acid **(35).** White solid (45%); mp 192 °C. ¹H NMR (DMSO) δ 12.79 (s, 1H), 7.93 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.54 (td, *J* = 8.4, 1.5 Hz, 1H), 7.25 (d, *J* = 8.5 Hz, 1H), 7.15–7.07 (m, 2H), 4.26 (q, *J* = 6.7 Hz, 2H), 1.46 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 234.1 (MH⁺).

4.1.4.4. 5-(2-Propoxyphenyl)isoxazole-3-carboxylic acid **(36).** White solid (69%); mp 172 °C. ¹H NMR (DMSO) δ 12.78

(s, 1H), 7.91 (dd, J = 7.6, 1.1 Hz, 1H), 7.51 (td, J = 8.5, 1.5 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.14–7.07 (m, 2H), 4.13 (t, J = 6.4 Hz, 2H), 1.80 (m, 2H), 1.04 (t, J = 7.3 Hz, 3H). LC–MS (APCI⁺) m/z 248.2 (MH⁺).

4.1.4.5. 5-(2-Butoxyphenyl)isoxazole-3-carboxylic acid (37). White solid (71%); mp 149 °C. ¹H NMR (DMSO) δ 12.79 (s, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 7.0 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.12 (t, *J* = 7.7 Hz, 1H), 7.08 (s, 1H), 4.17 (t, *J* = 6.3 Hz, 2H), 1.82 (m, 2H), 1.48 (m, 2H), 0.96 (t, *J* = 7.1 Hz, 3H). LC–MS (APCI⁺)m/z 262.2 (MH⁺).

4.1.4.6. 5-(2-Pentyloxyphenyl)isoxazole-3-carboxylic acid **(38).** White solid (55%); mp 129 °C. ¹H NMR (DMSO) δ 12.78 (s, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.02 (s, 1H), 4.16 (t, *J* = 6.5 Hz, 2H), 1.81 (m, 2H), 1.48–1.33 (m, 4H), 0.90 (t, *J* = 7.3 Hz, 3H). LC–MS (APCI⁺) *m/z* 276.3 (MH⁺).

4.1.4.7. 5-(2-Hexyloxyphenyl)isoxazole-3-carboxylic acid **(39).** White solid (20%); mp 129 °C. ¹H NMR (DMSO) δ 12.78 (s, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 8.2 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.05 (s, 1H), 4.15 (t, *J* = 6.4 Hz, 2H), 1.82 (m, 2H), 1.46 (m, 2H), 1.31–1.21 (m, 4H), 0.86 (t, *J* = 6.7 Hz, 3H). LC–MS (APCI⁺) *m/z* 290.3 (MH⁺).

4.1.4.8. 5-(2-Heptyloxyphenyl)isoxazole-3-carboxylic acid (40). White solid (55%); mp 113 °C. ¹H NMR (DMSO) δ 7.89 (d, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 7.05 (s, 1H), 4.14 (t, *J* = 6.3 Hz, 2H), 1.80 (m, 2H), 1.49–1.39 (m, 2H), 1.38–1.21 (m, 6H), 0.84 (t, *J* = 6.6 Hz, 3H). LC–MS (APCI⁺) *m/z* 304.2 (MH⁺).

4.1.4.9. 5-(2-Octyloxyphenyl)isoxazole-3-carboxylic acid **(41).** Beige solid (55%); mp 95 °C. ¹H NMR (DMSO) δ 14.07 (s, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.06 (s, 1H), 4.15 (t, *J* = 6.3 Hz, 2H), 1.81 (m, 2H), 1.50–1.39 (m, 2H), 1.34–1.22 (m, 8H), 0.83 (m, 3H). LC–MS (APCI⁺) *m/z* 318.2 (MH⁺).

4.1.4.10. 5-(3-Pentyloxyphenyl)isoxazole-3-carboxylic acid **(42).** White solid (60%); mp 107 °C. ¹H NMR (DMSO) δ 12.78 (s, 1H), 7.45 (m, 4H), 7.07 (d, *J* = 8.2 Hz, 1H), 4.04 (t, *J* = 6.4 Hz, 2H), 1.72 (m, 2H), 1.39–1.34 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺)m/z 276.2 (MH⁺).

4.1.4.11. 5-(4-Pentyloxyphenyl)isoxazole-3-carboxylic acid **(43).** White solid (74%); mp 179 °C. ¹H NMR (DMSO) δ 12.79 (s, 1H), 7.85 (d, *J* = 8.7 Hz, 2H), 7.24 (s, 1H), 7.07 (d, *J* = 8.7 Hz, 2H), 4.03 (t, *J* = 6.4 Hz, 2H), 1.72 (m, 2H), 1.43–1.28 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺)*m*/*z* 276.1 (MH⁺).

4.1.5. General procedure for the preparation of 5-arylisoxazole-3-carboxamides (44–70)

To a solution of carboxylic acid **33–43** in dry chloroform (20 mL) were added *N*,*N*-diisopropylethylamine (DIEA) (2 equiv) and 1-hydroxybenzotriazole (HOBt) (0.5 equiv), 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) (1.5 equiv). The resulting mixture was stirred at room temperature for 45 min. The appropriate amine (1.2 equiv) was then added, and the solution was stirred at room temperature for additional 24 h. The solution was filtered and washed with 0.5 N aqueous NaOH (20 mL), with 1 N aqueous HCl (20 mL), and water (20 mL). The organic layer was dried over MgSO₄ and evaporated under reduce pressure to give a brown oil. The crude material was purified by

TLC using the appropriate eluent (cyclohexane/EtOAc 7:3, v/v) and recrystallized in heptane to afford the desired compounds.

4.1.5.1. *N*-(1-Adamantyl)-5-phenylisoxazole-3-carboxamide (44). White solid (52%); 157 °C. ¹H NMR (DMSO) δ 7.92– 7.89 (m, 3H), 7.55–7.53 (m, 3H), 7.30 (s, 1H), 2.06 (m, 9H), 1.65 (m, 6H). LC–MS (APCI⁺) *m/z* 323.2 (MH⁺); Anal. Calcd for C₂₀H₂₂N₂O₂: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.28; H, 6.65; N, 8.52.

4.1.5.2. *N*-(2-Adamantyl)-5-phenylisoxazole-3-carboxamide (45). White solid (51%); mp 158 °C. ¹H NMR (DMSO) δ 8.36 (d, *J* = 6.4 Hz, 1H), 8.27 (d, *J* = 7.6 Hz, 1H), 7.95 (t, *J* = 8.2 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.29–7.26 (m, 2H), 4.09 (d, *J* = 5.3 Hz, 1H), 2.63 (m, 9H), 1.84 (m, 5H). LC–MS (APCI⁺) *m/z* 323.1 (MH⁺); Anal. Calcd for C₂₀H₂₂N₂O₂: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.32; H, 6.72; N, 8.56.

4.1.5.3. *N*-(1-Adamantylmethyl)-5-phenylisoxazole-3-carboxamide (46). White solid (34%); mp 166 °C. ¹H NMR (DMSO) δ 8.60 (t, *J* = 6.1 Hz, 1H), 7.93–7.91 (m, 2H), 7.56–7.53 (m, 3H), 7.35 (s, 1H), 2.97 (d, *J* = 6.4 Hz, 2H), 1.92 (m, 3H), 1.68–1.49 (m, 12H). LC–MS (APCI⁺) *m/z* 337.3 (MH⁺); Anal. Calcd for C₂₁H₂₄N₂O₂: C, 74.97; H, 7.19; N, 8.33. Found: C, 74.84; H, 7.04; N, 8.19.

4.1.5.4. *N*-(**1**-Adamantyl)-5-(2-methoxyphenyl)isoxazole-3-carboxamide (47). White solid (13%); mp 102 °C. ¹H NMR (DMSO) δ 7.88–7.86 (m, 2H), 7.53 (t, *J* = 7.0 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.04 (s, 1H), 3.96 (s, 3H), 2.06 (m, 9H), 1.65 (m, 6H). LC–MS (APCl⁺) *m*/*z* 353.2 (MH⁺); Anal. Calcd for C₂₁H₂₄N₂O₃: C, 71.57; H, 6.86; N, 7.95. Found: C, 71.52; H, 6.78; N, 7.92.

4.1.5.5. *N*-(**1**-Adamantyl)-5-(2-ethoxyphenyl)isoxazole-3-carboxamide (48). White solid (24%); mp 76 °C. ¹H NMR (DMSO) δ 7.96 (s, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 8.4 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.06 (s, 1H), 4.28 (q, *J* = 6.5 Hz, 2H), 2.06 (m, 9H), 1.65 (m, 6H), 0.94 (t, *J* = 6.7 Hz, 3H). LC–MS (APCI⁺) *m*/*z* 367.6 (MH⁺); Anal. Calcd for C₂₂H₂₆N₂O₃: C, 72.11; H, 7.15; N, 7.64. Found: C, 72.06; H, 7.12; N, 7.59.

4.1.5.6. *N*-(**1**-Adamantyl)-5-(2-propoxyphenyl)isoxazole-3-carboxamide (49). White solid (29%); mp 62 °C. ¹H NMR (DMSO) δ 7.88–7.86 (m, 2H), 7.50 (t, *J* = 8.5 Hz, 1H), 7.22 (d, *J* = 8.5 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.00 (s, 1H), 4.13 (t, *J* = 6.4 Hz, 2H), 2.06 (m, 9H), 1.81 (m, 2H), 1.65 (m, 6H), 1.04 (t, *J* = 7.3 Hz, 3H). LC–MS (APCl⁺) *m/z* 381.1 (MH⁺); Anal. Calcd for C₂₃H₂₈N₂O₃: C, 72.61; H, 7.42; N, 7.36. Found: C, 72.42; H, 7.25; N, 7.17.

4.1.5.7. *N*-(1-Adamantyl)-5-(2-butoxyphenyl)isoxazole-3-carboxamide (50). White solid (36%); mp 82 °C. ¹H NMR (DMSO) δ 7.88–7.86 (m, 2H), 7.50 (t, *J* = 8.5 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.98 (s, 1H), 4.17 (t, *J* = 6.4 Hz, 2H), 2.06 (m, 9H), 1.81 (m, 2H), 1.65 (m, 6H), 1.48 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). LC–MS (APCI⁺) *m/z* 395.4 (MH⁺); Anal. Calcd for C₂₄H₃₀N₂O₃: C, 73.07; H, 7.66; N, 7.10. Found: C, 72.92; H, 7.58; N, 6.98.

4.1.5.8. *N*-(1-Adamantyl)-5-(2-pentyloxyphenyl)isoxazole-3carboxamide (51). White solid (65%); mp 65 °C. ¹H NMR (DMSO) δ 7.88–7.86 (m, 2H), 7.49 (t, *J* = 8.5 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.99 (s, 1H), 4.15 (t, *J* = 7.0 Hz, 2H), 2.05 (m, 9H), 1.82 (m, 2H), 1.77 (m, 6H), 1.68– 1.21 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 409.4 (MH⁺); Anal. Calcd for C₂₅H₃₂N₂O₃: C, 73.50; H, 7.90; N, 6.86. Found: C, 73.39; H, 7.66; N, 6.57. **4.1.5.9.** *N*-(**1**-Adamantyl)-5-(2-hexyloxyphenyl)isoxazole-3-carboxamide (52). Uncolorless oil (38%). ¹H NMR (DMSO) δ 7.88–7.86 (m, 2H), 7.50 (t, *J* = 8.5 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.99 (s, 1H), 4.15 (t, *J* = 5.2 Hz, 2H), 2.12 (m, 9H), 1.83 (m, 2H), 1.65 (m, 6H), 1.44 (m, 2H), 1.31 (m, 4H), 0.87 (t, *J* = 6.7 Hz, 3H). LC–MS (APCl⁺) *m/z* 423.5 (MH⁺); Anal. Calcd for C₂₆H₃₄N₂O₃: C, 73.90; H, 8.11; N, 6.63. Found: C, 73.77; H, 8.04; N, 6.54.

4.1.5.10. *N*-(**1**-Adamantyl)-5-(2-heptyloxyphenyl)isoxazole-3carboxamide (**53**). White solid (26%); mp 88 °C. ¹H NMR (DMSO) δ 7.88 (s, 1H), 7.87 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.99 (s, 1H), 4.15 (t, *J* = 6.4 Hz, 2H), 2.05 (m, 9H), 1.82 (m, 2H), 1.65 (s, 6H), 1.48–1.27 (m, 8H), 0.86 (t, *J* = 6.8 Hz, 3H). LC–MS (APCI⁺) *m/z* 437.3 (MH⁺); Anal. Calcd for C₂₇H₃₆N₂O₃: C, 74.28; H, 8.31; N, 6.42. Found: C, 74.17; H, 8.29; N, 6.31.

4.1.5.11. *N*-(**1**-Adamantyl)-5-(2-octyloxyphenyl)isoxazole-3-carboxamide (54). White solid (14%); mp 88 °C. ¹H NMR (DMSO) δ 7.87 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.85 (s, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.99 (s, 1H), 4.15 (t, *J* = 6.4 Hz, 2H), 2.05 (m, 9H), 1.82 (m, 2H), 1.65 (s, 6H), 1.48–1.25 (m, 10H), 0.85 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 451.3 (MH⁺); Anal. Calcd for C₂₈H₃₈N₂O₃: C, 74.63; H, 8.50; N, 6.22. Found: C, 74.47; H, 8.19; N, 6.08.

4.1.5.12. *N*-(**1**-Adamantyl)-5-(3-pentyloxyphenyl)isoxazole-3carboxamide (55). White solid (59%); mp 109 °C. ¹H NMR (DMSO) δ 7.87 (s, 1H), 7.44 (m, 3H), 7.34 (s, 1H), 7.08 (d, *J* = 8.2 Hz, 1H), 4.04 (t, *J* = 6.4 Hz, 2H), 2.05 (m, 9H), 1.73 (m, 2H), 1.65 (m, 6H), 1.42–1.32 (m, 4H), 0.90 (t, *J* = 6.7 Hz, 3H). LC–MS (APCI⁺) *m*/*z* 409.4 (MH⁺); Anal. Calcd for C₂₅H₃₂N₂O₃: C, 73.50; H, 7.90; N, 6.86. Found: C, 73.42; H, 7.80; N, 6.71.

4.1.5.13. *N*-(**1-Adamantyl**)-**5**-(**4**-pentyloxyphenyl)isoxazole-3carboxamide (**56**). White solid (47%); mp 156 °C. ¹H NMR (DMSO) δ 7.83 (s, 1H), 7.80 (d, *J* = 8.6 Hz, 2H), 7.12 (s, 1H), 7.07 (d, *J* = 9.0 Hz, 2H), 4.03 (t, *J* = 6.4 Hz, 2H), 2.05 (m, 9H), 1.73 (m, 2H), 1.65 (m, 6H), 1.39–1.33 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H). LC– MS (APCI⁺) *m/z* 409.1 (MH⁺); Anal. Calcd for C₂₅H₃₂N₂O₃: C, 73.50; H, 7.90; N, 6.86. Found: C, 73.34; H, 7.71; N, 6.69.

4.1.5.14. *N*-(2-Adamantyl)-5-(2-pentyloxyphenyl)isoxazole-3carboxamide (57). White solid (32%); mp 68 °C. ¹H NMR (CDCl₃) δ 7.97 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.20 (s, 1H), 7.19 (s, 1H), 7.08–6.99 (m, 2H), 4.26 (m, 1H), 4.12 (t, *J* = 6.7 Hz, 2H), 2.07 (s, 2H), 1.95–1.90 (m, 10H), 1.78 (s, 2H), 1.72 (s, 1H), 1.68 (s, 1H), 1.52–1.38 (m, 4H), 0.95 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m*/*z* 409.2 (MH⁺); Anal. Calcd for C₂₅H₃₂N₂O₃: C, 73.50; H, 7.90; N, 6.86. Found: C, 73.27; H, 7.72; N, 6.74.

4.1.5.15. *N*-(**3**-Noradamantyl)-**5**-(**2**-pentyloxyphenyl)isoxazole-**3-carboxamide (58).** White solid (56%); mp 101 °C. ¹H NMR (CDCl₃) δ 7.97 (d, *J* = 7.9 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.19 (s, 1H), 7.04 (m, 3H), 4.11 (t, *J* = 7.0 Hz, 2H), 2.60 (t, *J* = 6.8 Hz, 1H), 2.34 (s, 2H), 2.22 (m, 2H), 2.14–2.01 (m, 4H), 1.93 (quint, *J* = 7.0 Hz, 2H), 1.70–1.59 (m, 4H), 1.49–1.35 (m, 4H), 0.95 (t, *J* = 7.0 Hz, 3H). HRMS (FTMS + p ESI Full ms) *m*/*z* 395.2316 (MH⁺); Anal. Calcd for C₂₄H₃₀N₂O₃: C, 73.07; H, 7.66; N, 7.10. Found: C, 72.93; H, 7.48; N, 6.87.

4.1.5.16. *N*-Cyclopropyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (59). White solid (18%); mp 95 °C. ¹H NMR (DMSO) δ 8.86 (d, *J* = 4.3 Hz, 1H), 7.88 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.04

(s, 1H), 4.16 (t, *J* = 6.4 Hz, 2H), 2.86 (m, 1H), 1.83 (m, 2H), 1.50–1.31 (m, 4H), 0.91 (t, *J* = 7.0 Hz, 3H), 0.73–0.59 (m, 4H). LC–MS (APCI⁺) m/z 315.1 (MH⁺); Anal. Calcd for C₁₈H₂₂N₂O₃: C, 68.77; H, 7.05; N, 8.91. Found: C, 68.59; H, 7.14; N, 9.12.

4.1.5.17. N-Cyclobutyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (60). White solid (77%); mp 131 °C. ¹H NMR (CDCl₃) δ 7.97 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.19 (s, 1H), 7.08–6.96 (m, 3H), 4.59 (quint, *J* = 8.0 Hz, 1H), 4.11 (t, *J* = 6.9 Hz, 2H), 2.43 (m, 2H), 2.07–1.75 (m, 6H), 1.50–1.40 (m, 4H), 0.95 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 329.2 (MH⁺); Anal. Calcd for C₁₉H₂₄N₂O₃: C, 69.49; H, 7.37; N, 8.53. Found: C, 69.62; H, 7.49; N, 8.39.

4.1.5.18. *N*-Cyclopentyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (61). White solid (41%); mp 101 °C. ¹H NMR (DMSO) δ 8.78 (d, *J* = 7.6 Hz, 1H), 7.95 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.57 (t, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 8.5 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.11 (s, 1H), 4.32-4.26 (m, 1H), 4.23 (t, *J* = 6.4 Hz, 2H), 2.00-1.86 (m, 4H), 1.79-1.71 (m, 2H), 1.69-1.57 (m, 4H), 1.55-1.41 (m, 4H), 0.98 (t, *J* = 7.0 Hz, 3H). LC-MS (APCl⁺) *m/z* 343.2 (MH⁺); Anal. Calcd for C₂₀H₂₆N₂O₃: C, 70.15; H, 7.65; N, 8.18. Found: C, 70.23; H, 7.36; N, 8.47.

4.1.5.19. N-Cyclohexyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (62). White solid (21%); mp 69 °C. ¹H NMR (DMSO) δ 8.61 (d, *J* = 5.7 Hz, 1H), 7.90 (d, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 8.4 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 7.04 (s, 1H), 4.16 (t, *J* = 6.4 Hz, 2H), 2.72 (m, 1H), 2.07 (m, 2H), 1.80–1.64 (m, 5H), 1.61–1.55 (m, 4H), 1.34–1.19 (m, 5H), 0.90 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m*/*z* 357.3 (MH⁺); Anal. Calcd for C₂₁H₂₈N₂O₃: C, 70.76; H, 7.92; N, 7.86. Found: C, 70.91; H, 8.73; N, 7.64.

4.1.5.20. *N*-(**Piperidin-1-yl**)-**5**-(**2-pentyloxyphenyl**)**isoxazole-3carboxamide (63).** White solid (27%); mp 74 °C. ¹H NMR (DMSO) δ 9.78 (s, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.03 (s, 1H), 4.16 (t, *J* = 6.4 Hz, 2H), 2.80 (m, 4H), 1.87 (m, 2H), 1.58–1.56 (m, 4H), 1.40–1.37 (m, 6H), 0.90 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m*/*z* 358.2 (MH⁺); Anal. Calcd for C₂₀H₂₇N₂O₃: C, 67.20; H, 7.61; N, 11.76. Found: C, 67.03; H, 7.57; N, 11.87.

4.1.5.21. *N*-Cycloheptyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (64). White solid (32%); mp 109 °C. ¹H NMR (CDCl₃) δ 7.96 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.19 (s, 1H), 7.04 (m, 2H), 6.80 (s, 1H), 4.17 (s, 1H), 4.11 (t, *J* = 6.9 Hz, 2H), 2.04 (m, 2H), 1.92 (quint, *J* = 7.0 Hz, 2H), 1.71–1.58 (m, 8H), 1.55–1.37 (m, 6H), 0.95 (t, *J* = 7.0 Hz, 3H). HRMS (FTMS + p ESI Full ms) *m*/*z* 371.2322 (MH⁺); Anal. Calcd for C₂₂H₃₀N₂O₃: C, 71.32; H, 8.16; N, 7.56. Found: C, 71.45; H, 8.43; N, 7.29.

4.1.5.22. N-Cyclooctyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (65). White solid (43%); mp 104 °C. ¹H NMR (CDCl₃) δ 7.97 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.20 (s, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 8.5 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 1H), 4.25-4.17 (m, 1H), 4.12 (t, *J* = 6.7 Hz, 2H), 2.00-1.88 (m, 4H), 1.75-1.59 (m, 12H), 1.52-1.38 (m, 4H), 0.96 (t, *J* = 7.0 Hz, 3H). LC-MS (APCI⁺) *m*/*z* 385.6 (MH⁺); Anal. Calcd for C₂₃H₃₂N₂O₃: C, 71.84; H, 8.39; N, 7.29. Found: C, 71.96; H, 8.64; N, 7.57.

4.1.5.23. *N*-Phenyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (66). White solid (19%); mp 95 °C. ¹H NMR (CDCl₃) δ 8.60 (s, 1H), 8.00 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.42 (m, 3H), 7.31 (s, 1H), 7.22–7.02 (m, 3H), 4.15 (t, *J* = 6.7 Hz, 2H), 1.96 (quint, *J* = 7.2 Hz, 2H), 1.53–1.40 (m, 4H), 0.97 (t, *J* = 7.0 Hz, 3H). LC–MS (APCI⁺) *m/z* 351.2 (MH⁺); Anal. Calcd for $C_{21}H_{22}N_2O_3;$ C, 71.98; H, 6.33; N, 7.99. Found: C, 72.16; H, 6.51; N, 7.71.

4.1.5.24. *N*-Benzyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (67). White solid (73%); mp 118 °C. ¹H NMR (CDCl₃) δ 7.96 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.44–7.30 (m, 6H), 7.24 (s, 1H), 7.17 (s, 1H), 7.04 (m, 2H), 4.66 (d, *J* = 6.0 Hz, 2H), 4.12 (t, *J* = 6.9 Hz, 2H), 1.93 (quint, *J* = 7.0 Hz, 2H), 1.52–1.38 (m, 4H), 0.96 (t, *J* = 7.0 Hz, 3H). LC–MS (APCl⁺) *m*/*z* 365.2 (MH⁺); Anal. Calcd for C₂₂H₂₄N₂O₃: C, 72.51; H, 6.64; N, 7.69. Found: C, 72.73; H, 6.81; N, 7.42.

4.1.5.25. *N*-(**5**-Methyl-1,3,4-thiadiazol-2-yl)-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (68). White solid (23%); mp 73 °C. ¹H NMR (CDCl₃) δ 10.20 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.9 Hz, 1H), 7.33 (s, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 4.15 (t, *J* = 6.7 Hz, 2H), 2.77 (s, 3H), 1.95 (quint, *J* = 7.1 Hz, 2H), 1.54–1.38 (m, 4H), 0.97 (t, *J* = 7.0 Hz, 3H). LC–MS (APCl⁺) *m*/*z* 373.1 (MH⁺); Anal. Calcd for C₁₈H₂₀N₄O₃: C, 58.05; H, 5.41; N, 15.04. Found: C, 58.21; H, 5.31; N, 15.17.

4.1.5.26. *N*-Naphtyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (69). Purple solid (25%); mp 89.6 °C. ¹H NMR (DMSO) δ 10.88 (s, 1H), 8.02–7.95 (m, 3H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 7.1 Hz, 1H), 7.60–7.49 (m, 4H), 7.25–7.19 (m, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 4.16 (t, *J* = 6.4 Hz, 2H), 1.83 (quint, *J* = 7.1 Hz, 2H), 1.50–1.29 (m, 4H), 0.98 (t, *J* = 7.1 Hz, 3H). LC–MS (APCI⁺) *m*/*z* 401.1 (MH⁺); Anal. Calcd for C₂₅H₂₄N₂O₃: C, 74.98; H, 6.04; N, 6.99. Found: C, 74.67; H, 5.91; N, 7.03.

4.1.5.27. *N*,*N*-Diisobutyl-5-(2-pentyloxyphenyl)isoxazole-3-carboxamide (70). Yellow oil (25%). ¹H NMR (CDCl₃) δ 7.99 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 7.01–6.98 (m, 2H), 4.10 (t, *J* = 7.0 Hz, 2H), 3.50 (d, *J* = 7.6 Hz, 2H), 3.40 (d, *J* = 7.6 Hz, 2H), 2.16 (m, *J* = 6.8 Hz, 1H), 1.90 (m, 3H), 1.51–1.35 (m, 4H), 0.99 (d, *J* = 6.7 Hz, 6H), 0.93 (t, *J* = 7.0 Hz, 3H), 0.85 (d, *J* = 6.7 Hz, 6H). LC–MS (APCI⁺) *m*/*z* 387.2 (MH⁺); Anal. Calcd for C₂₃H₃₄N₂O₃: C, 71.47; H, 8.87; N, 7.25. Found: C, 71.79; H, 9.02; N, 7.14.

4.2. Competition binding assay

Stock solutions of the compounds were prepared in DMSO and further diluted with the binding buffer to the desired concentration. Final DMSO concentrations in the assay were less than 0.1%. The competitive binding experiments were performed as described in an earlier publication. Briefly, [³H]-CP-55,940 (0.5 nM) as a radioligand for the human CB₁ and CB₂ cannabinoid receptors was added to 6 μ g of membranes resuspended in 550 μ L (final volume) binding buffer (20 mM Hepes, 5 mM MgCl₂, 1 mM EDTA, 0.3% bovine serum albumine, pH 7.4). After 1 h at 30 °C, the incubation was stopped and the solutions were rapidly filtered over Unifilter-96 GF/C glass fiber pre-soaked in binding buffer on a Filtermate Unifilter 96-Harvester (Perkin-Elmer), and washed 20 times with of ice-cold binding buffer without serum albumin. The radioactivity on the filters was measured using TopCount NXT™ Microplate Scintillation Counter (Perkin–Elmer) using 60 µL of MicroScint™ 40 (Perkin-Elmer) after 30 min resting. Assays were performed at least in duplicate. The nonspecific binding was determined in the presence of 5 µM (R)-(+)-WIN 55,212-2 (Sigma).

4.3. [³⁵S]-GTPγS assays

The binding experiments were performed at 30 °C in tubes containing 10 μ g of protein in 0.5 mL (final volume) binding buffer (20 mM Hepes, 10 mM MgCl₂, 100 mM NaCl, 0.1% bovine serum albumin, pH 7.4) supplemented with 30 μ M GDP. The assay was initiated by the addition of [³⁵S]-GTP γ S (0.1 nM, final concentra-

tion). After 1 h at 30 °C, the incubation was stopped and the solutions were rapidly filtered over Unifilter-96 GF/B glass fiber and washed 20 times with ice-cold binding buffer. The radioactivity on the filters was counted as above. Assays were performed in duplicate. Nonspecific binding was measured in the presence of 100 μ M Gpp(NH)p. Results were expressed as EC₅₀ (nM) and E_{max} (%). Basal constitutive activity of the receptor was set at a value of 100%; reported E_{max} values above 100% indicated that the compound behaves as an agonist (either partial or full), while values lower than 100% indicated inverse agonist properties. K_i and EC₅₀ values were determined by nonlinear regression analysis performed using the GraphPad prism 5.0 program (GraphPad Software, San Diego).

4.4. Cell culture and Cell proliferation assay

Colon cancer cells (HT29) were grown at 37 °C in a humidified atmosphere containing 5% CO₂ in DMEM + Glutamax-I (Gibco) supplemented with 10% fetal bovine serum, penicillin (100 IU/mL), and streptomycin (100 μ g/mL). In the cell proliferation assay, cells were plated in triplicate on 96-well plates (3000 cells/well) and incubated for 24 h. The cells were then incubated in culture medium that contained a 10 μ M concentration of tested compounds, each dissolved in less than 0.1% DMSO. After 72 h, cell growth was estimated by the colorimetric MTS test.

4.5. Animals

Seven weeks old C57BL6 male mice were purchased from JAN-VIER Laboratory (Le Genest St. Isle, France). Animals were maintained in specific pathogen free conditions. They had access to standard tap water and chow diet ad libitum. All animal experiments were approved by local animal care program and were in accordance with European convention on research animal protection.

4.6. Induction and scoring of acute colitis

Acute colitis was induced with 2.5% (w/v) DSS (molecular mass 35-50 kDa, TdB consultancy) dissolved in sterile, distilled water ad libitum for 7 days. The DSS solutions were made fresh every 2 days. Body weight was determined regularly. At day 7, disease activity index (DAI) was assessed by adding body weight variation, stool consistency and rectal bleeding scores according to Supplementary Table 1. Rectal bleeding was assessed with ColoScreen III Lab Pack (Elitech). The DAI ranged from 0 (healthy) to 18 (greatest activity of colitis).

4.7. Histopathological analysis

Formalin-preserved colon sections were processed and embedded in paraffin by standard techniques. Longitudinal sections of $4\,\mu\text{M}$ thick were stained with May Grünwald Giemsa (MGG) and examined blindly. Histological lesions were assessed using a score quantifying the intensity of the inflammatory cell infiltrate (score (0-3) and the tissue damage (score (0-3)). Briefly, the presence of occasional inflammatory cells in the lamina propria was scored as 0, increased numbers of inflammatory cells in the lamina propria as 1, confluence of inflammatory cells extending into the submucosa as 2, and transmural extension of the infiltrate as 3. For tissue damage, scores were: 0, no mucosal damage; 1, lymphoepithelial lesions; 2, surface mucosal erosion or focal ulceration; 3, extensive mucosal damage and extension into deeper structures of the bowel wall. The combined histological score ranged from 0 (no changes) to 6 (extensive infiltration and tissue damage).

4.8. RNA extraction and real-time qPCR

Total RNA was extracted from colonic samples with NucleoSpin RNAII kit (Macherey-Nagel). cDNA was prepared with the High Capacity cDNA Archive kit and RT-qPCR was performed with SyBr-Green (Applied Biosystems). Polymerase RNA II (PolR2A) was used as a reference gene and primer sequences are listed in Supplementary Table 2.

4.9. Statistial analyses

Statistical analyses were made by Mann-Whitney U tests except for body weight variation for which Two-way RM ANOVA test was used.

Acknowledgments

The authors thank Ms. Perrine Six and Frederique Klupsch for the LC-MS analyses. This work was financially supported by the 'Conseil Régional Nord Pas De Calais'.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2013.06.010.

References and notes

- 1. De Petrocellis, L.; Cascio, M. G.; Di Marzo, V. Br. J. Pharmacol. 2004, 141, 765.
- Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.; 2. Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R.; Mechoulam, R.; Pertwee, R. G. Pharmacol. Rev. 2002, 54, 161.
- Lambert, D. M.; Fowler, C. J. J. Med. Chem. 2005, 48, 5059. 3
- 4 Di Marzo, V. Nat. Rev. Drug Disc. 2008, 7, 438.
- Vandevoorde, S.; Lambert, D. M. Chem. Biodivers. 2007, 4, 1858. 5.
- Ahn, K.; McKinney, M. K.; Cravatt, B. F. Chem. Rev. 2008, 108, 1687. 6
- 7 Dinh, T. P.; Freund, T. F.; Piomelli, D. Chem. Phys. Lipids 2002, 121, 149.
- 8 Muccioli, G. G. Drug Discovery Today 2010, 15, 474.
- 9 Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young, A. C.; Bonner, T. I. Nature 1990, 346, 561.
- 10. Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature 1993, 365, 61.
- 11. Izzo, A. A.; Camilleri, M. Gut 2008, 57, 1140.
- 12. Ibrahim, M. M.; Deng, H.; Zvonok, A.; Cockayne, D. A.; Kwan, J.; Mata, H. P.; Vanderah, T. W.; Lai, J.; Porreca, F.; Makriyannis, A.; Malan, T. P., Jr. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 10529.
- 13. Berdyshev, E. V. Chem. Phys. Lipids 2000, 108, 169.
- Caffarel, M. M.; Andradas, C.; Mira, E.; Pérez-Gómez, E.; Cerutti, C.; Moreno-14. Bueno, G.; Flores, J. M.; García-Real, I.; Palacios, J.; Mañes, S.; Guzmán, M.; Sánchez, C. Mol. Cancer 2010, 9, 196.
- 15. Marriott, K. S.; Huffman, J. W. Curr. Top. Med. Chem. 2008, 8, 187.
- Wiley, J. L.; Compton, D. R.; Dai, D.; Lainton, J. A.; Phillips, M.; Huffman, J. W.; 16. Martin, B. R. J. Pharmacol. Exp. Ther. 1998, 285, 995.
- 17. Stern, E.; Muccioli, G. G.; Millet, R.; Goossens, J. F.; Farce, A.; Chavatte, P.; Poupaert, J. H.; Lambert, D. M.; Depreux, P.; Henichart, J. P. J. Med. Chem. 2006, 49. 70.
- 18. Cheng, Y.; Albrecht, B. K.; Brown, J.; Buchanan, J. L.; Buckner, W. H.; DiMauro, E. F.; Emkey, R.; Fremeau, R. T., Jr.; Harmange, J. C.; Hoffman, B. J.; Huang, L.; Huang, M.; Lee, J. H.; Lin, F. F.; Martin, M. W.; Nguyen, H. Q.; Patel, V. F.; Tomlinson, S. A.; White, R. D.; Xia, X.; Hitchcock, S. A. J. Med. Chem. 2008, 51, 5019.
- 19. Riether, D.; Wu, L.; Cirillo, P. F.; Berry, A.; Walker, E. R.; Ermann, M.; Noya-Marino, B.; Jenkins, J. E.; Albaugh, D.; Albrecht, C.; Fisher, M.; Gemkow, M. J.; Grbic, H.; Löbbe, S.; Möller, C.; O'Shea, K.; Sauer, A.; Shih, D. T.; Thomson, D. S. Bioorg. Med. Chem. Lett. 2011, 21, 2011.
- 20. Kimball, E. S.; Schneider, C. R.; Wallace, N. H.; Hornby, P. J. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G364.
- 21. Nackley, A. G.; Makriyannis, A.; Hohmann, A. G. Neuroscience 2003, 119, 747.
- Qamri, Z.; Preet, A.; Nasser, M. W.; Bass, C. E.; Leone, G.; Barsky, S. H.; Ganju, R. K. Mol. Cancer Ther. 2009, 8, 3117
- 23. Podolsky, D. K. N. Engl. J. Med. 2002, 347, 417.
- 24. Alhouayek, M.; Muccioli, G. G. Trends Mol. Med. 2012, 18, 615.
- 25. Izzo, A. A.; Sharkey, K. A. Pharmacol. Ther. 2010, 126, 21.
- 26. Stintzing, S.; Wissniowski, T. T.; Lohwasser, C.; Alinger, B.; Neureiter, D. Histol. Histopathol. 2011, 26, 735
- 27. Ihenetu, K.; Molleman, A.; Parsons, M. E.; Whelan, C. J. Eur. J. Pharmacol. 2003, 458, 207

12

A. Tourteau et al./Bioorg. Med. Chem. xxx (2013) xxx-xxx

- Alhouayek, M.; Lambert, D. M.; Delzenne, N. M.; Cani, P. D.; Muccioli, G. G. FASEB J. 2011, 25, 2711.
- 29. Storr, M. A.; Keenan, C. M.; Zhang, H.; Patel, K. D.; Makriyannis, A.; Sharkey, K. A. Inflamm. Bowel Dis. **2009**, *15*, 1678.
- Di Sabatino, A.; Battista, N.; Biancheri, P.; Rapino, C.; Rovedatti, L.; Astarita, G.; Vanoli, A.; Dainese, E.; Guerci, M.; Piomelli, D.; Pender, S. L. P.; MacDonald, T. T.; Maccarrone, M.; Corazza, G. R. *Mucosal Immunol.* 2011, *4*, 574.
- Rinaldi-Carmona, M.; Barth, F.; Millan, J.; Derocq, J. M.; Casellas, P.; Congy, C.; Oustric, D.; Sarran, M.; Bouaboula, M.; Calandra, B.; Portier, M.; Shire, D.; Brelière, J. C.; Le Fur, G. L. J. Pharmacol. Exp. Ther. **1998**, 284, 644.
- Stern, E.; Muccioli, G. G.; Bosier, B.; Hamtiaux, L.; Millet, R.; Poupaert, J. H.; Henichart, J. P.; Depreux, P.; Goossens, J. F.; Lambert, D. M. J. Med. Chem. 2007, 50, 5471.
- Marvel, C. S.; Dreger, E. E. In Organic Syntheses Collect; Blatt, A. H., Ed.; Wiley: New York, NY, 1941; Vol. 1, p 238.
- Zalesov, V. V.; Kataev, S. S.; Pulina, N. A.; Kovylyaeva, N. A. Russ. J. Org. Chem. 2002, 38, 840.
- Andrzejak, V.; Millet, R.; El Bakali, J.; Guelzim, A.; Gluszok, S.; Chavatte, P.; Bonte, J. P.; Vaccher, C.; Lipka, E. Lett. Org. Chem. 2010, 7, 32.
- 36. Govaerts, S. J.; Hermans, E.; Lambert, D. M. Eur. J. Pharm. Sci. 2004, 23, 233.
- El Bakali, J.; Gilleron, P.; Body-Malapel, M.; Mansouri, R.; Muccioli, G. G.; Djouina, M.; Barczyk, A.; Klupsch, F.; Andrzejak, V.; Lipka, E.; Furman, C.; Lambert, D. M.; Chavatte, P.; Desreumaux, P.; Millet, R. J. Med. Chem. 2012, 55, 8948.
- Rempel, V.; Volz, N.; Hinz, S.; Karcz, T.; Meliciani, I.; Nieger, M.; Wenzel, W.; Bräse, S.; Müller, C. E. J. Med. Chem. 2012, 55, 7967.