Contents lists available at ScienceDirect



**Bioorganic & Medicinal Chemistry Letters** 

journal homepage: www.elsevier.com/locate/bmcl



# 4-Substituted-7-*N*-alkyl-*N*-acetyl 2-aminobenzothiazole amides: Drug-like and non-xanthine based A<sub>2B</sub> adenosine receptor antagonists

Adrian Wai-Hing Cheung<sup>a,\*</sup>, John Brinkman<sup>a</sup>, Fariborz Firooznia<sup>a</sup>, Alexander Flohr<sup>b</sup>, Joseph Grimsby<sup>a</sup>, Mary Lou Gubler<sup>a</sup>, Kevin Guertin<sup>a</sup>, Rachid Hamid<sup>a</sup>, Nicholas Marcopulos<sup>a</sup>, Roger D. Norcross<sup>b</sup>, Lida Qi<sup>a</sup>, Gwendolyn Ramsey<sup>a</sup>, Jenny Tan<sup>a</sup>, Yang Wen<sup>a</sup>, Ramakanth Sarabu<sup>a</sup>

<sup>a</sup> Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA <sup>b</sup> F. Hoffmann-La Roche Ltd, Pharma Research, CH-4070 Basel, Switzerland

# ARTICLE INFO

Article history: Received 12 April 2010 Revised 13 May 2010 Accepted 14 May 2010 Available online 20 May 2010

Keywords: Adenosine GPCR Antagonist

# ABSTRACT

7-*N*-Acetamide-4-methoxy-2-aminobenzothiazole 4-fluorobenzamide (compound **1**) was chosen as a drug-like and non-xanthine based starting point for the discovery of  $A_{2B}$  receptor antagonists because of its slight selectivity against  $A_1$  and  $A_{2A}$  receptors and modest  $A_{2B}$  potency. SAR exploration of compound **1** described herein included modifications to the 7-*N*-acetamide group, substitution of the 4-methoxy group by halogens as well as replacement of the *p*-flouro-benzamide side chain. This work culminated in the identification of compound **37** with excellent  $A_{2B}$  potency, modest selectivity versus  $A_{2A}$  and  $A_1$  receptors, and good rodent PK properties.

© 2010 Elsevier Ltd. All rights reserved.

Adenosine is an autocoid produced in many tissues, which mediates various functions through four G-protein coupled receptors (GPCRs), namely A<sub>1</sub>, A<sub>2A</sub>, A<sub>2B</sub>, and A<sub>3</sub>. The A<sub>1</sub> and A<sub>3</sub> receptors are coupled to G<sub>i</sub> and G<sub>o</sub> proteins, respectively, while the A<sub>2A</sub> and A<sub>2B</sub> receptors are coupled to G<sub>s</sub> proteins.<sup>1</sup> Due to these differences in receptor function, adenosine signals an increase in intracellular cAMP levels via its action through the A<sub>2A</sub> and A<sub>2B</sub> receptors, and a decrease in cAMP levels through the A<sub>1</sub> and A<sub>3</sub> receptors. In addition, adenosine increases intracellular calcium ion levels via the A2B receptor through its coupling to G<sub>a</sub> proteins. Adenosine's agonist potency at its four receptors individually expressed in Chinese Hamster Ovary (CHO) cells was determined to be,  $A_3~(EC_{50}$  = 0.29  $\mu M) \sim A_1~(EC_{50}$  =  $0.31 \ \mu\text{M}$ ) > A<sub>2A</sub>(EC<sub>50</sub> = 0.7  $\ \mu\text{M}$ )  $\gg$  A<sub>2B</sub>(EC<sub>50</sub> = 24  $\ \mu\text{M}$ ).<sup>2</sup> Based on this relative order of adenosine agonist potency, it is believed that the A<sub>2B</sub> receptor remains silent under normal physiological conditions and is activated as a consequence of elevated extracellular adenosine levels during chronic, high oxidative stress conditions, such as hyperglycemia and mast-cell activation. For example, in an asthmatic lung exposed to an allergen, the increased levels of adenosine signal through the A<sub>2B</sub> receptor which mediates its proinflammatory effects.<sup>3,4</sup> CVT-6883 (Fig. 1), a potent and selective A<sub>2B</sub> receptor antagonist was found to be efficacious in various animal models of asthma, COPD and pulmonary fibrosis.<sup>5-7</sup> Researchers at Eisai, using specific agonists and antagonists of adenosine receptors, illustrated the key role of A<sub>2B</sub> receptor antagonism in inhibiting hepatic glucose

\* Corresponding author. Fax: +1 973 235 7239.

E-mail address: adrian.cheung@roche.com (A. W. -H. Cheung).

production.<sup>8</sup> Based on the SAR of 2-alkynyl-8-aryl-9-methyladenines, they identified a series of  $A_{2B}$  receptor antagonists that were efficacious in lowering fasting and fed glucose levels in KK-Ay mice,<sup>9</sup> a well recognized model of type 2 diabetes. Thus, the potential utility of adenosine  $A_{2B}$  receptor antagonists for the treatment of asthma and type 2 diabetes encouraged us to seek novel antagonists.

The majority of potent A<sub>2B</sub> receptor antagonists reported to date are based on xanthine or adenine core structures.<sup>10</sup> In our search for drug-like, non-xanthine based A<sub>2B</sub> receptor antagonists, we utilized a series of previously disclosed A<sub>2A</sub> receptor antagonists, 4-methoxy-7-aryl (I) and 4-methoxy-7-morpholino (II) 2-aminobenzothiazoles as the starting point.<sup>11</sup> During exploratory studies with 4-methoxy-7-substituted 2-aminobenzothiazoles, we systematically modified the 7-substituent to determine whether A<sub>2B</sub>-selectivity could be achieved within the series but disappointingly found that almost all the analogs bearing aromatic, heteroaromatic and heterocyclic 7-substituents were potent A2A-selective antagonists (data not shown). We then narrowed our focus on 7-N-acetyl analog 1 which is unique in possessing slight A<sub>2B</sub>-selectivity over A<sub>1</sub> and A<sub>2A</sub> receptors (Table 1). With the goal of improving the  $A_{2B}$  potency and selectivity of **1**, we discuss in this communication the results of our SAR studies which included modifications to the 7-N-acetamide group, substitution of the 4-methoxy group by halogens as well as replacement of the p-flouro-benzamide side chain (Fig. 1). This work culminated in the identification of compound 37, which incorporates excellent A<sub>2B</sub> potency, modest selectivity versus A2A and A1 receptors, and good rodent PK properties.

<sup>0960-894</sup>X/\$ - see front matter  $\odot$  2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.05.056



Figure 1. Structures of CVT-6883, compounds I-II and 1.





| Compound | R <sup>1</sup> =                                   | $A_{2B}$ cAMP (IC <sub>50</sub> , nM) | $A_1$ Binding <sup>a</sup> ( $K_i$ , nM) | $A_{2A}$ Binding <sup>b</sup> ( $K_i$ , nM) | $A_{2B}$ Binding <sup>c</sup> ( $K_i$ , nM) |
|----------|----------------------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|
| 1        | H (7-N-acetyl)                                     | 350                                   | 1600                                     | 250                                         | 130                                         |
| 6        | $CH_3$                                             | 15                                    | 66                                       | 39                                          | 22                                          |
| 7        | CH <sub>2</sub> CH <sub>3</sub>                    | 12                                    | 66                                       | 22                                          | 13                                          |
| 8        | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>  | 23                                    | 37                                       | 3                                           | NT <sup>d</sup>                             |
| 9        | $CH(CH_3)_2$                                       | 19                                    | NT <sup>d</sup>                          | NT <sup>d</sup>                             | NT <sup>d</sup>                             |
| 10       | CH <sub>2</sub> CF <sub>3</sub>                    | 40                                    | 42                                       | 35                                          | 12                                          |
| 11       | CHF <sub>2</sub>                                   | 230                                   | 30                                       | 61                                          | NT <sup>d</sup>                             |
| 12       | CH <sub>2</sub> CH <sub>2</sub> OH                 | 77                                    | 450                                      | 98                                          | NT <sup>d</sup>                             |
| 13       | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH | 42                                    | 100                                      | 29                                          | NT <sup>d</sup>                             |
| 14       | CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>   | 33                                    | 110                                      | 38                                          | NT <sup>d</sup>                             |
| 15       | CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>    | 8                                     | 23                                       | 5                                           | NT <sup>d</sup>                             |
| 16       | CH <sub>2</sub> CO <sub>2</sub> H                  | 6000                                  | 2600                                     | 2200                                        | NT <sup>d</sup>                             |
| 17       | CH <sub>2</sub> CONH <sub>2</sub>                  | 60                                    | 560                                      | 160                                         | NT <sup>d</sup>                             |
| 18       | CH <sub>2</sub> CONHCH <sub>3</sub>                | 350                                   | 790                                      | 330                                         | NT <sup>d</sup>                             |
| 19       | $CH_2CON(CH_3)_2$                                  | 600                                   | 1600                                     | 480                                         | NT <sup>d</sup>                             |

<sup>a</sup> Binding affinity for the A<sub>1</sub> receptor was determined by competition for binding sites labeled by <sup>3</sup>H-DPCPX (4.8 nM) in commercial (Euroscreen) A<sub>1</sub> membranes.

<sup>b</sup> Binding affinity for the  $A_{2A}$  receptor was determined by competition for binding sites labeled by <sup>3</sup>H-ZM241385 (5 nM) in commercial (Perkin–Elmer)  $A_{2A}$  membranes. <sup>c</sup> Binding affinity for the  $A_{2B}$  receptor was determined by competition for binding sites labeled by <sup>3</sup>H-ZM241385 (30 nM) in whole cells (CHO) expressing  $A_{2B}$  receptors.

<sup>d</sup> NT: not tested.

Various 7-N-alkylated analogs (compounds **6–19**) were prepared according to Scheme 1. Coupling of commercially available N-(3-amino-4-methoxy-phenyl)-acetamide with benzoyl isothiocyanate<sup>12</sup> gave benzoylated thiourea **2**. De-benzoylation of compound **2** was achieved using sodium methoxide in methanol<sup>13</sup> and the resulting thiourea **3** was cyclized with bromine in acetic acid<sup>14</sup> to give 4-methoxy-7-*N*-acetamide 2-aminobenzothiazole (**4**). The first three steps in the synthetic scheme could be carried out on a multi-gram scale and did not require chromatography. The *p*-fluorobenzoyl group was coupled to the 2-aminobenzothiazole core using the corresponding acid chloride to give compound **5**. Treatment of compound **5** with 2.5 equiv of sodium hydride in *N*,*N*-dimethylformamide generated the corresponding dianion and the 7-*N*-acetamide anion, being more nucleophilic than the 2-aminobenzothiazole benzamide anion, was preferentially alkylated when treated with 1 equiv of alkylating agent at 0  $^{\circ}$ C to give compounds **6–19**.

The corresponding 4-Cl analog (compound **20**) of compound **7** was made in an analogous manner to that shown in Scheme 1 starting with commercially available N-(3-amino-4-chloro-phenyl)-acetamide.

Various aryl and heteroaryl amides of 7-*N*-ethyl-acetamide-4methoxy-2-aminobenzothiazole (compounds **22–42**) were prepared according to Scheme 2. Treatment of compound **7** with 1 N sodium hydroxide/methanol (1:1) under reflux for 2–3 days gave *N*-7-(acetyl-ethyl-amino)-4-methoxy-2-aminobenzothiazole (**21**).



Scheme 1. Synthesis of various 7-N-alkylated 7-N-acetamide-4-methoxy-2-aminobenzothiazole 4-fluorobenzamides (compounds 6-19).



Scheme 2. Synthesis of various amides of 7-N-ethyl-acetamide-4-methoxy-2-aminobenzothiazole (compounds 22-42).

Various amides (compounds **22–42**) were synthesized by reacting compound **21** with either the corresponding acid chloride or the corresponding carboxylic acid and an amide coupling reagent (selected from 1,1'-carbonyldiimidazole, benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate or 1-meth-ylimidazole/*p*-toluenesulfonyl chloride<sup>15</sup>).

All the new analogs prepared were tested in the  $A_{2B}$  cAMP assay<sup>16</sup> and the most interesting analogs were further tested in  $A_1$ ,  $A_{2A}$ , and  $A_{2B}$  receptor binding assays.<sup>17</sup> The data from the above assays are summarized in Tables 1–4. The values reported are the average of at least two separate experiments and it is typical for duplicate values to be within twofold of each other. As shown in Table 1, introduction of simple alkyl groups such as methyl (compound **6**), ethyl (compound **7**), *i*-butyl (compound **8**), and *i*-propyl (compound **9**) to the 7-*N*-acetamide moiety of compound **1** led to significant improvements in  $A_{2B}$  cAMP potency. The most  $A_{2B}$  potent analog, compound **7** (7-*N*-ethyl, cAMP IC<sub>50</sub> = 12 nM) is about fivefold selective over  $A_1$  ( $A_1$ ,  $K_i$  = 66 nM vs  $A_{2B}$ ,  $K_i$  = 13 nM) and almost equipotent between  $A_{2B}$  and  $A_{2A}$  ( $A_{2A}$ ,  $K_i$  = 22 nM vs  $A_{2B}$ ,  $K_i$  = 13 nM). Introduction of fluorine atoms such as trifluoromethyl (compound **10**) led to a slight drop in  $A_{2B}$  cAMP potency without any gain in  $A_1$  and  $A_{2A}$  selectivity, compared to compound **7**. Unexpectedly, replacement of two hydrogens of the 7-*N*-methyl of compound **6** by fluorines (difluoromethyl group,

# Table 2

Table 3

Functional and binding activities of 4-substituted 7-N-ethyl-acetamide-2-aminobenzothiazole 4-fluorobenzamides (compounds 7 and 20)



<sup>a,b,c,d</sup> See footnotes to Table 1.

# compound **11**) led to a 15-fold drop in $A_{2B}$ cAMP potency without any significant change in A<sub>1</sub> and A<sub>2A</sub> binding affinity, compared to compound 6.

Introduction of polar groups such as hydroxy and methoxy to the 7-N-alkyl group (compounds 12-14) led to slight drops (two to sixfold) in A<sub>2B</sub> cAMP potency and this approach was not pursued further. Introduction of a methyl ester to the 7-N-alkyl group gave compound **15** which is of similar A<sub>2B</sub> potency in the cAMP assay to compound **7**. In an attempt to improve selectivity against A<sub>1</sub> and A2A receptors and increase the metabolic stability of compound 15, its methyl ester was converted to the corresponding acid (compound 16) and amides (compounds 17-19). Unfortunately, these analogs all showed significant decreases in potency in the A<sub>2B</sub>

Investigation of SAR at the 4-position of the 2-aminobenzothiazole core was carried out next. Our previous explorations at the



4143

## Functional and binding activities of various p-substituted benzamides of 4-methoxy-7-N-ethyl-acetamide-2-aminobenzothiazole (compounds 7, 22-36)

| Compound | $R^{3} =$                         | $A_{2B}$ cAMP (IC <sub>50</sub> , nM) | $A_1$ Binding <sup>a</sup> ( $K_i$ , nM) | $A_{2A}$ Binding <sup>b</sup> ( $K_i$ , nM) | $A_{2B}$ Binding <sup>c</sup> ( $K_i$ , nM) |
|----------|-----------------------------------|---------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|
| 7        | F                                 | 12                                    | 66                                       | 22                                          | 13                                          |
| 22       | SO <sub>2</sub> CH <sub>3</sub>   | 36                                    | 390                                      | 92                                          | 19                                          |
| 23       | CN                                | 28                                    | 71                                       | 50                                          | 10                                          |
| 24       | CO <sub>2</sub> CH <sub>3</sub>   | 35                                    | 185                                      | 170                                         | 15                                          |
| 25       | NHSO <sub>2</sub> CH <sub>3</sub> | 37                                    | 110                                      | 46                                          | 22                                          |
| 26       |                                   | 19                                    | 410                                      | 71                                          | 4                                           |
| 27       | N                                 | 28                                    | 400                                      | 27                                          | 14                                          |
| 28       |                                   | 19                                    | 150                                      | 77                                          | 8                                           |
| 29       |                                   | 28                                    | 130                                      | 80                                          | 23                                          |
| 30       | N                                 | 21                                    | 78                                       | 66                                          | 18                                          |
| 31       | ↓ ↓ ♥                             | 16                                    | 300                                      | 100                                         | 4                                           |
| 32       |                                   | 21                                    | 160                                      | 76                                          | 7                                           |
| 33       | ↓<br>N<br>O                       | 13                                    | 180                                      | 26                                          | 13                                          |

# Table 3 (continued)

| Compound | R <sup>3</sup> = | A <sub>2B</sub> cAMP (IC <sub>50</sub> , nM) | A <sub>1</sub> Binding <sup>a</sup> (K <sub>i</sub> , nM) | A <sub>2A</sub> Binding <sup>b</sup> (K <sub>i</sub> , nM) | $A_{2B}$ Binding <sup>c</sup> ( $K_i$ , nM) |
|----------|------------------|----------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|
| 34       |                  | 38                                           | 120                                                       | 89                                                         | 18                                          |
| 35       | ÷-≪              | 21                                           | 185                                                       | 84                                                         | NT <sup>d</sup>                             |
| 36       | ₩<br>N           | 16                                           | 50                                                        | 68                                                         | NT <sup>d</sup>                             |

<sup>a,b,c,d</sup> See footnotes to Table 1.

## Table 4

Functional and binding activities of various amides of 7-N-ethyl-acetamide-2-aminobenzothiazole (compounds 37-42)



| Compound | R <sup>4</sup> = | $A_{2B}$ , cAMP (IC <sub>50</sub> , nM) | $A_1$ Binding <sup>a</sup> ( $K_i$ , nM) | $A_{2A}$ Binding <sup>b</sup> ( $K_i$ , nM) | $A_{2B}$ Binding <sup>c</sup> ( $K_i$ , nM) |
|----------|------------------|-----------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|
| 37       |                  | 21                                      | 100                                      | 51                                          | 8                                           |
| 38       |                  | 7                                       | 35                                       | 18                                          | NT <sup>d</sup>                             |
| 39       |                  | 21                                      | NT <sup>d</sup>                          | NT <sup>d</sup>                             | NT <sup>d</sup>                             |
| 40       |                  | 29                                      | NT <sup>d</sup>                          | 41                                          | 19                                          |
| 41       |                  | 6                                       | 6                                        | 3                                           | 4                                           |
| 42       | F<br>H<br>N      | 12                                      | 9                                        | 3                                           | 6                                           |

<sup>a,b,c,d</sup> See footnotes to Table 1.

# Table 5

PK parameters of compound 37 after iv and po administration to Han Wistar Rats

| Compound | PK Profile <sup>a</sup> (iv, 2.5 mg/kg) |                          |                       | I                        | PK Profile <sup>a</sup> (po, 50 mg/kg) |               |     |
|----------|-----------------------------------------|--------------------------|-----------------------|--------------------------|----------------------------------------|---------------|-----|
|          | CL (mL/min/kg)                          | $V_{\rm d}~({\rm L/kg})$ | AUC extrap. (ng h/mL) | C <sub>max</sub> (ng/mL) | AUC extrap. (ng h/mL)                  | $t_{1/2}$ (h) |     |
| 37       | 46                                      | 3.0                      | 929                   | 7420                     | 74,400                                 | 2.1           | 400 |

<sup>a</sup> A dose of compound **37** was either intravenously (2.5 mg/kg, DMA/PEG 400/40% HPBCD/H<sub>2</sub>O) injected into the tail vein of male Han Wistar rat (*n* = 4) or orally (50 mg/kg, Capmul PG8) administered using an intubation tube (*n* = 4). Plasma samples were collected up to 24 h after intravenous or oral administration. The plasma concentrations of compound **37** were determined by LC–MS.

4-position of a structurally simpler 2-aminobenzothiazole template (without 7-substitution) showed that 4-substituents such as  $-OCH_3$ , -Cl, and -F gave analogs with the best  $A_{2B}$  potency (data

not shown). Therefore, the 4-OCH<sub>3</sub> moiety of compound **7** was replaced by 4-Cl and disappointingly, the resulting compound **20** showed a slight drop in A<sub>2B</sub> cAMP potency and no gain in selectiv-

ity against  $A_1$  or  $A_{2A}$  receptors (Table 2). The 4-F analog of compound **7** was also prepared and was less potent than compound **7** in  $A_{2B}$  cAMP assay (data not shown). The 4-F series was therefore not pursued further. Based on the results of our SAR at the 4- and 7-positions of 2-aminobenzothiazole core, compound **7** with 4-OCH<sub>3</sub> and 7-*N*-ethyl-acetamide substitutions was selected as having the best combination of  $A_{2B}$  potency and selectivity against  $A_1$  and  $A_{2A}$  receptors for further optimization.

Thus, the *p*-fluoro group of the benzamide side chain of compound **7** was replaced by a diverse set of substituents such as methylsulfone (**22**), cyano (**23**), *N*-methanesulfonamide (**25**), methyl ester (**24**) and its corresponding amides (**31–36**), five-membered heteroaromatics (**28–30**), together with *N*-methyl-*N*-methanesulfonamide (**26**) and pyrrolidinone (**27**) both extended by a methylene spacer. Interestingly, all the above analogs showed similar potency in the A<sub>2B</sub> cAMP assay (Table 3, IC<sub>50</sub> within 13–38 nM range) and similar A<sub>2B</sub> receptor binding affinity (*K*<sub>i</sub> within 4–23 nM range).<sup>18</sup> In terms of A<sub>1</sub> and A<sub>2A</sub> selectivity, although most compounds in Table 3 have moderate A<sub>1</sub> selectivity (A<sub>1</sub>, *K*<sub>i</sub> >100 nM), only two of them showed A<sub>2A</sub> *K*<sub>i</sub> equal to or above 100 nM (compounds **24** and **31**).

Moving away from a phenyl ring in the amide region, fivemembered heteroaromatic rings were explored and the data for those analogs are shown in Table 4. Compound 37, incorporating 2-methyl-2H-pyrazole, exhibited good potency in the A<sub>2B</sub> cAMP assay and reasonable selectivity against  $A_1$  (about 12-fold) and  $A_{2A}$ (about sixfold). Slight variations in the pyrazole ring of compound 37 led to compounds 38-40 which are similar to compound 37 in A<sub>2B</sub> potency, but do not offer an advantage in A<sub>1</sub> and A<sub>2A</sub> receptor selectivity. It was reported at the time of our investigation that *m*-F and *m*-CF<sub>3</sub> benzyl-pyrazol-4-yl groups imparted good A<sub>2B</sub> affinity and selectivity in the 1,3-diethyl and 1,3-dipropyl derivatives in the xanthine class of compounds.<sup>19</sup> We therefore prepared analogs 41 and 42 with similar side chains in our series. Although compounds 41 and 42 are very potent in A<sub>2B</sub> assays, they did not show adenosine receptor subtype selectivity, and thus were not profiled further.

Based on  $A_{2B}$  potency and selectivity against  $A_1$  and  $A_{2A}$ , some of the analogs described above (compounds **6**, **7**, **22**, **26**, **27**, **34**, and **37**) were tested for PK exposure via oral route of administration (formulation: 2% Klucel/0.1% Tween 80 aqueous suspension) in C57 mice at 50 mg/kg dose. Of the seven compounds tested, only compounds **6**, **7**, and **37** showed plasma drug exposures ( $C_{max}$  and AUC, data not shown) that warranted further profiling. Compound **37** was studied more thoroughly in a rat PK study and was found to have moderate volume of distribution, moderately high clearance and excellent oral bioavailability (Table 5).<sup>20</sup>

In summary, 7-*N*-acetamide-4-methoxy-2-aminobenzothiazole 4-fluorobenzamide (compound **1**) was chosen as a drug-like and non-xanthine based starting point for the discovery of  $A_{2B}$  receptor antagonists because of its slight selectivity against  $A_1$  and  $A_{2A}$ receptors and modest  $A_{2B}$  potency. SAR exploration of **1** included modifications to the 7-*N*-acetamide group, substitution of the 4-methoxy group by halogens, as well as replacement of the *p*-flouro-benzamide side chain. This work culminated in the identification of compound **37** with excellent  $A_{2B}$  potency, modest selectivity versus  $A_{2A}$  and  $A_1$  receptors, and good rodent PK properties. In vivo pharmacological evaluation of compound **37** and further attempts to improve its  $A_1$  and  $A_{2A}$  selectivity will be described in future publications.

# Acknowledgments

The authors are grateful to Drs. Claus Riemer and Jean-Luc Moreau ( $A_{2A}$  team) for their generous advices and help throughout

our work and to Dr. Alexander Alanine, Walter Vifian and Philipp Schmid for the synthesis of compound **1** and initial analogs. We would like to thank Drs. Navita Mallalieu and Aruna Railkar for carrying out the rodent PK studies. We would also like to thank Roche Physical Chemistry Department for spectroscopic measurements and interpretations and Dr. Jefferson Tilley for critical reading of the manuscript.

# **References and notes**

- Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, J. Pharmacol. Rev. 2001, 53, 527.
- Fredholm, B. B.; Irenius, E.; Kull, B.; Schulte, G. Biochem. Pharmacol. 2001, 61, 443.
- 3. Wilson, C. N. Br. J. Pharmacol. 2008, 155, 475.
- 4. Holgate, S. T. Br. J. Pharmacol. 2005, 145, 1009.
- 5. Kalla, R. V.; Zablocki, J. Purinergic Signalling 2009, 5, 21.
- Sun, C.-X.; Zhong, H.; Mohsenin, A.; Morschl, E.; Chunn, J. L.; Molina, J. G.; Belardinelli, L.; Zeng, D.; Blackburn, M. J. Clin. Invest. 2006, 116, 2173.
- Mustafa, S. J.; Nadeem, A.; Fan, M.; Zhong, H.; Belardinelli, L.; Zeng, D. J. Pharmacol. Exp. Ther. 2007, 320, 1246.
- Harada, H.; Asano, O.; Kawata, T.; Inoue, T.; Horizoe, T.; Yasuda, N.; Nagata, K.; Murakami, M.; Nagaoka, J.; Kobayashi, S.; Tanaka, I.; Abe, S. *Bioorg. Med. Chem.* 2001, 9, 2709.
- Harada, H.; Asano, O.; Hoshino, Y.; Yoshikawa, S.; Matsukura, M.; Kabasawa, Y.; Niijima, J.; Kotake, Y.; Watanabe, N.; Kawata, T.; Inoue, T.; Horizoe, T.; Yasuda, N.; Minami, H.; Nagata, K.; Murakami, M.; Nagaoka, J.; Kobayashi, S.; Tanaka, I.; Abe, S. J. Med. Chem. 2001, 44, 170.
- Kalla, R. V.; Zablocki, J.; Tabrizi, M. A.; Baraldi, P. G. Handb. Exp. Pharmacol. 2009, 193, 99.
- Flohr, A.; Jakob-Roetne, R.; Norcross, R. D.; Riemer, C. WO 2003043636; CAN 139:6865 and related patents.
- 12. Sarkis, G. Y.; Faisal, E. D. J. Heterocycl. Chem. 1985, 22, 137.
- 13. Rajappa, S.; Advani, B. G.; Sreenivasan, R. Indian J. Chem. 1980, 19B, 536.
- Alanine, A.; Flohr, A.; Miller, A. K.; Norcross, R. D.; Riemer, C. WO 2001097786; CAN 136:69803.
- Wakasugi, K.; Iida, A.; Misaki, T.; Nishii, Y.; Tanabe, Y. Adv. Synth. Catal. 2003, 345, 1209.
- 16. A2B cAMP assay: CHO cells were stably transfected with human A2B receptor and cultured under 5% CO<sub>2</sub>/95% O<sub>2</sub> atmosphere at 37 °C in DMEM and DMEM/ F-12 (1:1 mixture) medium (Invitrogen) with 10% fetal calf serum (Invitrogen), 100 U/mL penicillin (Invitrogen), 100 U/mL streptomycin (Invitrogen), 1 mg/ mL G418 (Invitrogen) and 0.2 mg/mL Hygromycin B (Invitrogen). Experimental cultures were grown overnight as a monolayer in 384-well tissue culture plates (0.06 mL/well-7500 cells/well). Each well was washed once with 0.1 mL of Krebs buffer. To each well was added 50 µL of Krebs buffer containing 100 μM of the phosphodiesterase inhibitor 4-(3-butoxy-4-methoxybenzyl)-2imidazolidinone, 100 nM NECA (Sigma-Aldrich), 0.02% BSA Fraction V (Roche Biochemicals), the test compound (appropriate concentration). The final concentration of DMSO was 1.1%. After incubation for 20-25 min, the wells were emptied and blotted on paper towel to remove residual solution. The HitHunter cAMP Assay Kit from DiscoverX for adherent cells was used for lysing the cells and measuring cAMP concentrations.
- 17. Binding assays: (a) Human A1 membrane receptors (Euroscreen) were diluted in assay buffer (HEPES 50 mM, NaCl 100 mM and MgCl<sub>2</sub> 1 mM) to yield final concentration of 10  $\mu g/well.$  The test compounds (10  $\mu L)$  and 40  $\mu L$  of [^3H]-DPCPX ligand (4.8 nM final conc., Perkin-Elmer), were added to 96-well polypropylene plates (Becton Dickinson) followed by addition of membranes (150 µL) and incubation at room temperature for 1 h on an orbital shaker. (b) Human A2A membrane receptors (Perkin-Elmer) were diluted in assay buffer (HEPES 50 mM, EDTA 1 mM) to yield final concentration of 8.5 µg/well. The test compounds (10 µL) and 40 µL of [<sup>3</sup>H]-ZM241385 ligand (5 nM final) were added to 96-well polypropylene plates (Becton Dickinson) followed by addition of membranes (150 µL) and incubation at room temperature for 1 h on an orbital shaker. (c) For human A2B receptor, whole cells (CHO cells) expressing the receptor were used. Confluent (80%) T75 flasks were harvested mechanically and frozen in aliquots of 1 mL. On the day of assay, a single vial was suspended in 25 mL of assay buffer. The test compounds (10 µL) and [<sup>3</sup>H] ZM241385 ligand 40 µL (30 nM final) were added to 96-well polypropylene plates followed by addition of cell suspension (150  $\mu$ L) and incubation at room temperature for 1 h on an orbital shaker. Reactions were harvested using 96-MultiScreen FB plates (0.5% polyethyleneimine-treated) and well MultiScreenHTS vacuum manifold (Millipore). Plates were air dried followed by addition of scintillation fluid and read on MicroBeta counter (Perkin-Elmer). (d) Human A<sub>3</sub> receptor binding data was not obtained routinely because its membrane preparations are not commercially available in the US due to patent restrictions. Only compound 37 from the manuscript was tested in A3 binding assay and its  $K_i$  in  $A_3$  was determined to be 80 nM.
- 18. A strong ( $r^2 = 0.64$ ) and linear relationship was observed between the potency of A<sub>2B</sub> antagonists for the cAMP (IC<sub>50</sub>) and binding assay ( $K_i$ ) across a wide range of potencies (single digit nM–µM cAMP IC<sub>50</sub> values) and across multiple structural subtypes (over 300 compounds were analyzed, data not shown).

- Elzein, E.; Li, X.; Kalla, R.; Perry, T.; Palle, V.; Varkhedkar, V; Maa, T.; Nguyen, M.; Wu, Y.; Maydanik, V.; Lustig, D.; Leung, K.; Zeng, D.; Zablocki, J. *Abstracts of Papers*, 227th National Meeting of the American Chemical Society, Anaheim, CA, Mar 28–Apr 1, 2004; American Chemical Society: Washington, DC, 2004; MEDI-251.
- 20. A likely explanation for the greater than 100% oral bioavailability is saturation of clearance since the oral dose is twenty times higher than the iv dose. However, we cannot rule out other possibilities such as precipitation at the injection site or insufficient sampling following iv administration and the consequent failure to fully capture the distribution phase.