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A B S T R A C T   

Fatty acid amide hydrolase (FAAH) exerts its main function in the catabolism of the endogenous chemical 
messenger anandamide (AEA), thus modulating the endocannabinoid (eCB) pathway. Inhibition of FAAH may 
serve as an effective strategy to relieve anxiety and possibly other central nervous system (CNS)-related dis
orders. Positron emission tomography (PET) would facilitate us to better understand the relationship between 
FAAH in certain disease conditions, and accelerate clinical translation of FAAH inhibitors by providing in vivo 
quantitative information. So far, most PET tracers show irreversible binding patterns with FAAH, which would 
result in complicated quantitative processes. Herein, we have identified a new FAAH inhibitor (1-((1-methyl-1H- 
indol-2-yl)methyl)piperidin-4-yl)(oxazol-2-yl)methanone (8) which inhibits the hydrolysis of AEA in the brain 
with high potency (IC50 value 11 nM at a substrate concentration of 0.5 µM), and without showing time-de
pendency. The PET tracer [11C]8 (also called [11C]FAAH-1906) was successfully radiolabeled with [11C]MeI in 
17  ±  6% decay-corrected radiochemical yield (n = 7) with > 74.0 GBq/μmol (2 Ci/μmol) molar activity 
and > 99% radiochemical purity. Ex vivo biodistribution and blocking studies of [11C]8 in normal mice were 
also conducted, indicating good brain penetration, high brain target selectivity, and modest to excellent target 
selectivity in peripheral tissues. Thus, [11C]8 is a potentially useful PET ligand with enzyme inhibitory and target 
binding properties consistent with a reversible mode of action.    

The endocannabinoid (eCB) system is fundamental to physiology, 
and has widespread influences on the central nervous system (CNS), 
immune system and other organs.1 Abnormalities of eCB system have 
been implicated in many pathological processes such as inflammation, 
pain, cognition, neuropsychiatric and metabolic disorders.2,3 Δ9-tetra
hydrocannabinol (Δ9-THC), as the principal psychoactive component of 
cannabis and hashish,4 has been known to have potentially useful 
medicinal in addition to its narcotic effects on the eCB system by 
mediating the cannabinoid receptors CB1 and CB2.1 In addition, ana
ndamide (AEA)5 and 2-arachidonic acid glycerol (2-AG),6,7 which are 
synthesized “on demand” following Ca2+ increasing in the postsynaptic 
cell, serve as the endogenous chemical messengers to activate CB1 and 
CB2 receptors. These two endocannabinoids undergo in vivo degrada
tion by enzymatic hydrolysis and by oxidation.8 In the brain, fatty acid 

amide hydrolase (FAAH) is the principal hydrolytic enzyme for AEA, 
whilst monoacylglycerol lipase (MAGL) is primarily responsible for 2- 
AG catabolism.9,10 

FAAH is an intact mammalian membrane enzyme which involves an 
unusual serine-serine-lysine (Ser241-Ser217-Lys142) catalytic triad, 
and categorized as a serine hydrolase.11 The immunohistochemical 
analysis of the hippocampal and olfactory brain cortex in patients with 
Alzheimer's disease (AD) revealed that FAAH was selectively over
expressed in the astrocytes and microglia related to neural plaques, and 
its hydrolytic activity was significantly up-regulated in plaques and 
surrounding areas.12 Besides, in terms of Huntington’s disease (HD), 
FAAH activity was found to be decreased to a certain extent in the 
central nervous system of patients compared with normal.13 In pre
clinical studies, inhibition of FAAH resulted in elevated levels of AEA,14 
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which interacted with cannabinoid receptors to induce anti-in
flammatory, analgesic, antidepressant and anxiolytic properties in an
imal models15–17 without producing the sort of behavioral effects seen 
with directly acting CB1 receptor agonists (Scheme 1).18,19 The above 
observations suggest FAAH may be a useful and valuable therapeutic 
target in the central nervous system that may exert critical impacts on 
neuro-disorders. Therefore, recent research efforts have been shifted to 
the development of FAAH inhibitors, including URB597,18 PF- 
04457845,20–23 JNJ-42165279,24 V15886625 and SSR411298,26 some 
of which have been advanced to clinical trials for treating anxiety, os
teoarthritis pain, cannabis withdrawal and schizophrenia. In general, 
these compounds are well-tolerated with one exception that compound 
BIA 10–2474 exhibited severe adverse effects most likely due to off- 
target actions.27,28 

Positron emission tomography (PET) is a noninvasive imaging 
technology with high sensitivity and specificity. Based on a specific 
ligand bearing a positron-emitting radionuclide (“PET tracer”), PET can 
quantify biological information on the molecular level, which is feasible 
for PET to assist disease diagnosis, treatment evaluation, and drug de
velopment.29–31 Unlike fluorescence imaging,32 PET technique has 
greater tissue penetration, and, the radiotracer used for imaging is 
microdose (10−6–10−9g), which makes it possible to assess biological 
processes without pharmacological effects, thereby accelerating the 
clinical translation and transformation for candidate drugs.33 PET 
imaging studies of FAAH would allow better understanding of dis
tribution, expression and functions of this enzyme under physiological 
and pathological conditions. Developing FAAH targeted PET tracers 
would not only be helpful for early diagnosis of clinical neurological 
diseases such as depression, AD and HD, but also facilitate the clinical 
translation of FAAH-related drugs by providing insight into in vivo 
pharmacokinetics, target occupancy and dose selection. As shown in  
Fig. 1, in recent years, continued efforts have been concentrated on the 
development of suitable PET tracers for imaging FAAH, including 
[11C]CURB ([11C]1),34 [11C]URB597 ([11C]2) and analogues,35 [18F] 
DOPP ([18F]3),36,37 [11C]PF-04457845 ([11C]4),38 and [18F]PF-9811 
([18F]5),39 all of which share the common feature of covalent and ir
reversible binding.40,41 Among them, [11C]1 has been studied for FAAH 
imaging in patients with several neurological diseases. The level of 
FAAH in adult and young cannabis users decreased significantly.42,43 

Brain imaging in psychiatric patients showed that FAAH activity was 
negatively correlated with positive psychotic symptom severity.44 In 
terms of borderline personality disorder patients, the FAAH activity in 
amygdala-prefrontal cortex measured by [11C]1 PET signals was ele
vated by 11% and positively correlated with hostility/anger.45 

In contrast to irreversible FAAH PET tracers, the development of 
reversible FAAH PET tracers is still in its infancy. To date, only two 
reversible PET ligands for FAAH imaging, namely [11C]MK-3168 ([11C] 

6) and [11C]MPPO ([11C]7), have been reported by Merck researchers46 

and our groups47, respectively. Despite that [11C]6 has been advanced 
to preliminary human PET studies since 2012, only limited results was 
disclosed in the form of conference proceedings.24,48,49 Compound 
[11C]7 was developed based on a novel α-keto(pyridinyl)oxazolyl 
structures, although it demonstrated an excellent in vitro FAAH in
hibitory potency (IC50 10 nM),50 unsatisfactory brain penetration and 
marginal in vivo specificity prevents its further evaluation.47 Therefore, 
it unmet need for the development of new reversible FAAH PET tracers 
with improved blood-brain-barrier (BBB) penetration ability and in vivo 
specificity. 

As our continuous interest in the development of reversible FAAH 
PET tracers based on α-ketoheterocyclic scaffold, which has already 
demonstrated suitable enzyme inhibitory potency as well as a clear 
reversible binding mechanism,51 herein we aimed to discover a new α- 
ketoheterocyclic skeleton with improved BBB penetration ability and in 
vivo specificity. Janssen Pharmaceutica revealed that α-ketooxazolyl 
structures exhibited good to excellent binding affinities to FAAH,52,53 

which could serve as promising candidates of PET tracers. Considering 
the feasibility of radiolabeling as well as the successful and effective 
contributions of indole moieties in drug development,54,55 we selected 
(1-((1-methyl-1H-indol-2-yl)methyl)piperidin-4-yl)(oxazol-2-yl)metha
none (8) for radiolabeling and further exploration. Herein, we describe 
our chemical synthesis, pharmacological and physiochemical evalua
tion, radiosynthesis and preliminary evaluation of (1-((1-11C-methyl- 
1H-indol-2-yl)methyl)piperidin-4-yl)(oxazol-2-yl)methanone ([11C] 
FAAH-1906, [11C]8 in Fig. 1) in vivo by PET. 

With FAAH inhibitor 8 as the molecule of interest, we conducted an 
efficient four-step synthesis. As summarized in Scheme 2, condensation 
of carboxylic acid 9 with N-methoxymethylamine hydrochloride in the 
presence of HUBT under basic conditions afforded the Weinreb amide 
10 in 93% yield. As optimized in our previous work,47 the following 
nucleophilic substitution was successfully realized by iPrMgCl in THF, 
leading to key intermediate oxazolyl piperidine 11 in 49% yield. De
protection of compound 11 in acidic conditions gave ammonium salt 
12, which was used without further purification to undergo a reductive 
amination with indole-2-carboxaldehyde to generate the labeling pre
cursor 13 in 39% yield. In terms of standard compound 8, a similar 
reductive amination was performed with 1-methylindole-2-carbox
aldehyde, and the FAAH inhibitor 8 was obtained in 43% yield. 

We determined the inhibitory potency of 8 in vitro towards the 
FAAH-catalysed hydrolysis of 0.5 µM [3H]-anandamide ([3H]AEA) in 
rat brain homogenates. In the assay employed here, the irreversible 
FAAH inhibitor DOPP (3) inhibits in nM concentrations [3H]AEA hy
drolysis in a manner dependent upon the preincubation time (as ex
pected for an irreversible inhibitor) used [33]. As shown in Fig. 2, 
compound 8 concentration-dependently inhibits rat brain [3H]AEA 

Scheme 1. Mechanism of FAAH for modulating eCB system and therapeutic potential for FAAH Inhibitors.  
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hydrolysis with an IC50 value of 13.3  ±  3.7 nM. In addition, no ob
vious increase of the inhibitory potency of 8 was detected following a 
60 min preincubation phase between enzyme and inhibitor 
(IC50 = 11.5  ±  2.3 nM). The physiochemical properties are essential 
factors for the prediction of BBB permeability. Therefore, calculated 
partition coefficient (CLogP), calculated distribution coefficient at 
pH = 7.4 (CLogD), molecular weight (MW), topological polar surface 
(TPSA), number of hydrogen bond donors (HBD), and ionization con
stant of the most basic center (pKa) of compound 8 were predicted by 
ACD/Labs software (2019.2.1 version). As shown in Table 1, all the 
values lie in the favorable range for a brain imaging PET tracer, with 
CNS PET multiparameter optimization (MPO) scores as 5.2.56 

The favorable pharmacological and physicochemical properties 
prompted us to radiolabel and further evaluate compound 8. As shown 
in Scheme 3, the nitrogen atom on the indole ring in 13 was considered 
as the most efficient labeling site for 8 with [11C]CH3I.57 A module of 
GE TRACERlab FX MeI was adopted for the automated synthesis of 
[11C]8, which included radiolabeling, HPLC purification and 

formulation. The radiosynthesis of [11C]8 was carried out by heating a 
mixture of the indole precursor 13, [11C]CH3I, KOH and dimethylsulf
oxide (DMSO) to 130 °C for 5 min. The reaction mixture was then di
luted and purified by a semi-preparative reverse high-performance li
quid chromatography (HPLC) to give [11C]8, which was then 
formulated in saline containing 10% ethanol. As a result, [11C]8 was 
isolated in 17  ±  6% (n = 7) radiochemical yield (RCY, decay-cor
rected) relative to starting [11C]CO2 at the end of synthesis (EOS) with 
excellent radiochemical purity (> 99%), and high molar activity 
(> 74.0 GBq/μmol (2.0 Ci/μmol)). In addition, no radiolysis was de
tected up to 90 min after formulation, indicating the radiochemical 
stability was sufficient for subsequent studies. 

The LogD of [11C]8 was determined by the Shake Flask method58 as 
2.90  ±  0.01, falling within the optimal range for a neurological PET 
tracer.40 This value is comparable with [11C]CURB ([11C]1, LogD 
2.8),34 and lower than our previous reported reversible PET tracer [11C] 
MPPO ([11C]7, LogD 3.43),47 which may improve brain penetration and 
decrease non-specific binding in vivo. 

Fig. 1. Representative PET tracers for imaging FAAH.  

Scheme 2. Chemical synthesis of precursor (13) and standard (8) for [11C]8 radiolabeling. Reagents and conditions: (i) N-methoxymethylamine hydrochloride, 
HBTU, DIPEA, DMF, 93%; (ii) oxazole, iPrMgCl, THF, −15 °C, 49%; (iii) HCl, dioxane, 70 °C, 91%; (iv) indole-2-carboxaldehyde or 1-methylindole-2-carbox
aldehyde, NaBH(OAc)3, TEA, DCE, 39% for 13; 43% for 8. 
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Pharmacokinetic properties, the uptake, distribution and clearance 
of [11C]8 were studied in mice at four time points (5, 15, 30 and 
60 min) after tracer injection. The experimental results were described 
as the percentage of injected dose per gram of wet tissue (%ID/g) in  
Fig. 3. The radioactivity of [11C]8 was washed out efficiently from 
blood with the ratio of %ID/g5min/60min as 2, and the similar results was 
also observed in [11C]7 (ratio of %ID/g5min/60min as 2.3).47 High 
radioactivity levels (> 5 %ID/g) were observed in several organs in
cluding spleen, heart, lungs, pancreas, small intestine, kidneys and liver 
within the initial 5 min. After that, the signals in most organs decreased 
rapidly, while the radioactivity in the stomach and liver continually 
increased until 15 min and then washed out gradually, and the radio
active signal in the small intestine reached the plateau at 30 min. These 
results, together with high radioactivity levels in the small intestine, 
kidneys, and liver at 60 min post tracer injection, possibly indicated a 
combined urinary and hepatobiliary elimination pathway. 

Notably, high brain uptake (ca. 9.2 %ID/g) was detected after 5 min 
post tracer injection, then followed by a rapid washout (ratios of %ID/ 
g5min/30min and %ID/g5min/60min as 4.7 and 12.7, respectively), which, 
together with the lack of time-dependency of 8 towards [3H]AEA hy
drolysis shown in Fig. 1 are consistent with a reversible binding pattern. 
To verify in vivo specific binding, mice (n = 4) in two time points (5 and 
30 min) were pretreated with URB597 (3 mg/kg, i.v.) 30 min prior to 
[11C]8 injection. The brain uptake was significantly decreased by 
~35% with pretreatment of URB597 (3 mg/kg, i.v.) at two time points 

(5 and 30 min) (Fig. 4), indicating that [11C]8 showed good in vivo 
target selectivity in the mouse brain. Radioactivity was also sig
nificantly decreased in the lungs, pancreas and kidneys (p  <  0.05), 
demonstrating modest to excellent target selectivity in peripheral tis
sues (Figs. S1 and S2 in Supporting Information). 

In conclusion, we have prepared an improved heterocyclic FAAH 
inhibitor 8, in which the indole moiety was amenable for 11C radi
olabeling. The preliminary pharmacological and physicochemical eva
luations were conducted, and the corresponding PET tracer [11C]FAAH- 
1906 ([11C]8) was automatically produced in excellent radiochemical 
yields and high molar activities. The ex vivo biodistribution studies (and 
[3H]AEA hydrolysis studies) are consistent with a reversible interaction 
between 8 and FAAH. Further, [11C]8 exhibited high brain permeability 
and moderate specific binding. In order to obtain in-depth pharmaco
kinetic information and regional distribution of [11C]8 in the brain, 
further PET imaging study in rodents and/or non-human primates, to
gether with kinetic modeling is necessary to provide pharmacological 
information and access the potential of [11C]8 for clinical translation. 
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Fig. 2. Inhibition by 8 of the hydrolysis of 0.5 µM [3H]AEA in rat brain 
homogenates. Shown are means  ±  s.e.m., n = 3 (except for the data at 30 µM 
inhibitor, where the mean and range for two experiments is shown), of the 
activity as % of vehicle control following either no preincubation (blue sym
bols) or 60 min preincubation (yellow symbols) between the enzyme source and 
8 prior to addition of substrate. 

Table 1 
Physiochemical properties prediction of 8.a   

a Data were calculated by ACD/Labs software (2019.2.1 version).  

Scheme 3. Radiosynthesis of [11C]8 (A) and in vitro stability test (B).  
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